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Abstract. Optical 3D surface measurement technologies have achieved tremendous advances in research and 
development in last decades. Optical measurement systems using stereo vision with sinusoidal fringe projection are 
one of the most used methods to measure free form surfaces. Recent developments in this field include fringe code 
reduction, novel encoding methods and projection of laser speckles with temporal correlation methods. In the classical 
triangulation approach, 3D points are calculated from homologous image point pairs previously determined. In the 
inverse triangulation method, previously developed by the authors, several candidate 3D tested points are 
mathematically projected in both images planes and the information associated with these points are compared until a 
valid 3D point is reached, resulting in a regular and organized mesh of points. The objective of this work is to compare 
the inverse triangulation method performance for three kinds of projected patterns: sinusoidal fringe with Gray code 
projection, random pattern projection and laser speckle projection with temporal correlation. The comparison 
includes measurements of a reference plane as described in the VDI-VDE 2634 guidelines. The results show the 
suitability of the three tested projected patterns and the influence of random pattern and laser speckle number of 
acquired images. Sinusoidal fringe and Gray code projection, followed by random pattern and laser speckle 
projection, shows the best performance.  
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1. INTRODUCTION

Increasing commercialization and use of three-dimensional surface measurement technologies in industrial
inspection was caused by tremendous advances in research and development in the last decades resulting in improved 
accuracy, high density of measured points and short measurement times (Geng J., 2011) (Bräuer-Burchardt,  C., et al 
2011). 

Optical measurement systems based on sinusoidal fringe projection are one of the most commonly used methods to 
measure full-field free form 3D surfaces being one of the most active research areas in optical metrology (Liu,  Y., et 
al., 2011). The range of applications of these systems is large and includes measurement of mechanical components and 
assemblies, cultural heritage, reverse engineering and human body shape (Gorthi, S. and Rastogi, P., 2010). 

Recent developments include fringe code reduction and parallel data processing (Bräuer-Burchardt,  C., et al 2011), 
novel encoding methods (Liu,  Y., et al., 2011), defocused projection of binary patterns (Lei, S. and Zhang, S., 2009), 
projection of laser speckles (Schaffer, M., Grosse, M. and Kowarschik R., 2010) (Schaffer, M, et al., 2011)  and 
projection of band limited random patterns (Wiegmann, A., et al., 2006). Though stereo vision triangulation methods 
showed improvements, they are more or less evolutions (Lindstrom, P. 2010) of already established methods (Hartley 
R. and Zisserman A., 2003). 

Anyway all of these approaches, using conventional triangulation methods, have in general the disadvantage that the 
acquired data is an unordered and non structured cloud of points in 3D space. These non-structured clouds of points are 
acceptable for visualization purposes, but not very handy to use for calculations and feature extraction. Data sets 
organized in a regular mesh of points are also a lot easier to visualize, unify and compare.  

The algorithm previously developed by the authors (Pinto T. et al, 2012), named here as Inverse Triangulation, 
overcome some of these disadvantages. Inverse Triangulation change from a sensor oriented organization of the point 
cloud to an object of interest naturally oriented organization of the point cloud, with user defined density.  

The objective of this work is to analyze and compare the Inverse Triangulation method performance for three 
different kinds of projected patterns: (a) sinusoidal fringe and Gray code projection, (b) band limited random pattern 
projection with temporal correlation and (c) laser speckle projection with temporal correlation. The comparison includes 
measurements of a reference plane as described in the VDI-VDE 2634 guidelines. 

2. MEASUREMENT PRINCIPLES

This section describes the measure principles related to this work based on the pinhole camera model, as the classical 
triangulation approach and explain the developed inverse triangulation approach. It also shows how to detect the 
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homologous points using temporal correlation for projection of band limited random patterns and projection of laser 
speckles. 

2.1 Pinhole camera model 

The pinhole camera model considers that the projection of a 3D scene on an image plane through a lens can be 
described by projecting 3D points in a plane through a central point named the center of projection. 

For any point M in 3D space, its representation in the image m is located where the line connecting M with the 
center of projection C intersects the image plane π. The projection m = (x.w, y.w, w)T of a 3D point M = (X, Y, Z, 1)T in 
the plane π can be described by the equation (Hartley and Zisserman, 2003): 

m = P.M = A.[R t].M    (1) 

The projection matrix P is a 3x4 matrix containing a combination of extrinsic (R, t) and intrinsic (A) parameters and 
not consider distortions introduced by imperfections of the lenses used, which can be quite significant. An usual model 
is consider the introduction of radial and tangential distortion in the projected point, better reproducing the actual light 
rays paths when they pass through the lens. The projection matrix and distortion coefficients should be determined by 
calibration (Heikkilä J. and Silvén O., 1997) (Zhang, S and Huang, P, 2006). In this work, the calibration is realized 
using the “Camera Calibration Toolbox for Matlab” available on the internet (Bouguet, J., 2010). 

2.2 Triangulation 

Stereo vision is a method for the three-dimensional reconstruction of a scene from corresponding points by 
triangulation with two cameras (Kanatani et al, 2008). In this case, the intrinsic camera parameters and the relative 
position between the cameras are not changed during the measurement allowing calibration as a preliminary step 
(Sünderhauf and Prötzeler, 2006). 

To perform the triangulation and determine the three dimensional position of a point it is necessary to determine its 
homologous points, or its corresponding position in each of the two images, as a preliminary step. For this, the scene 
must contain heterogeneous texture to allow the use of simple digital image correlation. For the measurement of parts 
that have a homogeneous texture, auxiliary systems for the projection of structured light may be used. The epipolar 
geometry can be used to facilitate the determination of corresponding or homologous points between image pairs 
(Hartley and Zisserman, 2003). 

From the pinhole model, the previously collected calibration data and the corresponding positions of homologous 
points in each image, it is possible to determine the lines in 3D-space that may contain these points. The intersection of 
these lines determines the position of point M in space by the triangulation process. 

2.3 Inverse Triangulation 

In the inverse triangulation method (Pinto T. et al, 2012), two spatial coordinates of an unknown 3D point are 
selected by the user and the third coordinate is scanned. The resulting 3D point is mathematically projected in both 
images planes and a test quantity, associated with these projected points, is compared until a valid 3D point is reached. 
Since the user can freely determine two coordinates, a regular and organized mesh of points can be obtained. The test 
quantity associated with these points can be phase values, spatial or temporal correlation coefficients. 

To obtain a regular 3D point cloud by inverse triangulation, a regular grid in X and Y direction in the world 
coordinate system is first defined with a user defined point spacing. From the X and Y coordinates of a given point on 
the regular grid, the search for the corresponding Z coordinate is performed numerically. The value of Z is changed and 
the resulting 3D point is projected onto each image plane of the cameras using the projection equations (1) with lens 
distortion. The test quantity corresponding to the calculated camera pixel is determined with subpixel resolution and 
compared for both cameras. The correct value of the Z coordinate is achieved when the test quantity retrieved from the 
image planes are equal for all cameras.  

The test quantity obtained from the image planescan be: (a) absolute phase difference if sinusoidal fringe projection 
is used, (b) spatial correlation if natural surface texture or projected texture is used and (c) temporal correlation if a 
sequence of structured patterns (e.g. random patterns) is projected on the object surface. In practice, the smallest 
absolute difference between the phase values or maximum correlation must be found. Thus, the estimate of the Z 
coordinate associated with each grid point (X, Y) is determined. 

This principle can be seen in Fig. 1: for different Z coordinates, for a grid point (X, Y), their projected points on the 
image planes of the cameras are calculated. The algorithm can be summarized as: 

1. Define the grid spacing and ranges in the X and Y direction to be measured;
2. Define the limits of the Z value variation: Zmin and Zmax (e.g. Zmin = -100 mm,  Zmax = 100 mm);
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3. Set ΔZ (e.g. ΔZ = 0,01 mm);
4. Choose a pair of X, Y coordinates from the defined grid;
5. Project each point M formed by the coordinates X, Y and (Zmin + ΔZ * i) ,with i = 0,1,...,(Zmax–Zmin)/ΔZ, in the

image planes using equation (1) and distortion for each camera.
6. Determine the projected point (and Z) with the smallest phase value difference or largest correlation;
7. Set the Z coordinate for this X, Y coordinates in the grid;
8. Return to step 4 to measure another point of the predefined grid, i.e. different X and Y, until the Z values for all

points on the grid are calculated.

Figure 1: Z coordinate determination for an object point with pre-defined X, Y coordinates (Pinto T. et al, 2012). 

The Inverse Triangulation technique, exposed in this section, allow measurement of a dense point cloud (which can 
be millions of points), organized in a regular grid in a predefined coordinate system defined in the camera calibration 
process. This approach allows points to be naturally structured and organized in the object space and the 3D points are 
determine simultaneously with the homologous points, intrinsically respecting the epipolar geometry. Author's previous 
work on the subject, with sinusoidal and gray code projection, include  (Pinto, T. et al, 2011) (Fantin, A., et al, 2007) 
(Pinto T. et al, 2012). 

In Classical Triangulation the 3D point are determined by straight lines leaving from homologue points in the 
cameras, in contrast, in the Inverse Triangulation the 3D point is determined by projecting it to the cameras image 
planes. The inverse triangulation approach can be naturally extended for multiple cameras triangulation. 

2.4 Temporal correlation 

In the Inverse Triangulation, the phase-value retrieved from cameras can be compared to determine the best Z for 
each grid point (Pinto T. et al, 2012). Instead of using the phase-values, it is also possible to use temporal correlation 
with several successively acquired images to calculate a normalized cross-correlation coefficient for each projected 
point in both image planes. For each projected point, the information (gray value) is retrieved along the successively 
acquired images, or in another words, through time. Temporal correlation is already used with the classical triangulation 
method (Schaffer, M. et al, 2011).  

For a tested 3D point in the inverse triangulation, each projected point (i,j) in one camera can be correlated with 
each projected point (i’,j’) from a second camera using the temporal normalized cross-correlation coefficient equation 
(Schaffer, M. et al, 2011): 
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this (X,Y) node in the grid. A threshold for the correlation value ρ can be used to avoid outliers. The temporal vector is 
defined with subpixel interpolated gray levels for every projected point on image planes. Homologous pixels 
corresponding to the same object point share a similar gray value vector as shown in figure 2. 

Figure 2: Corresponding pixels from two views with similar gray value sequence (Schaffer, M. et al, 2011). 

Sequentially, the projection of a random pattern onto the object and image acquisition for each camera is realized 
several times, defining the temporal sequence t of N images. In this work, the projected patterns were images with band 
limited random patterns (BLP) projected by a multimedia projector as described by A. Wiegmann, et al., 2006  or laser 
speckle projection (LS) by a specially constructed laser projector similar as described by Schaffer, M. et al, 2011. 
Figure 3 shows the images acquired from these projected patterns with (a) band limited random pattern projected by a 
multimedia projector and (b) blue laser speckle projection. 

Figure 3: Acquired images from (a) band-limited random projection and (b) laser speckle projection. 

3. EXPERIMENTS

Experiments were realized to evaluate the performance of the Inverse Triangulation method with both types of 
projection for temporal correlation. The influence of number of N images in the temporal correlation and in the error of 
a measured plane with the both types of projection patterns are shown. Earlier evaluation of the method using sinusoidal 
fringe projection is used for comparison as described by Pinto T. et al., 2012. 

3.1 Number of images for temporal correlation 

The number N of images used for temporal correlation, or the length of vectors g and g’, influence the sharpness 
and the evidence of the correlation peak. An experiment to evaluate different N numbers of images in the correlation 
calculation was done for both types of projections. Figure 4 shows a graph of temporal correlation curves, using band-
limited random pattern projection, for N = 10 (red) and N = 40 images (blue). The tested grid point is X=0, Y=0 with Z 
ranging from Zmin = -100 mm to Zmax = 100 mm with scanning steps of ΔZ = 0,01 mm. The coordinate system is 
defined during camera calibration and its origin is at the center of measurement volume about 600 mm of the cameras 
with Z axis pointing toward measurement system. Each tested point is related to a different pixel coordinate at each 
image.  
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Figure 4: Temporal correlation curves for N = 10 (red) and N = 40 images (blue) 
for band-limited random projection. 

Higher number of N images gives a more distinct correlation peak, but both peaks are detected at the approximately 
same location (Z ~ 36,20 mm). 

A more detailed view of the peak region for a varied number of N images for temporal correlation can be seen in 
the Figure 5 below. In this graph the greater the number of N images, the narrower is the peak and above N = 20 images 
the difference in the shape of the peak is insignificant. 
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Figure 5: Peaks region of temporal correlation curves for band-limited random projection. 

For laser speckle projection the Figure 6 shows the correlation curves for N=10 and N=40 images. In this case the 
peak for N = 10 is in different Z position of the peak with N = 40 images. This is caused by poor correlation quality in 
this kind of projection. Figure 7 show a more detailed view of the peak region for a varied number of N images for 
temporal correlation. 
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Figure 6: Peaks region of temporal correlation curves for laser speckle projection. 
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Figure 7: Peaks region of temporal correlation curves for laser speckle projection. 

For laser speckle projection, as for band-limited random pattern projection, N ≤ 10 images results in poor and 
ambiguous peak detection. It’s also evident, for this system configuration, that laser speckle projection has lower 
performance. This is caused by the subjective speckle also present, causing different intensities depending on the point 
of view for both cameras.  

Even with larger number of N images, the position of the peak has small lateral displacements in both cases, 
resulting in different Z’s for each number of N images used. To analyze the influence of N number in the 3D 
measurement itself a reference plane is measured. 

3.2 Plane measurement 

Measurement of a reference plane was done to evaluate the influence of the number of images in the error of the 
points measured in reference of a best-fit plane. The standard deviation of the error and the RE parameter, as described 
in the VDI-VDE 2634 guidelines was evaluated for one position of the reference plane. RE is the amplitude between the 
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most negative error and the most positive error of the measured points. Figure 8 and Figure 9 shows the influence of N 
images in the standard deviation and RE parameter for BLP and LS projection respectively. 

Figure 8. Number of images influence in standard deviation for a fitted plane. 

Figure 9. Number of images influence in RE parameter for a fitted plane. 

The higher the number of images, the smaller standard deviation and RE parameter. For BLP projection the 
standard deviation is below 0,01 mm and RE below 1,0 mm for N = 15 images. For LS projection the standard 
deviation is below 0,025 mm and RE below 1,0 mm for N = 25 images. The worst  results for LS projection are mainly 
caused by subjective speckle and non-uniform intensity distribution in the image. Previous measurements with 
sinusoidal fringe projection, as described by (Pinto T. et al, 2012), achieve RE = 0,10 mm. 

3.3 Measurement exemples 

Figure 10 show a 3D point cloud of a measured plane and Figure 11 show a 3D point cloud of a dummy face. 
Acquisitions where made with BLP projection and N = 40 images. Measurement  
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Figure 10. 3D Point cloud of a reference plane. 

Figure 11. 3D Point cloud of a dummy face. 
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4. CONCLUSION

The Inverse Triangulation method can be used with temporal correlation technique. The band limited random 
pattern projection have better performance over laser speckle projection. This is mainly caused by subjective speckle 
and non-uniform intensity distribution in projected patterns. 

Future work includes optimization of the laser speckle projector, tests with spatial-temporal correlation and 
underwater measurements.  
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