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Abstract. The interest for multirotor unmanned aerial vehicles (UAVs) is currently growing due to their high maneu-
verability, simplified mechanics, capability to perform vertical take-off and landing as well as hovering flight. These
characteristics make them a promising technology suitable for applications such as surveillance of indoor environments.
This paper faces the problem of safely controlling the trajectory of a multirotor UAV by taking into consideration a conic
constraint on the total thrust vector. This problem is solved using a linear state-space model predictive controller (MPC)
formulation, whose optimization is made handy by replacing the original conic constraint set by a circumscribed pyrami-
dal space that renders a linear set of inequalities on the total thrust vector. The control variables computed by the MPC
is converted to the corresponding principal Euler angle/axis, which in turn is transformed to the modified Rodrigues
parameters (MRP) representing the set-point for some inner attitude control loop. The proposed method is evaluated on
the basis of computational simulations, which shows its effectiveness in tracking both square and spiral trajectories while
respecting the conic bounds imposed on the total thrust vector.
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1. INTRODUCTION

The multirotor-type unmanned aerial vehicle (UAV) technology has attracted a great deal of interest of the academia
and industry and, consequently experienced a rapid improvement. This interest is justified by features such as their
simplified mechanics, low cost, high maneuverability, and vertical take-off and landing (VTOL) capability. Multirotor
UAVs has the potential to be employed in applications too risky to human beings or simply intended to increase the
efficiency of certain tasks. Examples of applications are building exploration (Hoffman et al., 2008), traffic monitoring,
mapping of agricultural areas, search and rescue (Alexis et al., 2011).

The multirotors have six degrees of freedom (DOF): three of translational motion and three others corresponding to
the rotation. However, they feature only four independent control variables: three torque components and the magnitude
of the total thrust vector. Therefore, the first difficulty in designing a control system for them could seem to be the need
for facing this underactuation characteristic. However, it is necessary to consider that in most of the applications with a
market potential, one is in fact concerned to control only four DOFs: the three-dimensional position and the heading angle.
The other DOFs must only to be stabilized. A popular control system structure that obviates the dynamics underactuation
and allows to control the aforementioned four DOFs is illustrated in Figura 1. The main goal of this scheme is make
the true vehicle position r ∈ R3 track some desired position command rd ∈ R3. The navigation system is responsible
for providing estimated values, in engineering units, of the vehicle attitude d ∈ R3, angular velocity ω ∈ R3, position
r and linear velocity ṙ ∈ R3. The system structure is divided in two control loops, where the inner loop is responsible
for controlling the vehicle attitude and the outer loop carries out the trajectory control by providing references of attitude
commands dref ∈ R3, seeing that the aircraft needs to perform an inclination, in relation to the rotor’s plane, to accelerate
in a desired direction. Moreover, the outer loop computes the total thrust magnitude f ∈ R to control the vertical
acceleration. On the other hand, the attitude control block calculates the torque τ ∈ R3 that makes the aircraft follow the
attitude commands dref .

Many efforts have been made by various researchers to devise autonomous control strategies to solve the position
tracking problem. Mistler et al. (2001) used the feedback linearization method to guide the aircraft through a reference
trajectory. Castillo et al. (2004) applied the nested saturated controller to positioning the vehicle and stabilize its attitude.
In Bouabdallar and Siegwart (2005), the vehicle model was partitioned into two subsystems: one part describing the
translation and the other one modeling rotation. Then, sliding mode and backstepping techniques were used to control the
vehicle. Raffo et al. (2010) proposed a similar structure utilizing model predictive controller (MPC) to track the reference
trajectory and a nonlinear H∞ to stabilize the rotational motion. They took into account aerodynamic disturbances and
parametric as well as structural uncertainties. Lopes et al. (2011) designed a single MPC controller to reach simultaneous
position control and attitude stabilization.

This paper proposes a new control strategy to face the position tracking problem under constraints on the total thrust
vector. Particularly, the thrust inclination is bounded by a maximum allowable value, while the thrust magnitude is
bounded by a minimum and a maximum permitted value. The corresponding constraint set is a piece of a cone with
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an inferior and a superior spherical lids. In order to obtain a linear and convex constraint set, the original conic space
is replaced by one circumscript pyramid. On the other hand, a linear dynamic model for the translation is obtained by
feedback linearization. An state-space MPC relying on this linear model and on the pyramidal constraint set is then
designed to solve the so-posed problem. The control inputs computed by the MPC are then used to compute an attitude
command and a thrust magnitude command. The remainder of the paper is organized as follows. Section 2 describes the
multirotor translational dynamics and defines the position tracking problem. Section 3 provides a solution to this problem.
Section 4 presents computational simulations. Finally, Section 5 presents the paper’s conclusions.
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Figure 1. Block diagram structure.

2. PROBLEM STATEMENT

Consider the multirotor vehicle and the three Cartesian coordinate systems (CCS) illustrated in Figure 2. Assume that
the vehicle has a rigid structure. The body CCS SB , {XB, YB, ZB} is fixed to the structure and its origin coincides with
the center of mass (CM) of the vehicle. The reference CCS SR , {XR, YR, ZR} is Earth-fixed and its origin is at point
O. Finally, the CCS SR′ , {XR′ , YR′ , ZR′} is defined to be parallel to SR, but its origin is shifted to CM. Assume that
SR is an inertial frame.

 

 

  

  

 

  

  

  

  

   

   

   

  

  

  

  

Figure 2. The Cartesian coordinate systems.

Invoking the second Newton’s law and neglecting disturbance forces, the translational dynamics of the multirotor
illustrated in Figure 2 can be immediately described in SR by the following second order differential equation:

r̈ =
1

m
f +

 0
0
−g

 , (1)

where r , [rx ry rz]
T ∈ R3 is the position vector of CM, f , [fx fy fz]

T ∈ R3 is the total thrust vector, m is the mass of
the vehicle, and g is the gravitational acceleration. As illustrated in Figure 2, f is perpendicular to the rotor plane.

Define the inclination angle φ ∈ R of the rotor plane to be the angle between ZB and ZR′ . The angle φ can thus be
expressed by

φ , cos−1
fz
f
, (2)
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where f , ‖f‖.
Define the position tracking error r̃ ∈ R3 as

r̃ , r− rd, (3)

where rd , [rd,x rd,y rd,z]
T ∈ R3 is a position command.

Problem 1. Let φmax ∈ R denote the maximum allowable value of φ and fmin ∈ R and fmax ∈ R denote,
respectively, the minimum and maximum admissible values of f . The problem is to find a control law for f that minimizes
r̃, subject to the inclination constraint φ ≤ φmax and to the force magnitude constraint fmin ≤ f ≤ fmax.

3. PROBLEM SOLUTION

This section proposes a solution to Problem 1 based on a MPC strategy. Subsection 3.1 describes the system by a
continuous and discrete-time linear dynamic model. Subsection 3.2 shows how to obtain the linear constraints to the
control inputs. Subsection 3.3 presents an incremental-input state-space MPC formulation for computing the control
forces. Finally, Subsection 3.4 shows how to convert the control forces into commands to the lower level loops.

3.1 State-Space Model

Define the state vector x , [rx ṙx ry ṙy rz ṙz]
T ∈ R6 and the control input vector u ∈ R3

u ,
1

m
f−

0
0
g

 . (4)

Using (4), (1) can be immediately rewritten as a continuous-time linear state-space model

ẋ = Ax + Bu, (5)

with

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 ∈ R6×6 (6)

and

B =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 ∈ R6×3. (7)

Define the controlled output vector y ∈ R3 as

y , Cx, (8)

where

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 ∈ R3×6 (9)

Let x(k) ∈ R6, u(k) ∈ R3 and y(k) ∈ R3 denote, respectively, the state vector, the control input vector and the
controlled output vector all described in discrete-time domain. Using the Euler discretization method with a sample time
of Ts = 50 ms, the discretized version of (5) and (8) is obtained as

x(k + 1) = Adx(k) + Bdu(k)
y(k) = Cdx(k)

, (10)
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where

Ad =


1 0.05 0 0 0 0
0 1 0 0 0 0
0 0 1 0.05 0 0
0 0 0 1 0 0
0 0 0 0 1 0.05
0 0 0 0 0 1

 ∈ R6×6, (11)

Bd =


0.0013 0 0
0.05 0 0

0 0.0013 0
0 0.05 0
0 0 0.0013
0 0 0.05

 ∈ R6×3, (12)

and Cd ∈ R3×6 remains equal to C.

3.2 Thrust Vector Constraints
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Figure 3. (a) Real constraint space; (b) Linearized constraint space.

Using (4), the thrust magnitude constraint fmin ≤ f ≤ fmax can be rewritten in terms of u as

fmin ≤

∥∥∥∥∥∥mu +m

0
0
g

∥∥∥∥∥∥ ≤ fmax, (13)

fmin ≤ m
√
u2x + u2y + (uz + g)

2 ≤ fmax. (14)

Assuming that 0 ≤ φmax < π/2 rad, the inclination constraint φ ≤ φmax can be replaced by

cosφ ≥ cosφmax. (15)

Using (2), (15) can be rewritten as

fz
f
≥ cosφmax, (16)

which in turn, using (4), can be rewritten in terms of u, yielding

uz + g√
u2x + u2y + (uz + g)

2
≥ cosφmax. (17)

In short, (14) and (17) give the nonlinear constraints expressed in terms of the components of the control vector u.
From the original form of the constraints as defined in Problem 1, one can visualize them as a conic space with spherical
inferior and superior lids, as illustrated in Figure 3a. Note that, besides nonlinear, the original constraint space is non-
convex.
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Figure 4. Constraints top view.

3.2.1 Linear Constraints

A linear suboptimal constraint space is now obtained as being the pyramidal space circumscribed in the original
constraint space of Figure 3a. The new space is depicted in Figure 3b.

From Figure 3b, the new constraint along the ZR′ axis can immediately expressed as

fmin ≤ fz ≤ fmax cosφmax. (18)

Consider an arbitrary fz and let it represent the ZR′ axis coordinate of the dotted perimeter represented in Figure 3b.
The corresponding projection on the XR′ − YR′ plane is given in Figure 4. The later figure defines the distances α and β
and enables to expresses them immediately as

α = 2β cos
π

4
, (19)

and

β = fz tanφmax. (20)

Now, replace (20) into (19) to obtain

α =
√

2fz tanφmax (21)

and note that the linear constraints along the horizontal axes are given by −α/2 ≤ fx, fy ≤ α/2 to finally obtain

−
√

2

2
fz tanφmax ≤ fx ≤

√
2

2
fz tanφmax, (22)

and

−
√

2

2
fz tanφmax ≤ fy ≤

√
2

2
fz tanφmax. (23)

Rewriting (18), (22)-(23) in matrix form yields

Λ f ≤ λ, (24)

where

Λ =



−1 0 −
√
2
2 tanφmax

1 0 −
√
2
2 tanφmax

0 −1 −
√
2
2 tanφmax

0 1 −
√
2
2 tanφmax

0 0 −1
0 0 1


(25)
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and

λ =


0
0
0
0

−fmin

fmax cosφmax

 . (26)

Finally, using (4), (24) can be immediately reformulate in terms of u as

Λ̄u ≤ λ̄, (27)

where

Λ̄ , mΛ (28)

and

λ̄ , λ−mΛ

 0
0
g

 . (29)

3.3 Model Predictive Controller

Consider the discrete-time state-space model of (10). Its incremental-input version is given by

ξ(k + 1) = Ãξ(k) + B̃∆u(k)

y(k) = C̃ξ(k)
, (30)

where

ξ(k) =

[
∆x(k)
y(k)

]
∈ R9, Ã =

[
Ad 06×3

CdAd I3

]
∈ R9×9, B̃ =

[
Bd

CdBd

]
∈ R9×3 and C̃ =

[
03×6 I3

]
∈ R3×9,

where ∆x(k) , x(k)− x(k − 1) ∈ R6 denotes the increments of the state vector, ∆u(k) , u(k)− u(k − 1) ∈ R3 is the
control input increments vector, I3 represents an identity matrix with dimension 3× 3 as well as 06×3 is a matrix of zeros
with dimension 6× 3.

On the basis of (30), one can be expressed the prediction equation to y(k) as

ŷN = G∆ûM + F, (31)

with

G =


C̃B̃ 03×3 . . . 03×3

C̃ÃB̃ C̃B̃ . . . 03×3
...

...
. . .

...

C̃Ã
N−1

B̃ C̃Ã
N−2

B̃ . . . C̃Ã
N−M

B̃

 (32)

and

F =


C̃Ã
C̃Ã

2

...

C̃Ã
N

 ξ(k), (33)

whereN represents the prediction horizon,M denotes the control horizon, ŷN ∈ R3N×1 expresses the vector that contains
the predicted values of the controlled output up toN steps in the future. Similarly, ∆ûM ∈ R3M×1 represents the predicted
increments of the control input vector.
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Define the operator [•]N that stacks N copies of a column vector. In addition, let

K =

µ1 0 0
0 µ2 0
0 0 µ3

 ∈ R3×3 (34)

and

W =

ρ1 0 0
0 ρ2 0
0 0 ρ3

 ∈ R3×3 (35)

diagonal matrices that contain weightings of the controlled output (µ1, µ2, µ3) and the control input increments (ρ1, ρ2, ρ3).
Therefore, the cost function can be written as follows:

J(∆ûM) = (ŷN − [rd]N)TQ(ŷN − [rd]N) + ∆ûT
MR∆ûM, (36)

where

Q =


K 03×3 · · · 03×3

03×3 K · · · 03×3
...

...
. . .

...
03×3 03×3 · · · K

 (37)

and

R =


W 03×3 · · · 03×3

03×3 W · · · 03×3
...

...
. . .

...
03×3 03×3 · · · W

 . (38)

By replacing (31) into (36), the cost function can be immediately rewritten as

J(∆ûM) = (G∆ûM + F− [rd]N)TQ(G∆ûM + F− [rd]N) + ∆ûT
MR∆ûM

= 1
2∆ûT

MΓ∆ûM + ΨT∆ûM + (F− [rd]N)TQ(F− [rd]N),
(39)

where Γ = 2(GTQG + R) is the positive definite Hessian matrix and Ψ = 2GTQ(F− rN,d).
To solve the optimization problem it is necessary rewriting the set of inequalities (27) in terms of the predicted incre-

ments of the control input vector ∆ûM using the following expression

ûM = [u(k − 1)]M + TM∆ûM, (40)

where

TM =


I3 03×3 · · · 03×3
I3 I3 · · · 03×3
...

...
. . .

...
I3 I3 · · · I3

 (41)

is a lower block-triangular matrix of identities and [•]M is an operator that stacks M copies of a column vector, ûM ∈
R3M×1 denotes the predictions of the control input up to M steps in the future as well as u(k − 1) ∈ R3 represents the
control input used one sampling instant before.

Therefore, rewrite (27) in the prediction form

¯̄ΛûM ≤ [λ̄]M, (42)

where

¯̄Λ =


Λ̄ 06×3 · · · 06×3

06×3 Λ̄ · · · 06×3
...

...
. . .

...
06×3 06×3 · · · Λ̄

 . (43)
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Then, replacing (40) into (42) the minimization of the cost (39) is subject to the following linear constraints on ∆ûM

¯̄ΛTM∆ûM ≤ [λ̄]M − ¯̄Λ[u(k − 1)]M. (44)

The set of constraints (44) get the form S∆ûM ≤ b. Therefore, the optimization problem is a quadratic programming,
in other words it is a quadratic cost subject to linear constraints and can be solved for some numerical algorithms which
are available on the literature.

Remark. Only the first element of the optimized control increments sequence ∆u∗(k) = [I3 03×3(M−1)]∆û∗M is
utilized. The control command that is effectively applied on the plant is obtained by u∗(k) = u(k − 1) + ∆u∗(k). The
optimization process is repeated at the next sampling instant based on new sensors measurements.

3.4 Computing Thrust Magnitude and Attitude Commands

 

   

  

  

  

  

  

   

Figure 5. Relation between the thrust vector f and its horizontal projection fxy.

After the optimization process of the control input, it is necessary to convert u to the total thrust f and the attitude
reference angles, which will be utilized as a set-point for some inner attitude control loop. Thus, rewriting (4) as fx

fy
fz

 = m

 ux
uy

uz + g

 , (45)

Then, by taking the norm of (45), we can define f as

f = m
√
u2x + u2y + (uz + g)2. (46)

The attitude commands for the inner control loop need to be computed from the vector f. However, it is can be easily
seen that there are infinite attitude of SB to represent the multirotor orientation in SR, taking in account when the ZB axis
coincides with f. Therefore, it is necessary to specify an unique attitude to the aerial robot. It can be done utilizing the
attitude represented by the principal Euler angle/axis (φ, e). Define the principal Euler axis e ∈ R3, shown in Figure (5),
as

e =
ZR′ × fxy
‖ZR′ × fxy‖

, (47)

where fxy , [fx fy]T ∈ R2 denotes the horizontal projection of f.
Utilizing the (2) and (47), it is possible to represent the attitude of SB in relation to SR utilizing, for example, modified

Rodrigues parameters (MRP)

mref = e tan
φ

4
, (48)

where mref , [mx my mz]
T ∈ R3 represents the reference of attitude commands for some inner attitude control loop.

4. COMPUTATIONAL SIMULATIONS

All simulations were performed using the Simulink environment in Matlab R©. The translational dynamics was simu-
lated by integrating equation (1) through the Runge-Kutta method with an integration step of 1 ms. To solve the quadratic
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Figure 6. Adjustment of prediction and control horizon. (a) Effects of N on the response. (b) Effects of M on the
response.

programming was utilized the quadprog function in Matlab’s Optimization ToolBox. The vehicle has a mass of m = 1
kg and the gravitational acceleration is g = 9.81 m/s2.

The first part of the study consisted in determining the appropriate values for the N and M . For this, it was admitted
an initial condition for the vehicle position equal to ri = [0 0 10]T.Then, it was applied a pulse signal in the XR axis
direction as illustrated in Figure 6. In order to evaluate the influences of N on the system response, M was adjusted
to 10 and four values to N were tested (N = 20, 40, 70 and 80). To these simulations, it was taken into consideration
φmax = 10 deg, fmax = 10 N, fmin = 2 N, µ = [1 1 1]T and ρ = [0.5 0.5 0.5]T. The difference between N = 70 and
N = 80 was negligible, thus it was preferable to choose N = 70 in order to avoid excessive computational calculations.

To investigate the effects of M on the system response, the previously value chosen to N was utilized and the same
scenario was applied, taking into account three different values to the control horizon (M = 3, 5 and 10). As shown in
Figure 6b, the best response occurs when M = 10.
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Figure 7. Spiral trajectory tracking and respective graphics of φ and f .

In the second simulation was verified the behavior of the vehicle following a spiral trajectory with rd,x(t) = 2 cos 0.2t,
rd,y(t) = −2 cos 0.2t and rd,z(t) = 0.3t+1. The constraints imposed to the inclination and magnitude of f were replaced
by φmax = 12 deg and fmax = 13 N, however other parameter settings were unchanged. The initial position of the vehicle
were adjusted as ri = [0 0 0]T, purposely to starting far from the beginning of the reference trajectory. Figure 7 shows
that the proposed control strategy is able to make the vehicle follow the reference trajectory without violate the constraints
imposed on φ and f , which are represented by the red lines on their respective graphics.

Finally, the system was subject to abrupt position commands. The MPC parameter settings were the same used in the
second test. The initial position of the vehicle was adjusted to ri = [0 0 3]T. In t = 10 s a step command in the XR axis
direction was applied on the system (Figure 8). One can see in Figure 9 that the inclination angle φ and the total thrust
magnitude f suffered an abrupt change, however the controller was able to maintain the constraints inviolate. At the same
time, in the ZR graphic, one can see v1 that shows a slight variation in the aircraft altitude. It happened because when the
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vehicle performed an inclination to accelerate in the XR direction the controller had to increase the total trust magnitude
f to avoid loss of lift. The same analysis can be realized at t = 20 s when was applied a step command in the YR axis
direction. At t = 30 s an external disturbance v3 = 4 N was applied on the vehicle. To reject this disturbance, in the f
graphic, one can see that the controller acts decreasing the total thrust magnitude. At t = 40 s, however, the reference
signals were changed in the three variable at the same time, forcing the controller to saturating φ and f in their upper and
lower bound, respectively. Nevertheless, the controller was able to stabilize the vehicle respecting their constraints.

5. CONCLUSIONS

This paper presented a new control strategy to solve the multirotor position tracking problem. The method considers
a conic constraint on the total thrust vector. The results have presented an effective tracking of spiral and abrupt trajec-
tories with a smooth response and without violate the constraints imposed for φ and f even in the present of external
disturbances. Moreover, experimental tests are under preparation.
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