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Abstract. The present work evaluates several artificial neural networks models, based on Multilayer Perceptron, Radial
Basis Function and Self-organizing Maps, to classify defects in the weld beads attaching metal plates of carbon steel. The
database used for training models consists of pulse-echo (A-scan) ultrasonic signals. The artificial neural networks were
designed to identify two classes of defects in welds, lack of fusion and longitudinal cracks. Moreover, they can identify
defect-free welds. All artificial neural networks were trained and tested with no feature extraction from input signals.
Subsequently, they were trained using the Principal Component Analysis technique to feature extraction thereof. The
results show that defects classification has occurred with a success rate up to 91% for a Multilayer Perceptron, with two
hidden layer model and using Principal Component Analysis technique to feature extraction.
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1. INTRODUCTION

The ultrasonic waves are used at nondestructive testing (NDT) method for welded structures since 1960’s. It’s the
most widely NDT technique used on in-service inspection applications of large welded structures (Ditchburn et al., 1996).
There are many different techniques to ultrasonic NDT and the pulse-echo technique is the most commonly used for its
simplicity and efficiency (Veiga et al., 2005). In this technique, a piezoelectric ultrasonic transducer generates ultrasonic
waves. These waves propagate through metal plate and they are reflected by defects (planar or volumetric) and back
surface. The same ultrasonic transducer receives the reflected waves and converts them to electrical signals. These
signals, called A-scan signals, contain information about the type, size and orientation of the defect (Sambath et al.,
2011).

The analysis of A-scan is to identify a defect is not a trivial task. This task must be done by experts and the results
depend on the experience and knowledge (Seyedtabaii, 2012). Nevertheless, a human inspector is subject to mistake
during identification task. Thus, an automatic signal classification system (ASCS) to assist the inspector in that analysis
may improve the reliability of the inspection process (Veiga et al., 2005).

Polikar er al. (1998) give an overall schematic of an ASCS and define three major tasks to such systems: preprocessing
raw data, feature extraction and classification. The preprocessing task normalizes raw data signals values to a suitable
range for other tasks. The feature extraction task is responsible to obtain attributes from normalized A-scan signals. These
attributes must be able to characterize the flaws. Finally, the classification task aims to analyze the attributes from an A-
scan signal and indicates one from a known set of flaws. The algorithm that implements a classification task is called
classifier. There are several approaches to build a classifier, such as traditional statistical classifiers, rule-base classifiers
and learning-base classifiers, which typical examples are artificial neural networks (ANN) (Song et al., 2002).

This work aims to compare the performance of several ASCS architectures to classify defects in the weld beads
attaching metal plates of carbon steel. All ASCS has the same preprocessing algorithm, but the feature extraction and
classifier algorithms are different for each ASCS. The feature extraction algorithms used in this work were Principal
Component Analysis (PCA) and none (every points of normalized A-scan signal are used as attributes). Only ANN
classifiers algorithms were used. These classifiers are based on Multi-layer Perceptron (MLP), Radial Basis Function
(RBF) and Self-organizing Maps (SOM). All ANN classifiers were trained with the same knowledge database. The
knowledge database has A-scan signals of two flaw classes, lack of fusion (LF) and longitudinal cracks (LC). Moreover,
it has also A-scan signals of defect-free welds (ND). This knowledge database has derived using a simulation software for

44



ABCM Symposium Series in Mechatronics - Vol. 6 Part I - International Congress
Copyright © 2014 by ABCM Section I - Modelling, Control & Identification

ultrasonic testing called simSUNDT, developed at the Dept. of Mechanics at Chalmers University of Technology (Bovik
and Bostrom, 1997; Wirdelius, 2004; Persson and Wirdelius, 2010).

This paper is organized as follows. Section 2 discusses how the knowledge database was assembled by using sim-
SUNDT software. Section 3 describes the methods for building ASCS architectures. Results obtained are presented in
Section 4 and concluding remarks are presented in Section 5.

2. KNOWLEDGE DATABASE
2.1 Weld Flaws

According to American Welding Society (AWS, 2000), any interruption of a weldment typical structure is considered
as weld discontinuity. A flaw is a weld discontinuity does not meet any requirement of a particular specification. AWS
(2000) gives three general classification of weld discontinuities: (1) Procedures/Process, (2) Metallurgical and (3) Base
Metal. This work was limited to the study of only two types of discontinuities lack of fusion and longitudinal cracks, both
belonging to the class (1).

2.1.1 Lack of fusion

The lack of fusion (or incomplete fusion) is a discontinuity which appears when the weld metal does not melt properly
with the base metal. It can occur at interface between weld metal and base metal (sidewall) or between adjoining weld
beads (AWS, 2000). According AWS (2000), the main reasons that cause lack of fusion are insufficient welding current,
lack of access to all faces of the weld joint and insufficient preweld cleaning. Figure 1 shows examples to lack of fusion
flaws.

(@) (b)

Figure 1. Lack of fusion examples (a) at sidewall and (b) between adjoining weld beads

2.1.2 Cracks

The AWS (2000) defines cracks of welded joints as a result of localized stresses that exceeds the material ultimate.
Cracks can be divided into hot cracks, which occur during solidification, or cold cracks which occur in ambient tempera-
ture when the weldment has been placed in service.

The cracks can also be divided according to their location. They may occur in the weld metal and the base metal.
Figure 2 shows examples of cracks.

There are three cracks types which occur in the weld metal (AWS, 2000):

» Crater cracks: they are often star shaped. They may occur when the welding operation is interrupted;

* Longitudinal weld cracks: they are parallel to axis of weld. They may occur as extension of crater cracks formed at
the end of the weld;

* Transverse weld cracks: they are perpendicular to axis of weld. They may occur when is used a low-ductility weld
metal;

The base metal cracks occur in the heat-affected zone (HAZ) and there are two types, according AWS (2000):

» Transverse base metal cracks: they are perpendicular to axis of weld. They are usually associated with welds on
steels of high hardenability;

* Longitudinal base metal cracks: they are parallel to axis of weld. They may occur as extension of weld interface
cracks. They can be subdivided into toe cracks, root cracks and underbead cracks.

2.2 Software simSUNDT

The software simSUNDT is a tool which simulates the whole ultrasonic NDT procedure, generating the A-scan signals
for defects insert into a weld bead. The simSUNDT has three components: a preprocessor which the operator configures a
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Figure 2. Cracks examples

simulation session; a kernel (UTDefect) which deals with the mathematical model (Bostrom and Wirdelius, 1995; Bovik
and Bostrom, 1997); and a postprocessor which shows the simulation results.

The simulator’s mathematical model is three dimensional one and the probe scans the object on a rectangular mesh.
It can simulates tree types of planar defects, which two of them can be interpreted as lack of fusion (rectangular and
circular cracks) and one is as longitudinal crack (strip-like crack). It can also simulate four volumetric defects: spherical
cavity (pore), spherical inclusion (slag), spheroid cavity (pore) and cylindrical cavity (side drilled hole). The software
simSUNDT can also simulate the weld and the corresponding back scattered grain noise that is superposed to the defect
signal that correlates better to a real inspection situation (Persson and Wirdelius, 2010).

2.3 Simulation parameters

It is necessary to define simulator parameters before starting a simulation session. All parameters definitions are
described in Wirdelius (2004). First, it is necessary to specify the object and the ultrasonic NDT procedure. Here the
material proprieties of base metal (steel) are defined, the calibration method parameters (Side-drilled hole with © 2.4 mm
at depth 15 mm), the probe arrangement (pulse-echo), the time window (All positions from 0 us to 50 us, step 0.02 us)
and accuracy index 3. Furthermore, the measuring mesh (X dimension from -20 mm to 50 mm, step 5 mm; Y dimension
not vary) and weld proprieties are specified. The geometry of weld, defined by five parameters are showed in Fig. 3. The
weld metal are set to steel.

-.i20°

Figure 3. Weld geometry

The second step is to define the probe parameters. The wave type is set to Transversal (vert. pol.) with No supression
of others wave components. The skew angle probe is set to 60°. The probe’s shape is elliptic and its dimensions are 5
mm (x-length) by 5 mm (y-length), with only 1 element. The probe is unfocused and the frequency spectrum of electrical
exciting pulse has cossine square shape, with central frequency set to 1.5 MHz and bandwidth set to 100% (1.5 MHz at
-6 dB). Finally, the probe couplant constant (Bostrom and Wirdelius, 1995) is set to 0.4.

The last step in the simulation parameterization is to set defect parameters. The lack of fusion defects were param-
eterized as circular cracks. Position parameters on the mesh (X and Y positions), the geometric parameters (diameter,
center depth, tilt and skew angles), depth of back surface and type parameters (open, close or partly close) must be a priori
defined for all simulated defects. All lack of fusion defects were simulated as open cracks, with back surface at 20 mm,
skew angle sets to 0° and Y-position at 0 mm. The tilt angle, depth center and X-position were adjusted so that the defect
stay at the margin between the base metal and weld metal. The diameter was chosen randomly between 1.5 mm and 7.5
mm with uniform probability distribution.

The longitudinal cracks were parameterized as strip-like cracks. Position parameters on the mesh (X and Y positions),
the geometric parameters (height, center depth and tilt angle), depth and tilt of back surface and roughness parameters on
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the crack surface must be a priori defined. All longitudinal defects were simulated with no roughness on the crack surface,
with back surface at 20 mm (no tilt) and Y-position at 0 mm. The others parameters were chosen randomly with uniform
probability distribution. The limits for each parameters were: -90° < tilt angle < 90°; 5 mm < depth center < 19.5 mm;
1.5 mm < height < 7.5 mm; and -17 mm < X-position < 17 mm.

The defect-free welds were parameterized as side-drilled hole. Position parameters on the mesh (X and Y positions)
and the geometric parameters (diameter and center depth) must be a priori defined. All defect-free welds were simulated
with a small diameter (0.1 mm) with center depth at 20 mm. The position were set out of scanning area, with Y-position
at 0 mm and X-position at 50 mm.

2.4 A-scan signal database

The A-scan signal database was built with results of many simulation sessions. A hundred simulation sessions were
carried out for each LF and LC class flaws. So, were taken the signs of A-scan with the largest gain of each simulation.
For defect-free welds were taken all A-scan signals with gain greater than -30 dB (0 dB is the gain of A-scan signal
generated by simulator calibration process). This procedure gives an A-scan signal database with 100 A-scan signals for
lack of fusion defects, 100 A-scan signals for longitudinal cracks defects and 73 A-scan signals for defect-free welds. All
these signals have 2501 samples. Figure 4 shows an A-scan example for each defect.
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Figure 4. A-scan signals examples: (a) LF, (b) LC and (c) defect-free weld

3. METHOD

As previously mentioned in Sect. 1, an ASCS executes three main tasks (Polikar et al., 1998): data preprocessing,
feature extraction and classification. This section describes the methods applied in these three tasks to build the ASCS
used in this comparative evaluation.

3.1 Preprocessing raw data

The knowledge database described in Sect. 2 is formed by a set of raw A-scan signals. These signals have a high
frequency component (probe central frequency) whose amplitude is modulated according to echoes which are reflected
by defects and returned back to surface. These amplitudes determine the envelope of the A-scan signal. Therefore, only
the envelope of the A-scan signal has information about defects. Thus, the raw A-scan signals may be simplified if the
envelope signal was extracted. A method for envelope extraction is calculating the absolute value of the analytic signal.
The analytic signal of a real discrete signal is obtain with hilbert function of MATLAB®. Figure 5 shows the envelope
signal of the A-scan signal for Fig. 4a (a) and the its frequency spectrum (b).

As can be seen in Fig. 5b, the bandwidth of envelope signal is approximately 5 MHz. All A-scan envelope signals were
sampled at 50 MHz. Thus, these signals can be downsampling to 5 MHz without loss information. With this procedure,
the A-scan envelope signal decreases its size to 251 samples.

Once extracted the A-scan envelope signal and performed downsampling procedure, the resulting signals still show
large amplitude variations (see Tab. 1). Therefore, the last procedure to be performed as preprocessing of the A-scan
signals is the normalization by maximum and minimum amplitude value. All signals are normalized by assuming the
highest amplitude value as 1 and the lowest value as 0.
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Figure 5. (a) A-scan envelope signal and (b) the envelope signal frequency spectrum

Table 1. Maximum and minimum amplitude values of raw
A-scan envelope signal database per weld defect class.

Value LF LC ND
Maximum 17.3190 26.5519 0.0238
Minimum | 5.8650e-08 | -8.7143e-06 | 1.3786e-09

3.2 Feature extraction

According to Haykin (1998), feature extraction is a process which a input space is mapped to a feature space. This
mapping is carried out such that the feature space has a dimension smaller than the input space, but it still keep data
information contents. The input data set can have also reduced dimensionality. There are many techniques for extracting
features, some specific for use in ultrasonic A-scan signals (Case and Waag, 1996; Dunlop and McNab, 1997; Song et al.,
2002; Miao et al., 2008) and other generic for any type of signal, such as Wavelet Transforms (WT) (Polikar et al.,
1998; Lee and Estivill-Castro, 2007; Zhan and Jin, 2009; Li et al., 2010; Sambath et al., 2011) and Principal Component
Analysis (PCA) (Sophian et al., 2003; Miao et al., 2008).

From an statistical point of view, the PCA is an effective technique in pattern recognition application for reducing
dimensionality. In fact, PCA is an invertible linear transformation, maximizing the rate of decrease of variance and the
components of the resulting vectors are orthogonal (Haykin, 1998).

In this work, all classifiers were trained and tested with two input data sets. The first input data set is the normalized A-
scan envelope signals database, processed as described in Sect. 3.1. In this set, each input data vector has 251 dimensions.
The second input data set is the result of PCA processing on the first input data set. This PCA processing was performed by
processpca function of MATLAB®. The processpca takes two arguments. The first argument is a matrix where each
column is a input data vector. The second argument is the maximum fraction of variance for removed rows (maxfrac).
We used maxfrac=0.01 to eliminates those principal components that contribute less than 1% to the total variation in the
data set. This reduced the dimension of input data vectors to 19.

3.3 Classifiers

The ANN-based classifiers are widely used to identify defects in welded structures. There are several published studies
that demonstrate the good performance of these classifiers using ultrasonic signals as input data. Some of these works
are: Lorenz and Wielinga (1993); ter Brugge et al. (1995); Polikar et al. (1998); Veiga et al. (2005); Martin et al. (2007);
Sambath er al. (2011); Zhang et al. (2011); Seyedtabaii (2012).

All of these cited works use a Multilayer Perceptron neural network classifier. However, Zhang et al. (2011) propose
a Probabilistic Neural Network (PNN) classifier to flaw classification and compare its performance with a MLP classifier.
Likewise, Seyedtabaii (2012) gives a comparative performance evaluation of several ANN classifiers, including MLP,
RBF, SOM, PNN and GRNN classifiers. As Seyedtabaii (2012), the present work shows a comparative evaluation among
ANN-based classifiers, specifically MLP, RBF and SOM classifiers. Despite the overall goal of both works are the same,
the methods used are different.
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3.3.1 Multilayer Perceptron classifiers

The MLP are the most widely studied and used ANN classifiers (Zhang, 2000). In general multilayer feedforward
neural network classifiers have an input layer, at least one hidden layer and an output layer. All their neurons have a
sigmoid function transfer. The MLP are trained with a back-propagation training algorithm, which uses mean squared
normalized error as performance function.

The MLP classifiers used in this work were implemented using the Neural Network Toolbox " of MATLAB®. To
obtain a suitable number of neurons from the hidden layer, the cross-validation method for model selection proposed by
Haykin (1998, p.236) was used. The A-scan envelope signal database and the PCA processed database were randomly
partitioned into a training set (182 input vectors) and a test set (91 input vectors). A set of MLP classifiers with similar
architecture were created and configured, varying the number of neurons on the hidden layer. These similar architecture
have the following parameters: log-sigmoid transfer function, Scaled Conjugate Gradient back-propagation training algo-
rithm (trainscg) and performance goal was set to 0.01. All MLP classifiers were trained with the training set and tested
with the test set. The MLP classifier with the best success classification rate was choose.

3.3.2 Radial Base Function classifiers

The RBF classifier is another kind of multilayer feedforward neural network. According to Cover’s theorem, a pattern
classification problem cast in a high-dimensional space nonlinearly (feature space) is more likely to be linearly separable
than in an low-dimensional space (input space) (Haykin, 1998). In a RBF classifier, the neurons at hidden layer provide
a set of nonlinear functions that are a basis for input vectors when they are mapped from the input space into the feature
space. The learning of RBF classifier is equivalent to finding a surface in a multidimensional space that provides a best
fit to the training data (Haykin, 1998). A RBF classifier have always an input layer, one hidden layer and an output layer.

A RBF classifier was implemented using the function newrb from the Neural Network Toolbox™ of MATLAB®. This
function requires four parameters: a matrix with the training input data as column vectors, a matrix with the target class
data as column vectors, a mean squared error goal and a spread value of radial basis functions. The training and target set
were same used to MLP classifiers. The mean square error goal was set to 0.01. The selection of the best spread value
was done with cross-validation method.

3.3.3 Self-organizing Maps classifiers

The SOM classifiers are based on competitive learning (Haykin, 1998). They have only an output layer, where the
neurons compete among themselves and only one is activated at any time. These neurons are placed at the nodes of an
one- or two-dimensional /attice.

The Neural Network Toolbox™ of MATLAB® provides the selforgmap function to create a SOM classifier. This
function needs the dimension of map as parameter. To select the best dimension was used the cross-validation method.

4. RESULTS

The cross-validation method for model selection of MLP classifiers provided the results presented in Tab. 2. From this
table it is clear that MLP classifiers with two hidden layers had slightly higher performance MLP classifiers with only
one hidden layer. Apparently MLP classifiers with one hidden layer have a simpler structure than the classifiers with two
hidden layers. However, when are calculated the quantity of synaptic weights for each model (Tab. 3), the MLP classifiers
with two hidden layers contain fewer synaptic weights. So, they are computationally simpler than the MLP classifiers
with one hidden layer.

Table 2. Best MLP classifiers models chosen by cross-validation method.

Test success
Classifier classification
Model rate (%)

LF ND LC Over All
251-10-3 86.90 | 99.60 | 78.33 87.19
251-9-8-3 86.93 | 100.0 | 79.61 87.72

19-7-3 (PCA) | 91.40 | 95.00 | 86.51 90.55

19-6-4-3 (PCA) | 87.23 | 99.80 | 87.34 90.64

The MLP classifiers trained with the database processed by PCA have improved performance around 3%. However,
the most notable result was the reduction in the number of synaptic weights around 15 times, which make them more
computationally simpler. There was no evaluation of the computational complexity of PCA feature extraction process.
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Thus, it is not possible to determine whether there was an improvement in computational complexity.

Table 3. Quantity of synaptic weights of MLP classifiers.

Classifier S . .
Model ynaptic weight
251-10-3 (251 +1)10 4+ (10 + 1)3 = 2553
251-9-8-3 (2514+1)94+(9+1)8+ (8+1)3 =2375
19-7-3 (194+1)7+ (7+1)3 =164
19-6-4-3 (194+1)6+(6+1)4+ (4+1)3 =163

The RBF classifiers had similar performance to the MLP classifiers without PCA feature extraction. The values
obtained are shown in Tab. 4. There was no improvement in performance to the RBF classifier trained with the database
processed by PCA. The Tab. 5 confirms the assertion in Haykin (1998) that MLP classifiers may require a smaller number
of parameters than RBF classifiers for the same degree of accuracy.

Table 4. Best RBF classifiers models chosen by cross-validation method.

Success
Classifier Soread classification
Model p rate (%)

LF ND LC | Over All
251-81-3 0.0971 | 79.25 | 100.0 | 85.22 87.00
19-76-3 (PCA) | 4.3669 | 82.96 | 100.0 | 81.89 87.12

Table 5. Quantity of synaptic weights of RBF classifiers.

Classifier Synaptic weight
Model ynap &

251-81-3 | (251 + 1)81 + (81 + 1)3 = 20658
19-76-3 (19 +1)76 + (76 + 1)3 = 1751

The results in Tab. 6 indicate that the SOM are not suitable as classifiers in this particular problem. The successful

performance in classification was below the other classifiers. However, according to Haykin (1998), the SOM is more
suitable for the task of feature extraction.

Table 6. Best SOM classifiers models chosen by cross-validation method.

Success
Classifier classification
Model rate (%)
LF ND LC Over All
15x15 52.67 | 87.07 | 44.82 58.94
15x15 (PCA) | 62.66 | 100.0 | 54.88 69.80

5. CONCLUSIONS

In this study the performance of several ASCS were compared during the identification of lack of fusion, longitudinal
cracks and defect-free welds through pulse-echo ultrasonic signals. All these ASCS have used the following preprocessing
techniques: envelope signal extraction from A-scan signal, downsampling from SOMHz to 5 MHz and normalization of
amplitude values between 0 and 1. Regarding the feature extraction method, there were two groups of ACSC. In the
first group, the normalized envelope A-scan signals were directly used as input of the classifiers and the second group
used the PCA method for feature extraction. The artificial neural networks, of the types MLP, RBF and SOM, were used
as classifiers. All ANN were trained and tested with the same A-scan signal database. This database was built using a
simulation software for ultrasonic testing (simSUNDT).

The results are consistent with those presented in other similar works (Veiga et al., 2005; Sambath et al., 2011;
Seyedtabaii, 2012). Note that the A-scan signals of the knowledge database were generated by a software simulator,
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and therefore, the results may be different for a knowledge database built by ultrasonic NDT equipments, mainly by the
existence of measuring noise.

This study demonstrates (like similar work cited above) that the use of ANN-based classifiers leads to fair results
of performance. However, these results may be improved by modification of used techniques in the three elements of
ASCS. This became clear when comparing the ASCS systems that used MLP classifiers. A simple change in the feature
extraction method has led to different results.
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