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Abstract. The Electrical Impedance Tomography (EIT) reconstruction can be solved as an optimization problem. where
the objective is to minimize the Euclidean distance between measured surface potentials and the respective currents on
parametrized simulated impedance domain. The optimization problem can be solved by a combination of Simulated
Annealing (SA) for optimization and Finite Element Method (FEM) for simulation of the impedance domain, but at a high
computational cost, since SA requires an elevated number of objective function evaluations. This cost has been mitigated
by using partial evaluations of the objective function, but this approach has scalability problems with the growing number
of nodes in the FEM mesh. A new objective function is proposed here, based on the total error for overdetermined linear
systems that can be partially evaluated without the scalability problems of the Euclidean Distance. Reconstructions were
performed with the new objective function using 1st and 2nd order FEM models, and their performance was compared
with traditional methods.
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1. INTRODUCTION

Electrical Image Tomography (EIT) is a diffuse imaging technique that obtains the electrical conductivity distribution
inside an object from surface measurements. To obtain these measurements a set of electrodes is attached to the object
surface, e.g. a human body, then electrical current is injected through these electrodes in multiple patterns and their
electrical potentials are measured.

The task of reconstructing EIT images is often performed as an optimization process, where one attempts to maximize
the likeness of a parametric simulated model. This likeness is often measured as the difference between the physical
surface measurements and the same measurements on the simulated model (Herrera et al., 2007; Mello et al., 2008;
Martins et al., 2012). A common drawback of this approach is that the underlying optimization problem is non-linear,
ill-conditioned (Mello et al., 2008) and the objective function is expensive to evaluate, requiring the solution of full Finite
Element Model (FEM) problems (Martins et al., 2012). In this paper is proposed a new definition of likeness, measured as
the total least square error of a (FEM) problem where the surface conditions are imposed to be exactly the same as those of
the physical measurements. This new measure is potentially cheaper to evaluate, particularly when partial evaluations of
the objective function are allowed.

This paper is structured as follows. Section 2.presents the mathematical formulation of the EIT problem as well the
approach method adopted to represent the studied physical domain (FEM). In this same section, the FEM formulation
is also explained. Section 3.defines a new Objective function, explains how to use it in the studied problem and how
preconditioning may improve the performance of convergence.

2. FORMULATION OF THE FORWARD PROBLEM

To solve the EIT image reconstruction problem as an optimization problem involves the simulation of a parametrized
model in order to obtain the expected surface measurements from a conductivity distribution. This process (obtaining
surface measurements from conductivity distribution) is called the EIT forward problem, in contrast with the original
inverse problem (obtaining conductivity distribution from surface measurements).

Let Ω be a domain with conductivity σ and current J injected through boundary electrodes, the typical forward problem
in EIT is find the potential distribution φ within Ω and in particular the resulting potentials at the measurement electrodes
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φm. Low frequencies are utilized so the inductive and capacitive effects can be ignored. So with these quasi-static
conditions, the solution of the forward problem consists in finding the solution to the following equation (Herrera, 2007):

∇ (σ∇φ) = 0 (1)

with boundary conditions given by the currents J at the domain’s frontier

σ
∂φ

∂n̂
= J (2)

where n̂ is the external normal. Here is adopted that positive values for J means that current is exiting the domain.
Boundary conditions as the ones in Eq. (2) are called Neumann boundary conditions

2.1 Finite Element Method

Given a generic domain Ω, analytical and exact solutions for the Eq. (1) with the boundary condition represented by the
Eq. (2) are not trivial. So, a numerical method is required. The adopted method in this paper is the Finite Element Method
(FEM) (Castro (2006); Bathe (1995)).

The main idea of the method is the use of an approximate solution φ̃, restricting the possible solutions to a space of
functions generated by the linear combination of shape functions.

With this in mind, given Ψ = [ψ1, ψ2, · · · , ψn] a finite vector of n linearly independent functions, with ψi ∈ C(R), i.e.,
functions from R2 to R. Thus, the domain A of the explored functions by the FEM is given by

A =
{
u : R2 → R | u = xT ·Ψ, x ∈ Rn

}
(3)

The approximate function φ̃ may be written by

φ̃ = ΦTΨ (4)

given Φ = [φ1, φ2, · · · , φn] the vector of coefficients that defines φ.
The variational form of the problem may derive the equations to FEM (Martins and de Sales Guerra Tsuzuki, 2011). It

leads to the definition of the stiffness matrix K(σ) and the load vector C of the problem defined by

K (σ) =

∫
Ω

σ (∇Ψ⊗∇Ψ) dΩ (5)

C =

∮
∂Ω

ΨJ ds (6)

By definition, K (σ)ij =
∫

Ω
σ (∇ψi ⊗∇ψj) dΩ is a symmetric and positive-definite matrix ( Martins and de Sales

Guerra Tsuzuki (2011) deduced that ΦTK (σ) ΦT corresponds to the first term of the variational approach, which is
necessarily positive). The resulting linear system to the FEM is given by

K (σ) Φ−C = 0 (7)

The linear system in Eq. (7) is efficiently solved by numerical methods.

2.2 Shape Functions Deduction

The shape functions are generally polynomials. Their degree are kept the lower as possible to avoid high computational
cost. The polynomials which base is B = {1, x , y} are frequently used in FEM problems, conciliating performance and
accuracy. However, this subsection aims to deduce the shape function of the nodes of an element based on an arbitrary base
B, since the dimension of the base B is equal to the number of nodes of the element (nodes not coincidental). A possible
approach is described by Cook et al. (2002) and Zienkievicz and Taylor (1988).

Given ψi ∈ V , V = {m1(x, y), . . . ,mn(x, y)} a vector space, the Eq. 4 may be also written as:

φ̃ = cT .V(x, y) =
n∑
i=1

cimi (8)
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where cT = [c1 . . . cn] e V(x, y) = [m1 . . . mn]T .
The function ψi is unitary to (xi, yi), i.e., in his own node, and null for all the others, by definition. Substituting this

fact in the Eq. (8), the following matrix is obtained:

φi = cT .V(xi, yi) (9)

So

ΦT = cT .Q ⇒ cT = ΦT .Q−1 (10)

where

Q =
[
V (x1, y1) · · · V (xn, yn)

]
By the previous definition, V(x, y) is a column-vector. An other representation to Q is

Q =

 m1(x1, y1) · · · m1(xn, yn)
...

. . .
...

mn(x1, y1) · · · mn(xn, yn)


Substituting the Eq. 10 in the Eq. (8), the following is obtained

φ̃ = ΦT .Q−1.V (11)

Comparing the Eq. (4) and the Eq. (11), it’s possible to conclude that the shape functions may be obtained by the
equation below, where Q is defined by the Eq. (11):

Ψ = Q−1.V (12)

2.3 Stiffness and Load Matrices Formulation

With the shape functions, obtained in Sec. (2.2), it’s possible to formulate a procedure to construct the matrices involved
to solve the problem, defined by the Eq. (5) and Eq. (6).

The stiffness matrix K has dimension n× n and its element Kij is given by the following equation

Kij (σ) =

∫
Ω

σ (∇ψi ⊗∇ψj) dΩ (13)

The formulation below uses a second order polynomial to construct the stiffness matrix. Previous studies (Martins
and de Sales Guerra Tsuzuki, 2011) adopt the polynomials of first order to reconstruct the images generated by the TIE
problem. The following steps are deduced to a second order function, but may be replicated to shape functions of any order.

It’s intuitive to induce that if ψi,ψj ∈ P2(R2),∇ψi ⊗∇ψj ∈ P2(R2), as shown below

∇ψi ⊗∇ψj = c0 + c1.x+ c2.y + c3.x
2 + c4.xy + c5.y

2 (14)

with ci values depending of the previous coefficients of the functions ψi and ψj .
The next step of the procedure consists in the calculation of the integrals of σ weighted by the monomials defined in the

Eq. (14) and respective coefficients ci.

∫
Ω

σ (∇Ψi ⊗∇Ψj) dΩ =
n∑
i=1

ci−1

∫
Ω

σ.mi dΩ (15)

Due to the generality of the domain (Fig. 1a), a linear transformation is necessary (Fig. 1b). The linear transformation
may be defined by the equations below:
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(a) Triangular element represented in the (x,y) space
(b) Triangular element represented in the
(α, β) space

Figure 1: Elements represented by different coordinates, transformed by an linear transformation

x = (x1 − x0)α+ (x2 − x0)β + x0 (16)
y = (y1 − y0)α+ (y2 − y0)β + y0 (17)

The integrals in cartesian and local coordinates are correlated by the Eq. (18).

∫
Ωxy

f(x, y) dxdy =

∫
Ωαβ

f(α, β)‖J(x, y)‖dα dβ (18)

‖J(x, y)‖ = 2A is the Jacobian of the relation (x, y)/ (α, β) and A the area of the triangular element.
The parametrized domain Ωαβ defines new upper and lower limits. The conductivity σ is parametrized by a first order

function σ = σ0(1− α− β) + σ1α+ σ2β.
The integrals are calculated at the beginning of the program, and the arising coefficients associated to the conductivity

of the nodes are stored in a database structure (a linked list). Each integral of the pair i and j may be represented by

Kij (σ) =

∫
Ω

σ (∇ψi ⊗∇ψj) dΩ = aij0 σ0 + aij1 σ1 + aij2 σ2 (19)

where

aij0 = A

[
c0
3

+
1

12
c1 (2x0 + x1 + x2) +

1

12
c2 (2y0 + y1 + y2) +

1

30
c3
(
3x2

0 + x2
1 + x1x2 + x2

2 + 2x0 (x1 + x2)
)

+

1

60
c4 (2x0 (3y0 + y1 + y2) + x1 (2y0 + 2y1 + y2) + x2 (2y0 + y1 + 2y2)) +

1

30
c5
(
3y2

0 + y2
1 + y1y2 + y2

2 + 2y0 (y1 + y2)
)]

(20)

aij1 = A

[
c0
3

+
1

12
c1 (x0 + 2x1 + x2) +

1

12
c2 (y0 + 2y1 + y2) +

1

30
c3
(
x2

0 + 3x2
1 + 2x1x2 + x2

2 + x0 (2x1 + x2)
)

+

1

60
c4 (x0 (2y0 + 2y1 + y2) + 2x1 (y0 + 3y1 + y2) + x2 (y0 + 2 (y1 + y2))) +

1

30
c5
(
y2

0 + 3y2
1 + 2y1y2 + y2

2 + y0 (2y1 + y2)
)]

(21)
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aij2 = A

[
c0
3

+
1

12
c1 (x0 + x1 + 2x2) +

1

12
c2 (y0 + y1 + 2y2) +

1

30
c3
(
x2

0 + x2
1 + 2x1x2 + 3x2

2 + x0 (x1 + 2x2)
)

+

1

30
c5
(
y2

0 + y2
1 + 2y1y2 + 3y2

2 + y0 (y1 + 2y2)
)

+

1

60
c4 (x0 (2y0 + y1 + 2y2) + 2x2 (y0 + y1 + 3y2) + x1 (y0 + 2 (y1 + y2)))

]
(22)

The procedure to build the whole matrix K consists in the following steps:

1. The matrix K[n, n] is initialized entirely with null. In this project, this step is skipped due to the use of the library
Eigen from C++;

2. For each element e, the 21 combinations are calculated1, resulting in 21.3 = 63 coefficients. They are stored in the
database. If the coefficient associated to i and j already exists, it’s added to the previous;

3. Calculate the coefficients for all the elements.

Each line i of the stiffness matrix represents a node and each column j is related to the influence of the node j on i. At
the end of the process, the database contains the coefficients of each node of the matrix, which, in turn, is associated to the
coefficients (and respective conductivities) of the nodes of the vertices that are linked to the analyzed line (node).

The load vector is easier to deduce. Based on the Eq. (6), the only terms that the integral are not null are those which
the current of the experiment is passing through. These positions of the vector are equal to the associated current.

The solution of the problem depends on the definition of the ground electrode (Martins and de Sales Guerra Tsuzuki,
2011). Rearranging the lines and columns of the stiffness matrix, it’s possible to eliminate it based on the fact that its
voltage is the reference and null by definition.

3. TOTAL LEAST SQUARE ERROR AS AN OBJECTIVE FUNCTION

In early works by Martins and de Sales Guerra Tsuzuki (2011) was assumed that the total error of the CG algorithm
was concentrated in the electrode nodes. This assumption is conservative as the ration between the number of electrodes
and the total number of nodes tends to diminish.

Taking Eq. (7) and reordering the nodes to have the electrode nodes as the last elements in Φ, we have:

(
Kii KT

ic

Kic Kcc

)(
Φi

Φc

)
=

(
0
Jc

)
(23)

where Φi is the internal tension vector, Φc is the electrode tension vector, Kii, Kic and Kcc are the blocks of the
symmetric matrix K(σ) after the reordering and Jc the current injected in the electrodes.

Replacing Φc by the measured tensions Φm in Eq. (23) we have:

K̂ (σ) Φ + e = Ĵ (24)

where

K̂ =

(
Kii

Kic

)
Ĵ =

(
−KT

icΦm

Jc −KccΦm

) (25)

and e an error vector added to the reduced system to make it consistent with the substitution Φc ⇒ Φm (it can be noted
that in general this substitution prompts to an overdetermined and inconsistent system). As this error theoretically goes to
zero as Φc approaches Φm, the minimum of his norm can be taken, respecting Eq. (24), as the measure of consistency
between the simulated domain and the physical measures. So the new objective function is:

1As the stiffness matrix is symmetric, Kij = Kji and the number of possibles combinations between the 6 shape functions in the node is
6!

2!(6−2)!
= 21
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E(σ) =

√∑
i

Di(σ)
2 (26)

Di = min
Φ

√
eTe : K̂ (σ) Φ + e = Ĵi. (27)

The minimization problem in Eq. (27) is a typical least squares problem whose solution is given by:

D2 = ĴT Ĵ− ĴT K̂
(
K̂T K̂

)−1

K̂T Ĵ. (28)

This is a measure of the error added to Eq. (24). It is observed that it depends only on K̂(σ).
Golub and Meurant (1994) studied how to efficiently and iteratively calculate quadratic forms as vT f(A)v, where v is

a vector, A is a symmetric matrix and f(x) is an analytic function.
In fact, if A is symmetric, positive and definite, so,vT f(A)v can be expressed as a Riemman-Stieltjes integral∫ b

a
f (λ) dα(λ) for a measure α(λ) obtained from v and the spectral decomposition of A. That integral in turn can be

approached by Gaussian Quadrature rules whose coefficients can be derived from Lanczos algorithm (Meurant, 2006)
when the start vector is v.

The result of this approach is an iterative algorithm that produces upper and lower boundaries to vT f(A)v. This can
be applied to the calculations of Eq. (28) and consequently in iteratively obtaining boundaries to the objective function
Eq. (26)

Golub and Welsch (1969) shows that for f(x) = x−1

vT f(A)v ≈ Gk = ‖v‖22eT1 T−1
k e1 (29)

where Gk is the Gaussian quadrature and Tk are the matrices from Lanczos algorithm when the starting vector is v.
To obtain the Gauss-Radau quadrature rule one must modify Tk in order to add to its eigenvalues the lowest one of A,
obtaining this way T̃k. So the Gauss-Radau quadrature Rk can be expressed as:

vT f(A)v ≈ Rk = ‖v‖22eT1 T̃k
−1

e1 (30)

It’s important to notice that for our f(x), Gauss quadrature rule gives an upper boundary and Gauss-Radau quadrature
rule gives a lower boundary for vT f(A)v (Golub and Meurant, 1994).

3.1 Taking Advantage of the New Objective Function Configuration

The general method to apply Gaussian quadrature rules was discussed in the previous section. But some modifications
can be made to enhance the process’s performance.

In (Golub and von Matt, 1979), some modifications were proposed to enhance the evaluation of form as the ones in
Eq. (28), that diminish the precision losses that one have when directly evaluating K̂K̂T . The new calculation is made
with the use of the "Lanczos Bidiagonalization II" algorithm by (Golub and von Matt, 1979).

Algorithm 1: Lanczos Bidiagonalization II adapted to Eq. (28)

p0 := Ĵ/‖Ĵ‖2;
s0 := K̂Tp0 ;
γ1 := ‖s0‖2;
q0 := s0/γ1 ;
r1 := K̂q0 − γ1p0;
δ1 := ‖r1‖2 ;
p1 := r1/δ1 ;
for k := 2 to n do

sk−1 := K̂Tpk−1 − δk−1qk−2;
γk := ‖sk−1‖2;
qk−1 := sk−1/γk;
rk := K̂qk−1 − γkpk−1 ;
δk := ‖rk‖2 ;
pk := rk/δk;
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This algorithm builds matrices

Bk =


γ1

δ1
. . .
. . . γk

δk

 (31)

It’s easy to observe that BT
kBk is equal to Tk in the previous section (Golub and von Matt, 1979).

Therefore, the final form of Gaussian quadrature is

Gk = ‖K̂T Ĵ‖22gk (32)

with gk = eT1 (BT
kBk)−1e1.

It’s easy to see that gk is the first element of
(
BT
kBk

)−1
. Now, using the fact that BT

kBk is a tridiagonal symmetric
matrix, a Cholesky-like factorization can be written BT

kBk = LDk ∆−1
k (LDk )T with

LDk =


ψ1

β1 ψ2

. . . . . .
βk−1 ψk

 (33)

and ∆k a diagonal matrix with elements ψj . So we have the following algorithm adapted from (Golub and Meurant, 2010)
to obtain the factorization and gk.

Algorithm 2: Obtaining gk
ψ1 := γ2

1 + δ2
1 ;

β1 := γ2δ1;
gk,1 := 1/ψ2

1 ;
c1 := 1 ;
for i := 2 to k do

πi := 1/ψi;
βi = γi+1δi;
t := β2

i−1πi−1;
ψi := γ2

i + δ2
i − t;

ci := ci−1πi−1t ;
gk,i := gk,i−1 + ciπi ;

With this we can obtain the upper limit to our function K̂K̂T . Now we will obtain the lower limit using the Gauss-Radau
quadrature rule. To do so, one must first do a sequence of given rotations to transform Bk in a upper bidiagonal matrix
with the following form:

GTBk = Uk =


τ1 θ1

. . . . . .
. . . θk−1

τk

 . (34)

After this, we must modify Uk to Ũk. To do this, we set τk to be equal to the lowest eigenvalue of BT
kUk the we call

a. So T̃k is given by ŨT
k Ũk.

Therefore, the final form of Gauss-Radau quadrature is:

Rk = ‖K̂T Ĵ‖22rk (35)

with rk = eT1 (ŨT
k Ũk)−1e1.

We stay with the problem of obtaining rk, initially on could think in applying Alg. (2) to Ũk. But it can be shown that
this can be incorporated in that algorithm with a simple change. First, let’s consider

UT
kUk = BT

kGGTBk (36)
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as Givens rotations are orthogonal (Golub and Van Loan, 1996), therefore, GGT = I. So,

UT
kUk = BT

kBk = LTk∆−1
k Lk (37)

As the only difference between Uk and Ũk is in the last element we won’t need to apply all Alg. 2 to obtain rk, but
only add the following step to it in the end of the for loop:

ri := gi−1 + ci/(a− t); (38)

The last problem that remains is obtain the first eigenvalue of K̂T K̂. In (Golub and Meurant, 1996) is suggested that
the lower eigenvalue of Tk can be used as an approximation to K̂T K̂’s lower. So, one can use the Inverse Power Iteration
algorithm to obtain the lower eigenvalue as described in (Panju, 2011).

Now we can compute upper and lower bounds to Eq. (28). These bounds get tighter as more iterations are done. So,
they can be used as a stopping criteria to simulated annealing proposed by Martins et al. (2011).

3.2 Preconditioning

Lanczos algorithm is notoriously sensitive to the matrix condition number (Golub and Van Loan, 1996). Moreover,
matrix like K̂T K̂ doesn’t have good conditioning.

Then, preconditioning can be used, as is done to enhance the convergence ratio in the resolution of Conjugated Gradients
based on Lanczos Algorithm (Golub and Van Loan, 1996), to improve the condition number of the relevant matrices for
our problem.

So, if we have a matrix

M = PTP ≈ K̂T K̂ (39)

that is an approximation of the original matrix, then, P−T K̂T K̂P−1 has better conditioning than K̂T K̂ (Saad, 2003). So,
defining Ǩ = K̂P−1, that can be rewritten as K̂ = ǨP, we have from Eq. (28):

D2 = ĴT Ĵ− ĴT K̂
(
K̂T K̂

)−1

K̂T Ĵ

D2 = ĴT Ĵ− ĴT ǨP
(
PT ǨT ǨP

)−1
PT ǨT Ĵ

D2 = ĴT Ĵ− ĴT ǨPP−T (ǨT Ǩ
)−1

P−1PT ǨT Ĵ

(40)

so, if we consider only symmetric P we have:

D2 = ĴT Ĵ− ĴT Ǩ
(
ǨT Ǩ

)−1
ǨT Ĵ (41)

in other words, we obtain the same results applying Eq.(28) at K̂ or in Ǩ. So nothing must be changed in the preview
methods, only apply them in Ǩ.

As K̂ was defined in section 3.we have K̂T K̂ = KT
iiKii + KT

icKic. As Kic has only information about the electrodes
nodes, it’s smaller and sparser than Kii. And, as decompositions for non-square matrices as K̂, we can consider KT

iiKii as
an approximation to K̂T K̂ during the incomplete factorization and preconditioning process.

So, if we look for decompositions to Kii, for example, Kii ≈ LLT = P we can build the preconditioned matrix Ǩ.
We tested different incomplete factorization techniques and they will be discussed in Section 4..

4. RESULTS

The process discussed in the preview sections were first implemented using Wolfram Mathematica R© Wolfram Research,
Inc. (2011) software then incorporated to the code developed by Martins et al. (2011). First the convergence of the Gauss
and Gauss-Radau quadratures rules was studied. To do this we used a random current pattern and the convergence with this
data can be observed in Fig. 2a. As we can see they comportment was as expected Gauss quadrature provided a lower
boundary and Gauss-Radau an upper.

Also, we didn’t evaluate the lower eigenvalue a in all iterations, but first, we calculated B50, then we obtained the
lower eigenvalue using Inverse Power Iteration as described in (Panju, 2011). This value was used to evaluate Gauss-Radau
quadrature. This is valid because after a certain point of Bk growing the lower eigenvalue variation is so small the
evaluation costs is not justified.

Also, as the lower eigenvalue is very small, we made some tests assuming a = 0, so reducing even more computational
costs, the results are in Fig. 2b.
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(a) Results obtained using Gauss quadrature(in red) and using
Gauss-Radau quadrature(in black)

(b) Comparative between results obtained using Gauss-Radau
quadrature rule with the evaluation of the lower eigenvalue
and assuming it equal zero

Figure 2: Guassian quadrature rule results

After theses tests, we started to evaluate different incomplete factorization approaches. To evaluate the effectiveness of
the incomplete factorization we considered the following criteria: the condition number and eigenvalue dispersion of ǨT Ǩ
and the incomplete factorization density.

Initially, without any preconditioning K̂T K̂ has the dispersion and condition number represented in Fig. 3a.
Initially we evaluated the Incomplete LQ factorization as proposed by Saad and Sosonkina (2001). In our implementation

we adopted the L matrix zero patter to be equal as the one of Kii. And for Q we stored only the n greater elements in each
line. To evaluate the influence of the number of stored elements we made tests for n = 10s+1 with s ranging from zero to
one. The obtained results are in Fig. 3b,3c,3b.

It is observed that the reconstruction present in Fig. 5c it’s more loyal to reality than the one present in Fig. 5b. But it
presents some reconstruction artefacts in the top where only liquid was present. Those artefacts come from the imposition
of a continuum impedance domain that doesn’t necessarily occurs, resulting, in artefacts like those.

As we can see in Fig. 3 the preconditioning can enhance the matrix condition number, but it generates matrix denser
than the original ones. Also, as we applied the factorization to Kii we expected that P = LQ were symmetric or close to a
symmetric matrix, but unfortunately this didn’t happen, so we can conclude that this factorization don’t give good results to
our problem.

We also analysed the Balanced Incomplete factorization(BIF) proposed by Mas and TU̇MA (2008).We used drop
tolerance equal to unity to don’t allow very small values. We also evaluated the influence of the shift parameter s in the
range 0.1 to 1.1. As we can see in Fig. 3f the bigger the shift the better condition is the resulting matrix, but as we can
observe in Fig. 3e it has low influence in the eigenvalue dispersion that turn out to be more disperse than in the original
matrix.

We also, evaluated Incomplete Cholesky factorization as proposed in (Golub and Van Loan, 1996). To do so we applied
it to a matrix K̂ii = Kii + αI with α ranging from zero to one. As we can see in Fig. 3h the values are more compacted
around the origin, chiefly for α > 0.5, that is yet a small value, then, the factorization maintains a much information about
the original matrix. And generally the matrix has better condition number than the original as can be observed in Fig. 3i.

Then, after evaluating all this candidates we opted to use IC with a 0.5 shift, this was done considering the following
aspects:

• This preconditioner let the eigenvalues closer to the origin, justifying even more using Gauss-Radau with the lower
eigenvalue set as zero. This removes a considerable amount of calculations in the quadrature evaluation procedure.

• To factorize the matrix, we first store the lower triangular matrix structure of the matrix to be factorized in the L
matrix. And, as new elements aren’t inserted in places where there was a zero before, the access and modification
can be implemented efficiently using C++ template library Eigen.

• This factorization effectively reduce the number of iterations in Gaussian quadrature rules to obtain convergence as
can be seen in Fig. 4. And also has better conditioning that the original matrix.

The experimental data collected by Martins et al. in the arrangement show in Fig. 5a was used to perform reconstructions,
both with the old and new method. Two meshes were used in the reconstruction, a first-order one with 1047 nodes and a
second order mesh with 4289 nodes.

It is observed that the reconstruction present in Fig. 5c it’s arguably as close to reality as the one present in Fig. 5b. Yet
it presents some reconstruction artifacts in the top where only liquid was present. Those artifacts come from the imposition
of a constant impedance domain across the outer ring that doesn’t necessarily occurs, resulting, in artifacts like those.
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(a) K̂T K̂ eigenvalue dispersion
(b) ǨT Ǩ eigenvalue dispersion for ILQ pre-
conditioning

(c) ǨT Ǩ condition number for ILQ precon-
ditioning
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(f) ǨT Ǩ condition number for BIF precon-
ditioning

(g) Element density between in the factor-
ization and the original matrix using BIF
factorization

.
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Figure 3: Preconditioning techniques comparative

Figure 4: Gaussian quadrature convergence when applied to the preconditioned matrix
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(a) Apparatus and configuration used to ob-
tain the data (b) Reconstruction using the preview

method by Martins et al. (2012)
(c) Reconstruction obtained using the
methos proposed here

Figure 5: Experimental apparatus and reconstructions using different methods

On the performance, the new algorithm obtains the image in roughly 2/3 of the time of the method in (Martins et al.,
2012) when using first order elements. For second order elements, the process was more than 20 times slower without any
improvement in image quality, becoming inviable. Reasons for this performance loss are still being investigated.

5. CONCLUSION

This work presented a novel approach to EIT image reconstruction with partial evaluation using a new objective function.
This new objective function, based on the total error of overdetermined linear systems, solves the scalability problems
present in (Martins et al., 2012). As the new method is based on a Lanczos algorithm, its performance is strongly dependent
of the system matrix condition number, several preconditioning techniques were studied. Reconstructions were performed
on EIT experimental data, both with the new method and the one proposed in (Martins et al., 2012). Total reconstruction
time was reduced in about 33% for meshes of first-order with similar image quality, confirming the hypothesis of better
scalability of the new method.
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