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Abstract. Redundantrobots have additional mobilitiesthat allows applications beyond the conventional robot. The
additional mobilities of robots enable to include extras tasks, depending on the degree of redundancy. Several references
present techniques and methodologies to solve the kinematic redundancy to robots with open or closed kinematics chains.
In the cases of operation of robots in confined environments, the classical methods like Denavit-Hartenberg, for example,
makes more difficult the precise analysis of the limits and constraints of robot’s joints movements. Recent works have
shown that the use of screw theory, and its tools, turn the robots analysis easier, even for complex differential and kinematic
model, when compared with the classical methods. The screw theory allows to introduce new solutions on study of
singularity and motion constraint in confined environments. Again, researches have also shown ways to evaluate the
movement constraints derived from a differential model of redundant robots, based on analytical expressions. These
studies are limited to computational experiments in a planar redundant robot model. This paper presents theoretical
aspects of the differential model and the mathematical strategies to obtain the expression of the constrained movement
for aP6R redundant robot operating in confined environments including the avoiding collision as a secondary task. It is
presented theoretical issues and the development of the position and differential kinematics model, based on screw theory.
As result, it is explored the mathematical model to identify theP6R singular postures including the influences of the
collision avoidance task

Keywords: Redundant robots, kinematic constraints,collisionavoidance, screw theory, analytical singularities

1. INTRODUCTION

Robotic operations in confined environments imply in the imminent possibility of collision of the robot with some part
of its workspace. The avoidance and treatment of collision possibilities present themselves as an additional restriction to
be planned resulting in a secondary task, since the primary task, the robot will perform with its end-effector. The collision
avoidance, as secondary task in robotic systems, requires additional movements of the robot, beyond those required for
performing the primary task, to reposition its kinematic chain away from to the collision points in the environment around
the task. In this sense, the robot must have some degree of redundancy.

The robot redundancyr is computed by the difference between robot DOF, in other words, the number of jointsn, and
the DOF necessary to perform the taskm, expressed by:r = n −m (Sicilianoet al., 2009). The degree of redundancy
determines the number of constraints, or the DOF, for a second task.

The use of the redundancy suggests new solutions for direct and inverse kinematics, since traditional methods may turn
difficult to get adequate results (Chang, 1996)(Piaggio, 1999)(Muller, 2004)(Soucy and Payeur, 2005). The main methods
are based on nullspace of the Jacobian matrix, like Pseudoinverse (Sicilianoet al., 2009) and task priority (Chiaverini,
1997)(Antonelli and Chiaverini, 1998). Recent works presented new methods for solution of redundancy based on screw
theory.

The screw theory is based that any spatial movement can be represented as a combination of a linear movement with a
rotational movement (Hunt, 2000). From the screw theory, several tools and mathematical methods have been developed
for modelling the kinematic of mechanisms and robots. Highlighting among these tools, the Davies’ method (Davies,
1981), and Assur virtual chains (Simaset al., 2009), have been extensively used lately in several studies (Camposet al.,
2009) (Nokleby and Podhorodeski, 2001) (Dai and Jones, 2001)(Simaset al., 2011), and among these, are taken as the
basis for developing the solution for collision avoidance of a redundant robot operating tasks in confined environment
(Simaset al., 2004)(Simaset al., 2009).

The potential of application of the screw theory in differential kinematic modeling and solution for redundant robots
has been studied by Campos (Camposet al., 2009) and Simas (Simaset al., 2009) and specifically for analysis of kine-
matic singularities for a planar redundant robots by Simas (Simaset al., 2011). The paper goal is to present an advanced
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study of singularitiesfor spatial redundant robots operating in confined environment and subjected to kinematic con-
straints imposed derived from virtual kinematic chains, used to task of collision avoidance. The study results allows
to write mathematical formulas for the evaluation of kinematic singularity considering the restriction and limitation of
movement in terms of the secondary task, or the collision avoidance task. It avoided with this result, work and control
with algorithmic singularities, quite common in other methods previously presented in the literature (Chiaverini, 1997)
(Muller, 2004)(Soucy and Payeur, 2005).

Firstly, it is presented the theoretical aspects of the screw theory and their respective methods and mathematical tools
used in the study developed. Following the kinematic model is developed for aP6R redundant robot, operating in an
environment delimited by a plane, where an Assur virtual chain is used to perform the collision avoidance. Finally, are
presented the partial equations of the model, and the final mathematical equation for the kinematic singularities control of
the complete robotic system is obtained, including the Assur virtual chain, as a result of development. The mathematical
equations for the kinematic singularities control are analised and discussed through images that represent the final results.

2. TOOLS FROM SCREW THEORY

The approach, here proposed in this paper is based on the Davies’ method, Assur virtual chains, direct graph notation
and extended Jacobian from kinematic restrictions, where the screw displacement are successively applied. Those topics
are extensively explored in literature and briefly presented in following sections.

2.1 The description of movements through Screws

The general spatial differential movement of a rigid body consists of a differential rotation about an axis, and a
differential translation along the same axis named the instantaneous screw axis. The complete movement of the rigid
body, can be described as a combining rotation (θdisplacement) and translation (tdisplacement) called screw movement
or twist, here denoted by$. The ratio of the linear velocity to the angular velocity is called pitch of the screw denoted as
h (Tsai, 1999).

The twist may be expressed by a pair of vectors$ =
[
ωT ;V T

p

]T
, whereω represents the angular velocity of the body

with respect to the inertial frame (reference frame or linkr ) andVp represents the linear velocity of a pointP attached to
the body which is instantaneously coincident with the originO of the reference frame.

So, a twist may be decomposed into its magnitude and its corresponding normalized screw. The twist magnitudeq̇ is
either the magnitude of the angular velocity of the body,‖ω‖, if the kinematic pair is rotative (h= 0) or helical, or the
magnitude of the linear velocity,‖Vp‖ , if the kinematic pair is prismatic (h→ ∞) (Hunt, 2000). The normalized screw

$̂ is a twist of unitary magnitude, i.e.

$ = $̂q̇ (1)

The normalized screw coordinates$̂ is written as:

$̂ =

[
si

soi × si

]
for rotative pairs and $̂ =

[
0
si

]
for prismatic pairs (Tsai, 1999), (2)

wheresi =
[
six , siy , siz

]
denotes an unit vector along the direction of the screw axis, and vectorsoi represents the

position vector of a point lying on the screw axis.
Thus, the twist in Eq.(2) expresses the general spatial differential movement (velocity) of a rigid body relative to an

inertial reference frameO − xyz.
If the kinematic pair is rotative,si points in the direction of rotative axis, and, if the kinematic pair is prismatic,si

points in the direction of kinematic pair displacement. It is important to note thatsTi soi = 0, ie, they are perpendicular
(Tsai, 1999) (Hunt, 2000). Figures 1 and 2 depict the location of vectorsi andsoi for a rotative and a prismatic kinematic
pair respectively .

The twist can also represent the movement between two adjacent links of a kinematic chain, the sucessive screw
displacement (Tsai, 1999). In this case,si andsoi represents the movement of linki relative to link(i − 1) (see Fig. 1
and Fig. 2) and a homogeneous transformation is obtained (Tsai, 1999), as Eq.(3).

Ai =




a11 a12 a13 tsx − sox(a11 − 1)− soya12 − soza13
a21 a22 a23 tsy − soxa21 − soy(a22 − 1)− soza23
a31 a32 a33 tsz − soxa31 − soya32 − soz(a33 − 1)
0 0 0 1


 (3)

where:

a11 = (s2x − 1)(1− cθ) + 1; a12 = sxsy(1− cθ)− szsθ; a13 = sxsz(1− cθ) + sysθ;
a21 = sysx(1− cθ)− szsθ; a22 = (s2y − 1)(1− cθ) + 1; a23 = sysz(1− cθ)− sxsθ;
a31 = szsx(1− cθ)− sysθ; a32 = szsy(1− cθ) + sxsθ; a33 = (s2z − 1)(1− cθ) + 1.

(4)
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link isi

soi

Rotative pair

link i− 1

reference link

link 0→ base

link n → end-effector

Figure 1.Location of the vectorssi andsoi for a
rotative kinematic pair

link isi

soi

Prismatic pair

link i− 1

referencelink

link 0→ base

link n → end-effector

Figure 2. Location ofthe vectorssi andsoi for a
prismatic kinematic pair

The vectorsi andsio are function ofθi (for rotative kinematic pair) andti (for prismatic kinematic pair) associated
with thei kinematic pair. Then thesi andsoi are computed by the relation presented on Eq.(5) and Eq.(6) .

sri = Rr
i si (5)

where,sri is the vectorsi as function of the kinematic displacements between the linki and the reference linkr, si is the
coordinates of the vetorsi in the initial kinematic posture andRr

i , extracted from homogeneous transformation on Eq.(3),
is the rotation matrix of the projections of the axis of the frame of the linki on the coordinates of the reference frame, on
the link r.




sroi
· · ·
1


 = Ar

i




soi

· · ·
1


 (6)

where,sroi is the vectorsoi as function of the kinematic displacements between the linki and the reference linkr; soi is
the coordinates of the vetorsoi in the initial kinematic posture andAr

i is the homogeneuos transformation matrix between
the frame of the linki on the coordinates of the reference frame, on the linkr computed using Eq.(3).

The choice of a link as reference (linkr) aims to simplify the final expressions for the screw representations. In
general, it is necessary to transform the coordinates of a screw represented in the linkr to a new reference on linkj. In
this case, it used the coordinate screw transformation matrixT j

r that has its structure presented in Eq.(7) (Tsai, 1999)

T j
r =


 Rj

r 03×3

W j
r Rj

r


 (7)

whereRj
r is the rotationmatrix of the referenceframe on linkr in relation to the frame on linkj; W j

r is a3 × 3 skew-
symmetric matrix representing the vector from the originOj of the framej to the originOr, on framer, expressed in the
jth frame.

More details of the screw theory and its applications can be found in works composed chronologically of Davies
(1981),Tsai (1999) and Hunt (2000).

2.2 Davies method

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derived a solution to
the differential kinematics of closed kinematic chains from Kirchhoff circulation law for electrical circuits. The resulting
Kirchhoff-Davies circulation law states that "The algebraic sum of relative velocities of kinematic pairs along any closed
kinematic chain is zero" (Camposet al., 2009). This method is used to obtain the relationship between the velocities of a
closed kinematic chain. Since the velocity of a link with respect to itself is null, the circulation law can be expressed as:

n∑

0

$̂iq̇i = 0 (8)

where$̂i (expressed on the coordinates of the frame reference linkr), q̇i represents respectively the normalized screw and
the magnitude of twist$i andn is the number of joints.
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Equation (8) istheconstraint equation which, in general can be written as

Nq̇ = 0 (9)

whereN = [$̂1 $̂2 · · · $̂n] is the network matrix containing the normalized screws, with the signs of the screws de-
pend on the definition of the circuit orientation (as will be presented later) (Camposet al., 2009), anḋq = [q̇1 q̇2 · · · q̇n]
is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here assigned as primary joints, and passive joints, assigned as secondary
joints. The constraint equation, Eq.(9), allows the computation of the secondary joint velocities as functions of the
primary joint velocities. To achieve this, the constraint equation is rearranged highlighting the primary and secondary
joint velocities and Eq.(9) is rewritten as follows:

[
Np

... Ns

]



q̇p
. . .
q̇s


 = 0 (10)

whereNp andNs are the primary and secondary network matrices, respectively, andq̇p and q̇p are the corresponding
primary and secondary magnitude vectors, respectively.

So, Eq.(10) can be rewritten as

Npq̇p +Nsq̇s = 0 (11)

The secondary joint velocities can be computed by Eq.(12) as follows:

q̇s = −N−1
s Npq̇p (12)

The secondary joint position can be computed by numerical method, as a screw-based integration method proposed
by (Simaset al., 2009)

2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just virtual chain, is essentially a tool to get information on the
movement of a kinematic chain or to impose movements on a kinematic chain (Camposet al., 2009).

This concept was first introduced by (Camposet al., 2009), which defines the virtual chain as a kinematic chain
composed of links (virtual links) and joints (virtual joints) which possesses three properties: a) the virtual chain is open;
b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of the real kinematic
chain.

From the third property, the virtual chain proposed by (Camposet al., 2009) is in fact an Assur group, i.e. a kinematic
subchain with null mobility such that, when connected to another kinematic chain preserves its mobility (Camposet al.,
2009).

2.4 Direct graph notation

Consider a kinematic pair composed of two linksEi andEi+1. This kinematic pair has its relative velocity defined by
a screwR$j (joint j) relative to a reference frameR. Jointj represents the relative movement of the linkEi with respect
to the linkEi+1. This relation can be represented by a graph (Camposet al., 2009), where the vertices represent links and
the arcs represent joints.

Now, studying a simple graph, where jointj is part of two closed chains. For each closed chain the circuit direction
is chosen (Camposet al., 2009). In a direct mechanism graph, if the joint has the same direction as the circuit, the twist
associated with the joint has a positive sign in the circuit equation (constraint equation on Eq.(8)), and a negative sign if
the joint has the opposite direction to the circuit.

2.5 Extended Jacobian from kinematic constraints

The method of extended Jacobian proposes a solution to solve the redundancy of robots creating kinematic constraints
in differential space. These constraints when added to the Jacobian matrix, produce a non-redundant kinematic system
and making the Jacobian matrix invertible.

A method to compute additional constraints has been proposed by Simaset al.(2011) based on reciprocal screws (Dai
and Jones, 2001)(Nokleby and Podhorodeski, 2001). The extended Jacobian based on reciprocal screws arises from the
fact thatNs matrix, must be inverted as can be seen on Eq (12), contains screws from virtual kinematic pairs. So, to
simplify the inversion of the matrixNs, it is necessary to eliminate its screws of the virtual chains.
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The elimination ofsecondaryvirtual screws can be performed through reciprocal screws. The reciprocal screws are
arranged in a matrix defined as annihilating matrix (Camposet al., 2009).

To eliminate these screws (columns) from secondary matrix (Eq.(11)), another partition is performed, as follows in
Eq.(13).

Nsq̇s = Nsaq̇sa +Nspq̇sp (13)

whereNsa corresponds to the screws of the joints of interest (here called active) andNsp corresponds to the screws of the
joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate matrixK which has the following structure on Eq.(14) (Campos
et al., 2009).

K =

[
Im×m 0

0 refWNsp(n−m)×d

]
(14)

whererefWNsp
, whose dimension is(n − m) × d, is a set of reciprocal screws from secondary passive matrixNsp.

(Camposet al., 2009)(Martins, 2002).
The reciprocal screws represent a set of external forces and torques that do not generate movements on secondary

passive joints. Therefore pre-multiplyingNsp byK, produces:

KNsp = 0 (15)

To maintain equality, it is necessary that the Eq.(11) is rewritten, considering the Eq.(13), as follows in Eq.(16).

KNpq̇p +KNsaq̇sa +KNspq̇sp = 0 (16)

Using equality in Eq.(15) the following result is obtained in Eq.(17).

KNpq̇p +KNsaq̇sa = 0 (17)

The velocities of the secondary joints are then obtained by Eq.(18).

q̇sa = −(KNsa)
−1KNpq̇p (18)

So using the usual definition of the Jacobian, the following result is obtained in Eq.(19).

J = −(KNp)
−1KNsa (19)

The Jacobian expressed by the Eq.(19) is a desired extended Jacobian matrix (Simaset al., 2011) (Camposet al.,
2009).

In order to evaluate the singularities postures on the whole kinematic chain, including real and virtual kinematic pairs
on extended Jacobian, it is necessary to compute the determinant ofKNsa. The next step is to invert the Jacobian matrix as
shown in Eq.(18) with objetive to compute the velocities on secondary kinematic pairs (q̇sa), and its respectively position.

3. MODELING OF A P6R REDUNDANT ROBOT OPERATING IN A CONFINED ENVIRONMENT

This section presents theP6R model, including the virtual chains to generate the trajectories, as primary task, and
to the collision avoidance, considered as secondary task. The resultant extended Jacobian is used to obtain an analytical
formula that expresses mathematically, and allows the control of the postures, that theP6R robot assumes their singular
conditions, together with the collision avoidance strategy.

Figure 3 depicts theP6R redundant robot including a collision plane inside its workspace.
TheP6R robot presented in Fig. 3 is composed of seven joints, where the first joint is a prismatic with displacement

L1, and the next six rotative joints, with displacementsθ2, θ3, θ4, θ5, θ6 andθ7, respectively described through screws$i
(for i = 1, . . . , 7) pointing its directions. The robot has three links, enumerated by2, with lengtha2 , 3, with lengtha3
and4, with lengtha4 andd4, and has its end-effector attached in a spherical wrist (screws$5, $6 and$7). The collision
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Figure 3.P6R redundant robot.

Table1. Coordinates ofsi andsoi for P6R robot

Jointi si soi θi ti

1 0,−1, 0 −(a2 + a3 + a4), 0, d4 0 L1

2 0,−1, 0 −(a2 + a3 + a4), 0, d4 θ2 0
3 0, 0, 1 −(a3 + a4), 0, d4 θ3 0
4 0, 0, 1 −a4, 0, d4 θ4 0
5 1, 0, 0 0, 0, 0 θ5 0
6 0, 0, 1 0, 0, 0 θ6 0
7 1, 0, 0 0, 0, 0 θ7 0

plane is definedthrough a point with coordinates of the vector~pl and orientation defined by the anglesθx andθy measured
in relationto the inertial frameO0 − x0y0z0.

Considering the link4 as reference link, and that its frameOr − xryrzr (orO4 − x4y4z4) located in the center of the
spherical wrist, it can be obtained the coordinates ofsi andsoi, as function of the joint variables, as presented on the Tab.
1.

Computing the screws forP6R using Eq.(6) and the initial posture from Tab. 1, the matrix of normalized screws are
obtained as:JP6R = [$̂1, $̂2, $̂3, $̂4, $̂5, $̂6, $̂7] and given by the Eq.(20)

JP6R =




0 −s34 0 0 1 0 c6
0 −c34 0 0 0 −s5 c5s6
0 0 1 1 0 c5 s5s6

−s34 d4c34 a3s4 0 0 0 0
−c34 −d4s34 a4 + a3c4 a4 0 0 0
0 a2 + a3c3 + a4c34 0 0 0 0 0




(20)

whereJP6R is the matrix of the normalized screw described in function of the joint displacements and referenced on
coordinates of the frame of the link4, the reference frame,s3 = sin(θ3), c3 = cos(θ3), s4 = sin(θ4), c4 = cos(θ4),
s5 = sin(θ5), c5 = cos(θ5), s6 = sin(θ6), c6 = cos(θ6), s34 = sin(θ3 + θ4) andc34 = cos(θ3 + θ4).

The model has as inertial reference theP6R base or the frameO0 − x0y0z0 (see Fig. 3), so the respective screw
transformation matrix necessary to represent the velocities of the end-effector on the reference frame (P6R base) is given
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in Eq.(21)

TP6R =




c2c34 −c2s34 −s2 0 0 0
s34 c34 0 0 0 0
s2c34 −s2s34 c2 0 0 0

d4c2s34 − s2k1 d4c2c34 − s2k2 c2(a3s3 + a4s34 − L1) c2c34 −c2s34 −s2
−d4c34 d4s34 −a2 − a3c3 − a4c34 s34 c34 0

d4s2c34 + c2k1 d4s2c34 + c2k2 s2(a3s3 + a4s34 − L1) s2c34 −s2s34 c2




(21)

whereTP6R is the screw transformation matrix responsible for transforming the coordinates of theP6R screw expressed
on the framer on the coordinates of the frame0, k1 = L1c34 + a2s34 + a3s4 andk2 = −L1s34 + a2c34 + a3c4 + a4

The next step is to define the screws of the collision avoidance virtual chain. The most common virtual chain used to
collision avoidance tasks is the3P3R virtual chain (Camposet al., 2009)(Simaset al., 2009)(Simaset al., 2011).

The3P3R virtual chain is composed by three prismatic joints, perpendicular to each other, and three rotative joints
composing a spherical wrist. The first two prismatic joints,xc andyc, are defined as tangents in relation to the collision
plane and have displacementspxc

and pyc
respectively, as consequence the third prismatic jointzc is normal to the

collision plane and has displacementspzc . The last three rotative joint are definied asrxc, ryc andrzc pointed on the
same directions ofxc, yc andzc respectively, with displacementsθlx , θly andθlz . The base of the3P3R virtual chain is
located on the coordinates of the~pl = [pxl

, pyl
, pzl ] expressed on inertial frameO0 − x0y0z0. The last link (end-effector)

of the3P3R collision virtual chain is attached along the link3 in the intersection with the line of the screw$4 (see Fig.
3).

In order to simplify the model and obtain tractable results, some considerations were adopted to compute screws of
the3P3R virtual kinematic chains, as follows:

• The screws of the3P3R virtual chains are obtained using theP6R base as reference, or the inertial frameO0 −
x0y0z0, and will not be required compute the screw transformation matrix;

• The3P3R is located on the collision plane such that the displacementspxc
= 0 andpyc

= 0;

• The collision plane is oriented in function of two anglesθx andθy (see Fig. 3);

• are obtained using theP6R base as reference.

Considering the simplifications presented above, the screws are obtained for the3P3R virtual chains and disposed in
a matrixJpla = [$̂xc

, $̂yc
, $̂zc , $̂rxc

, $̂ryc
, $̂rzc ]

Jpla =




0 0 0 cly 0 sly
0 0 0 slxsly clx slxcly
0 0 0 −clxsly slx −clxcly
cly 0 sly −sly (pyl

clx + pzlslx) −pzlcly − pczcly + pyl
slx cly (pyl

clx + pzlslx)
slxsly clx −slxcly pzlcly + clx(pcz + pxl

sly ) −slx(pxl
+ pczsly ) −pxl

clxcly + pzlsly
−clxsly slx clxcly −pyl

cly + slx(pcz + pxl
sly ) clx(pxl

+ pczsly ) −pxl
slxcly − pyl

sly




(22)

whereslx = sin(θlx), clx = cos(θlx), sly = sin(θly ), cly = cos(θly ), slz = sin(θlz ), clz = cos(θlz ) and~pl can
be expressed geometrically in function of theP6R parameters, as following expressions obtained through geometric
inspection:

• pxl
= c2(a2 + a3c3)− pczsly ;

• pyl
= −L1 + a3s3 + pczslxcly ;

• pzl = s2(a2 + a3c3)− pczclxcly .

With the purpose to generate the trajectory for theP6R redundant robot, another3P3R virtual chain is used. The
trajectory virtual chain has as base the inertial frameO0 − x0y0z0 and its end-effector attached on the end-effector
of the P6R redundant robot. The three prismatic joint are defined asxd, yd and zd and their screws are pointed on
direction ofx0, y0 andz0 with displacementspdx

, pdy
andpdz

, respectively. The three rotative joints are defined as
rxd, ryd and rzd and their screws are pointed, also, on direction ofx0, y0 and z0 with displacementsθdx

, θdy
and
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θdz
respectively. Equation (23) presents the normalized screws of the trajectory virtual chain disposed in the matrix

Jtraj = [$̂xd
, $̂yd

, $̂zd , $̂rxd
, $̂ryd

, $̂rzd ]

Jtraj =




0 0 0 1 0 sdy

0 0 0 0 cdx
−sdx

cdy

0 0 0 0 sdx
cdx

cdy

1 0 0 0 pdy
sdx

− pdz
cdx

cdy
(pdy

cdx
+ pdz

sdx
)

0 1 0 pdz
−pdx

sdx
−pdx

cdx
cdy

− pdz
sdy

0 0 1 −pdy
pdx

cdx
−pdx

sdx
cdy

− pdy
sdy




(23)

wheresdx
= sin(θdx

), cdx
= cos(θdx

), sdy
= sin(θdy

), cdy
= cos(θdy

), sdz
= sin(θdz

), cdz
= cos(θdz

)
Since all normalized screw, of all joints, are represented in the inertial reference frame and the constraint equation

(Eq.(9)) can be constructed, and presented in Eq.(24), considering that the complete kinematic have two circuits, in agree
with Davies method and graph notation (Davies, 1981)(Camposet al., 2009)(Simaset al., 2009).

Nq̇ =

[
$̂1 $̂2 $̂3 $̂4 $̂5 $̂6 $̂7 0 0 0 0 0 0 −$̂xd

−$̂yd
−$̂zd −$̂rxd

−$̂ryd
−$̂rzd

$̂1 $̂2 $̂3 0 0 0 0 −$̂xc
−$̂yc

−$̂zc −$̂rxc
−$̂ryc

−$̂rzc 0 0 0 0 0 0

]
q̇ (24)

whereq̇ = [L̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6, θ̇7, ṗxc
, ṗyc

, ṗzc , ṙxc, ṙyc, ṙzc, ṗxd
, ṗyd

, ṗzd , ṙxd, ṙyd, ṙzd]
T .

The collision avoidance is accomplished through activation of thezc joint of the collision avoidance virtual chain,
because of that, the jointzc is primary, together with all six joint of the trajectory virtual chain (Simaset al., 2011). The
definition of the primary joints, determines a first partition on matrixN in Np, with normalized screws of the primary
joints, andNs, with normalized screws of the secondary joints as shown in Eq.(25) and Eq.(26).

Npq̇p =

[
0 −$̂xd

−$̂yd
−$̂zd −$̂rxd

−$̂ryd
−$̂rzd

−$̂rzc 0 0 0 0 0 0

]
q̇p (25)

whereq̇p = [ṙzc, ṗxd
, ṗyd

, ṗzd , ṙxd, ṙyd, ṙzd]
T .

Nsq̇s =

[
$̂1 $̂2 $̂3 $̂4 $̂5 $̂6 $̂7 0 0 0 0 0

$̂1 $̂2 $̂3 0 0 0 0 −$̂xc
−$̂yc

−$̂zc −$̂rxc
−$̂ryc

]
q̇s (26)

whereq̇s = [L̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6, θ̇7, ṗxc
, ṗyc

, ṗzc , ṙxc, ṙyc]
T .

In the Eq.(26),Ns has screws of active and passive joints. In according to Eq.(13) a second partition can be performed
on theNs as presented in Eq.(27)

Ns =

[
$̂1 $̂2 $̂3 $̂4 $̂5 $̂6 $̂7 0 0 0 0 0

$̂1 $̂2 $̂3 0 0 0 0 −$̂xc
−$̂yc

−$̂zc −$̂rxc
−$̂ryc

]
= [ Nsa(12×7)

| Nsp(12×5)
] (27)

Computing the matrixrefWNsp(n−m)×d , with ref = 4, n = 6, m = 5 andd = 6, that corresponds to the null space
of Nsp, we have the Eq.(28).

4WNsp(1×6) =
[
w1 w2 w3 w4 w5 w6

]
1×6

(28)

where:

• w1 = −L1 + a3s3 + (a2 + a3c3)s2
slx
clx

;

• w2 = −(a2 + a3c3)(c2 −
s2
clx

sly
cly

)

• w3 = −c2(a2 + a3c3)
slx
clx

+ 1
clx

(L1 − a3s3)
sly
cly

;

• w4 = 1
clx

sly
cly

;

• w5 = slx
clx

;

• w6 = 1
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The annihilating matrixhasthe following structure in Eq.(29)

K =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 w1 w2 w3 w4 w5 w6




(29)

Using the annihilating matrixK, the matrixKNsp will bea null matrix with dimension7 × 5, and the matrixKNsa

has as result the Eq.(30)

KNsa =

[
$̂1 $̂2 $̂3 $̂4 $̂5 $̂6 $̂7
slx
clx

(a2 + a3c3)
(
c2 −

s2
clxcly

)
−a3

(
c3slx
clx

(
s2 +

c2cly
clxcly

))
0 0 0 0

]

7×7

(30)

where therespective q̇sa = [L̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6, θ̇7]
It is important to emphasize that the screws presented on Eq.(30) are represented on the inertial frameO0 − x0y0z0.

In following, it is analized the singularities of the kinematic system composed byP6R redundant robot,3P3R collision
avoidance virtual chain and3P3R trajectory virtual chain.

4. ANALYSIS OF SINGULARITIES

Equation (18) shows how to compute the velocities of the active secondary joints. The computation is feasible if
the matrixKNsa can be inverted. The determinant ofKNsa may be used to evaluate the conditions under which this
matrix is not invertible, and respectively, the singular postures that the kinematic system can assume. So, computing the
determinant ofKNsa, defined asDKNsa

we have the Eq.(31).

DKNsa
= −a3a4(a2 + a3c3 + a4c34)s3s6(slyc2s34 + slxclyc34 + clxclys2s34) (31)

Analyzing the expression of the determinant in Eq.(31), the following singularities can be observed:

1. s3 = 0→ Corresponds to the alignment of links2 e3, whenθ3 = kπ, for k = 0, 1, · · ·

2. s6 = 0 → Corresponds to the alignment of joint6 and7, whenθ6 = kπ, for k = 0, 1, · · · - note in Fig. 3, that in
the initial posture of theP6R, the screw axes$5 and$7 are parallel.

3. (a2 + a3c3 + a4c34) = 0 → According with the structure of the robot, it can be observed that the links2 and3,
with dimensionsa2 anda3 respectively, are contained in a plane, defined aspa (whenθ3 6= 0). A second plane
pb parallel topa can be defined, distancedd4 from the planepa and containing the link4 along to the its length
a4. Making a geometric analisys, the singular posture of this expression shows that the distance between the center
of the spherical wrist and the line along of the axis of the joint2 ($2 axis, see Fig. 3) can not be equal tod4. If
this distance isd4, the robot has restricted their movements imposed in the normal direction of the planepb. Using
another form of interpretation, it can be say that, in this singular posture, the velocities imposed by screws directed
to the normal ofpb will be reciprocal to the screw axis of the joint2. Figure 4 shown theP6R posture corresponding
to the singular posture described.

4. (slyc2s34 + slxclyc34 + clxclys2s34) = 0→ This expression can be rewritten as a dot product of the vectors~u and
~v as show the Eq.(32)




sly
−slxcly
clxcly


 ·




c2s34
−c34
s2c34


 = ~u · ~v = (slyc2s34 + slxclyc34 + clxclys2s34) (32)

Studying vectors~u and~v, it can be identified that these vectors correspond to direction of the jointzc, on 3P3R
collision avoidance virtual chain and the vectory4 of the frame of the link4, respectively. In this sense, the singularity
occurs when these vectors are perpendicular. Figure 5 presents the vectorszc andy4, and the angleϑ, which should be
different fromπ/2.

The analysis developed here, shown the potential of using virtual kinematic chains in obtaining an extended Jacobian
for spatial robots. The extended Jacobian allowed to evaluate the singularities belonging to the robot kinematic structure
only, without the appearance of algorithmic singularities, as in the classical methods.
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Figure 4.Singularposture forP6R redundantrobotcorresponding to expression:(a2 + a3c3 + a4c34) = 0
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Figure5. Singular condition forP6R redundantrobotfrom collision avoidance virtual chain.

5. CONCLUSION

Many manipulators has been designed to operate in confined environments. As shown in these paper, operations in
confined environments require methods to evaluate and to prevent that any collision may come along during the task
performing.

Therefore, the Simas approach solution may be apply to avoid collisions, studying aP6R redundant robot operating
in confined enviroments (Simaset al., 2009). It is based on screw theory and in the use of virtual chains to determine its
trajectories and to avoid collision. However, the paper do not present a study of the motion limits and the singular postures
of theP6R including the collision avoidance virtual chain. Another work, (Simaset al., 2011) presents an analitycal study
of singularities for a planar redundant robot, based on reciprocal screws using virtual chains and annihilate matrix.

This paper presented a study of singularities for aP6R redundant robot operating in a confined environment. Con-
sidering the possibility of collisions, Assur virtual chains were used in order to reposition theP6R robot away of some
imminent collision with any part inside its workspace.

The use Assur virtual chains for collision avoidance has became complex the differential kinematic model, obtained
by the Davies method. A simplified differential kinematic model was then obtained using the concept of annihilating
matrix, resulting in an extended Jacobian, similar to others proposed in references, but without algorithmic singularities
that do not belong to kinematic chain.

Partial results were presented and a final expression for the determinant of the differential kinematics,DKNsa
, iden-

tified all singular postures that the kinematic system, formed byP6R redundant robot and virtual chains for trajectory
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generation and collisionavoidance, can assume.
Results showed the viability of using the annihilating matrix as a way to simplify the differential kinematic modeling

for spatial kinematic systems. Furthermore, the development showed that the obtained Jacobian is an extended Jacobian,
invertible, whose the determinant represents only singularities belonging to the kinematic system.

Agreement with the second task developed as example in this paper, the result is useful in generation trajectory
systems, since singular conditions should be monitored, and most importantly, includes the singular postures arising from
collision avoidance strategy.

Future works can be developed aiming to minimize the need for geometric inspection, as shown in Eq.(22), and to
further simplify the screws obtained, since they have its formulation dependent on the choice of a link reference.
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