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Abstract. Redundantobots have additional mobilitiethat allows applications beyond the conventional robot. The
additional mobilities of robots enable to include extras tasks, depending on the degree of redundancy. Several references
present techniques and methodologies to solve the kinematic redundancy to robots with open or closed kinematics chains.
In the cases of operation of robots in confined environments, the classical methods like Denavit-Hartenberg, for example,
makes more difficult the precise analysis of the limits and constraints of robot’s joints movements. Recent works have
shown that the use of screw theory, and its tools, turn the robots analysis easier, even for complex differential and kinematic
model, when compared with the classical methods. The screw theory allows to introduce new solutions on study of
singularity and motion constraint in confined environments. Again, researches have also shown ways to evaluate the
movement constraints derived from a differential model of redundant robots, based on analytical expressions. These
studies are limited to computational experiments in a planar redundant robot model. This paper presents theoretical
aspects of the differential model and the mathematical strategies to obtain the expression of the constrained movement
for a P6 R redundant robot operating in confined environments including the avoiding collision as a secondary task. It is
presented theoretical issues and the development of the position and differential kinematics model, based on screw theory.
As result, it is explored the mathematical model to identify ftte? singular postures including the influences of the
collision avoidance task

Keywords. Redundant robots, kinematic constrairgs|lision avoidance, screw theory, analytical singularities
1. INTRODUCTION

Robotic operations in confined environments imply in the imminent possibility of collision of the robot with some part
of its workspace. The avoidance and treatment of collision possibilities present themselves as an additional restriction to
be planned resulting in a secondary task, since the primary task, the robot will perform with its end-effector. The collision
avoidance, as secondary task in robotic systems, requires additional movements of the robot, beyond those required for
performing the primary task, to reposition its kinematic chain away from to the collision points in the environment around
the task. In this sense, the robot must have some degree of redundancy.

The robot redundancyis computed by the difference between robot DOF, in other words, the number ofjparid
the DOF necessary to perform the taskexpressed byr = n — m (Sicilianoet al., 2009). The degree of redundancy
determines the number of constraints, or the DOF, for a second task.

The use of the redundancy suggests new solutions for direct and inverse kinematics, since traditional methods may turn
difficult to get adequate results (Chang, 1996)(Piaggio, 1999)(Muller, 2004)(Soucy and Payeur, 2005). The main methods
are based on nullspace of the Jacobian matrix, like Pseudoinverse (Sieitiahp2009) and task priority (Chiaverini,
1997)(Antonelli and Chiaverini, 1998). Recent works presented new methods for solution of redundancy based on screw
theory.

The screw theory is based that any spatial movement can be represented as a combination of a linear movement with a
rotational movement (Hunt, 2000). From the screw theory, several tools and mathematical methods have been developed
for modelling the kinematic of mechanisms and robots. Highlighting among these tools, the Davies’ method (Davies,
1981), and Assur virtual chains (Simessal., 2009), have been extensively used lately in several studies (Cathalos
2009) (Nokleby and Podhorodeski, 2001) (Dai and Jones, 2001)(®%es 2011), and among these, are taken as the
basis for developing the solution for collision avoidance of a redundant robot operating tasks in confined environment
(Simaset al., 2004)(Simast al., 2009).

The potential of application of the screw theory in differential kinematic modeling and solution for redundant robots
has been studied by Campos (Campbal., 2009) and Simas (Simasal., 2009) and specifically for analysis of kine-
matic singularities for a planar redundant robots by Simas (Senak, 2011). The paper goal is to present an advanced
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study of singularitiedor spatial redundant robots operating in confined environment and subjected to kinematic con-
straints imposed derived from virtual kinematic chains, used to task of collision avoidance. The study results allows
to write mathematical formulas for the evaluation of kinematic singularity considering the restriction and limitation of
movement in terms of the secondary task, or the collision avoidance task. It avoided with this result, work and control
with algorithmic singularities, quite common in other methods previously presented in the literature (Chiaverini, 1997)
(Muller, 2004)(Soucy and Payeur, 2005).

Firstly, it is presented the theoretical aspects of the screw theory and their respective methods and mathematical tools
used in the study developed. Following the kinematic model is developed AorRaredundant robot, operating in an
environment delimited by a plane, where an Assur virtual chain is used to perform the collision avoidance. Finally, are
presented the partial equations of the model, and the final mathematical equation for the kinematic singularities control of
the complete robotic system is obtained, including the Assur virtual chain, as a result of development. The mathematical
equations for the kinematic singularities control are analised and discussed through images that represent the final results.

2. TOOLSFROM SCREW THEORY

The approach, here proposed in this paper is based on the Davies’ method, Assur virtual chains, direct graph notation
and extended Jacobian from kinematic restrictions, where the screw displacement are successively applied. Those topics
are extensively explored in literature and briefly presented in following sections.

2.1 Thedescription of movementsthrough Screws

The general spatial differential movement of a rigid body consists of a differential rotation about an axis, and a
differential translation along the same axis named the instantaneous screw axis. The complete movement of the rigid
body, can be described as a combining rotatiodigplacement) and translationdisplacement) called screw movement
or twist, here denoted bYy. The ratio of the linear velocity to the angular velocity is called pitch of the screw denoted as
h (Tsai, 1999).

The twist may be expressed by a pair of vectors [wT; VpT] ’ , Wherew represents the angular velocity of the body
with respect to the inertial frame (reference frame or linkandV,, represents the linear velocity of a poitattached to
the body which is instantaneously coincident with the origiof the reference frame.

So, a twist may be decomposed into its magnitude and its corresponding normalized screw. The twist magnitude
either the magnitude of the angular velocity of the bddyj|, if the kinematic pair is rotative (k= 0) or helical, or the
magnitude of the linear velocityV, | , if the kinematic pair is prismatic (k+ oo) (Hunt, 2000). The normalized screw

$ is a twist of unitary magnitude, i.e.
$ =8¢ 1)

The normalized screw coordinat&ss written as:

K2

§— { 5i } for rotative pairs and $ = {
Soi X S;

0 } for prismatic pairs (Tsai, 1999), (2)
wheres;, = [sim,siy,siz} denotes an unit vector along the direction of the screw axis, and vegtoepresents the
position vector of a point lying on the screw axis.

Thus, the twist in Eq.(2) expresses the general spatial differential movement (velocity) of a rigid body relative to an
inertial reference framé® — xyz.

If the kinematic pair is rotatives; points in the direction of rotative axis, and, if the kinematic pair is prismatic,
points in the direction of kinematic pair displacement. It is important to notesthat, = 0, ie, they are perpendicular
(Tsai, 1999) (Hunt, 2000). Figures 1 and 2 depict the location of vectamds,,; for a rotative and a prismatic kinematic
pair respectively .

The twist can also represent the movement between two adjacent links of a kinematic chain, the sucessive screw
displacement (Tsai, 1999). In this casgands,; represents the movement of linkelative to link (i — 1) (see Fig. 1
and Fig. 2) and a homogeneous transformation is obtained (Tsai, 1999), as Eq.(3).

ai1 @12 @13 tSy — Sew(a11 — 1) — Soya12 — Soza13

A — | 021 a2 a 1Sy — Soz@21 — Soy(a22 — 1) — 542023 )
! az1 a3z G33 1S, — SopQs1 — SoyA32 — Soz(a33 — 1)
0 0 0 1
where:

ar1 = (2= 1)(1 —co) +1; a1z = sz55(1 —cp) — s:80; a1z = $55.(1 — cp) + Sy 50;
ag1 = syse(1 —co) — 52507 a2 = (s, —1)(1—co) +1; sz = sy5.(1 — co) — s250; (4)
as1 = 8:8:(1 — o) — sy80;  aza = 5:8,(1 —cp) + S280; azz = (s2 —1)(1 —cp) + 1.
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link n — end-effecto link n — end-effector

link link 4

Rotatie pair Prismatic pair
link 0 — base link 0 — base
linki—1 link7 —1
r Soi ’
reference link l referencdink
Figure 1.Location of the vectors; ands,,; for a Figure 2. Location ofhe vectorss; ands,,; for a
rotative kinematic pair prismatic kinematic pair

The vectors; ands;, are function of; (for rotative kinematic pair) an¢ (for prismatic kinematic pair) associated
with thed kinematic pair. Then the; ands,; are computed by the relation presented on Eq.(5) and Eq.(6) .

s; = Ri's; %)

where,s] is the vectors; as function of the kinematic displacements between theilanid the reference link, s; is the
coordinates of the vetoy; in the initial kinematic posture andl], extracted from homogeneous transformation on Eq.(3),
is the rotation matrix of the projections of the axis of the frame of thediok the coordinates of the reference frame, on
the link r.

Soi Soi

— A | . (6)

?

1 1

where,s’. is the vectors,; as function of the kinematic displacements between the:lankd the reference link; s,; is
the coordinates of the vetey; in the initial kinematic posture and; is the homogeneuos transformation matrix between
the frame of the link on the coordinates of the reference frame, on therdinkmputed using Eq.(3).

The choice of a link as reference (linf aims to simplify the final expressions for the screw representations. In
general, it is necessary to transform the coordinates of a screw represented in tholakew reference on link In
this case, it used the coordinate screw transformation niBfrikat has its structure presented in Eq.(7) (Tsai, 1999)

, R 10
o | S O ™
Wi i Ri

where R/ is the rotationrmatrix of the referencérame on linkr in relation to the frame on link; W/ is a3 x 3 skew-
symmetric matrix representing the vector from the originof the framej to the originO,., on framer, expressed in the
jth frame.

More details of the screw theory and its applications can be found in works composed chronologically of Davies
(1981),Tsai (1999) and Hunt (2000).

2.2 Daviesmethod

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derived a solution to
the differential kinematics of closed kinematic chains from Kirchhoff circulation law for electrical circuits. The resulting
Kirchhoff-Davies circulation law states that "The algebraic sum of relative velocities of kinematic pairs along any closed
kinematic chain is zero" (Campes al., 2009). This method is used to obtain the relationship between the velocities of a
closed kinematic chain. Since the velocity of a link with respect to itself is null, the circulation law can be expressed as:

> 84 =0 ®

where$; (expressed on the coordinates of the frame reference )ink represents respectively the normalized screw and
the magnitude of twis}; andn is the number of joints.
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Equation (8) ighe constraint equation which, in general can be written as

N¢g=0 9)
whereN = [$1 $2 e én] is the network matrix containing the normalized screws, with the signs of the screws de-
pend on the definition of the circuit orientation (as will be presented later) (Caetpbs2009), and = [¢1 ¢2 - ¢n]

is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here assigned as primary joints, and passive joints, assigned as secondary
joints. The constraint equation, Eq.(9), allows the computation of the secondary joint velocities as functions of the
primary joint velocities. To achieve this, the constraint equation is rearranged highlighting the primary and secondary
joint velocities and Eq.(9) is rewritten as follows:

Qp
N, : Ns} e | =0 (10)
qs
where N, and N, are the primary and secondary network matrices, respectively;j,aadd g, are the corresponding

primary and secondary magnitude vectors, respectively.
So, EQ.(10) can be rewritten as

Npdp + Nggs =0 (12)
The secondary joint velocities can be computed by Eq.(12) as follows:
Gs = =N ' Nydp (12)

The secondary joint position can be computed by numerical method, as a screw-based integration method proposed
by (Simaset al., 2009)

2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just virtual chain, is essentially a tool to get information on the
movement of a kinematic chain or to impose movements on a kinematic chain (Catgio2009).

This concept was first introduced by (Camgisal., 2009), which defines the virtual chain as a kinematic chain
composed of links (virtual links) and joints (virtual joints) which possesses three properties: a) the virtual chain is open;
b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of the real kinematic
chain.

From the third property, the virtual chain proposed by (Cangi@d., 2009) is in fact an Assur group, i.e. a kinematic
subchain with null mobility such that, when connected to another kinematic chain preserves its mobility (€@aaipos
2009).

2.4 Direct graph notation

Consider a kinematic pair composed of two lifksand ;. ;. This kinematic pair has its relative velocity defined by
a screw*$; (joint j) relative to a reference fram. Joint; represents the relative movement of the liikwith respect
to the link E;, 1. This relation can be represented by a graph (Carmepak, 2009), where the vertices represent links and
the arcs represent joints.

Now, studying a simple graph, where joipts part of two closed chains. For each closed chain the circuit direction
is chosen (Campost al., 2009). In a direct mechanism graph, if the joint has the same direction as the circuit, the twist
associated with the joint has a positive sign in the circuit equation (constraint equation on Eq.(8)), and a negative sign if
the joint has the opposite direction to the circuit.

2.5 Extended Jacobian from kinematic constraints

The method of extended Jacobian proposes a solution to solve the redundancy of robots creating kinematic constraints
in differential space. These constraints when added to the Jacobian matrix, produce a non-redundant kinematic system
and making the Jacobian matrix invertible.

A method to compute additional constraints has been proposed by Simlag2011) based on reciprocal screws (Dai
and Jones, 2001)(Nokleby and Podhorodeski, 2001). The extended Jacobian based on reciprocal screws arises from the
fact that Ny matrix, must be inverted as can be seen on Eq (12), contains screws from virtual kinematic pairs. So, to
simplify the inversion of the matri¥Vy, it is necessary to eliminate its screws of the virtual chains.
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The elimination ofsecondaryirtual screws can be performed through reciprocal screws. The reciprocal screws are
arranged in a matrix defined as annihilating matrix (Cangias., 2009).

To eliminate these screws (columns) from secondary matrix (Eqg.(11)), another partition is performed, as follows in
Eq.(13).

qu.s = Nsadsa + Nqu'sp (13)

whereN;, corresponds to the screws of the joints of interest (here called activey gnzbrresponds to the screws of the
joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate méatnixhich has the following structure on Eq.(14) (Campos
et al., 2009).

L | 0
’C — mXm 14
0 ‘ TefWNSp(n—m) xd ( )

where”¢/ Wh,,,» whose dimension i$n — m) x d, is a set of reciprocal screws from secondary passive matrjx
(Campos<t al., 2009)(Martins, 2002).

The reciprocal screws represent a set of external forces and torques that do not generate movements on secondary
passive joints. Therefore pre-multiplyings, by K, produces:

KN,, =0 (15)

To maintain equality, it is necessary that the Eq.(11) is rewritten, considering the Eq.(13), as follows in Eq.(16).

’CNpr + lCNsadsa + ,CNsstp =0 (16)

Using equality in Eq.(15) the following result is obtained in Eq.(17).

KNpip + KNsoGsa =0 a7)

The velocities of the secondary joints are then obtained by Eq.(18).

dsa = —(KNsa) ' KN4y (18)
So using the usual definition of the Jacobian, the following result is obtained in Eq.(19).
J=—(KN,) 'K N, (19)

The Jacobian expressed by the Eq.(19) is a desired extended Jacobian matrixetSana®011) (Campost al.,
20009).

In order to evaluate the singularities postures on the whole kinematic chain, including real and virtual kinematic pairs
on extended Jacobian, it is necessary to compute the determiriént,gf The next step is to invert the Jacobian matrix as
shown in Eq.(18) with objetive to compute the velocities on secondary kinematic fgaiysaind its respectively position.

3. MODELING OF A P6R REDUNDANT ROBOT OPERATING IN A CONFINED ENVIRONMENT

This section presents the6 R model, including the virtual chains to generate the trajectories, as primary task, and
to the collision avoidance, considered as secondary task. The resultant extended Jacobian is used to obtain an analytical
formula that expresses mathematically, and allows the control of the postures, tiR#tRhrebot assumes their singular
conditions, together with the collision avoidance strategy.

Figure 3 depicts thé’6 R redundant robot including a collision plane inside its workspace.

The P6R robot presented in Fig. 3 is composed of seven joints, where the first joint is a prismatic with displacement
L4, and the next six rotative joints, with displacemefitsts, 0.4, 05, 5 andé,, respectively described through screfys
(fori = 1,...,7) pointing its directions. The robot has three links, enumerate?l jith lengtha, , 3, with lengthas
and4, with lengtha, andd,, and has its end-effector attached in a spherical wrist (sc8gwks and$;). The collision
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Collision plane

Figure 3. P6 R redundant robot.

Tablel. Coordinates of; ands,; for P6R robot

Jointi S; Soi 0; | t;
1 0,—1,0 | —(az + a3+ a4),0,dy | O Ly
2 0,-1,0 | —(as + a3 +as),0,ds | 62 | 0
3 0,0,1 —(a3 +a4)70,d4 O3 | 0
4 0707 1 —a4,0,d4 94 0
5 1,0,0 0,0,0 05 | 0
6 0,0,1 0,0,0 65 | 0
7 1,0,0 0,0,0 6. | 0

plane is definethrough a point with coordinates of the vecprand orientation defined by the angtgsandd,, measured
in relationto the inertial frame), — xoyozo.

Considering the linkl as reference link, and that its frarte — z,.y,.z. (or O4 — x4y424) located in the center of the
spherical wrist, it can be obtained the coordinates;a&nds,;, as function of the joint variables, as presented on the Tab.
1.

Computing the screws faP6 R using Eq.(6) and the initial posture from Tab. 1, the matrix of normalized screws are
obtained asJpgr = [?th $5, %3, 84, %5, 86, $7] and given by the Eq.(20)

0 —S34 0 0 1 0 C
0 —C34 0 0 0 —s5 c586
_ 0 0 1 1 O C5 S5S6
JP()R - —S834 d4034 a3S4 0 0 0 0 (20)
—C34 7d4834 a4 + asCq Qg4 0 0 0
0 ao + azcs + agc3q 0 0 0 0 0

where Jpgr is the matrix of the normalized screw described in function of the joint displacements and referenced on
coordinates of the frame of the link the reference frames = sin(6s), cs = cos(0s), s4 = sin(04), cs = cos(04),
s5 = sin(05), c5 = cos(0s), s¢ = sin(f), c¢ = cos(0g), s34 = sin(f3 + 04) andcgy = cos(05 + 04).

The model has as inertial reference théRR base or the framé&®, — xyyozo (see Fig. 3), so the respective screw
transformation matrix necessary to represent the velocities of the end-effector on the reference 6rRrbagé) is given

407



ABCM Symposium Series in Mechatronics - Vol. 6

Part I - International Congress

Copyright © 2014 by ABCM Section Il - Kinematics, Dynamics & Mechanisms
in Eq.(21)
i CoC34 —C2S534 —S82 0 0 0 T
S34 C34 0 0 0 0
S2C34 —898534 Co 0 0 0
Tper = | dacassa — soky  dacocss — soko  ca(a3s3 + asssa — L1)  cacza  —CasSza  —So (21)
—dyc3a dys34 —a2 — a3C3 — (4C34 834 €34 0
d4socss + cok1  dasaocss + coka  so(agss + aassa — L1)  sacza  —S2S34 €2

whereT'pgp is the screw transformation matrix responsible for transforming the coordinates Béfhaecrew expressed
on the frame- on the coordinates of the framdek, = Lic34 + a2534 + agsq andka = —L1834 + aacsq + agcq + ay

The next step is to define the screws of the collision avoidance virtual chain. The most common virtual chain used to
collision avoidance tasks is tl3?3 R virtual chain (Campost al., 2009)(Simast al., 2009)(Simast al., 2011).

The 3P3R virtual chain is composed by three prismatic joints, perpendicular to each other, and three rotative joints
composing a spherical wrist. The first two prismatic jointsandy., are defined as tangents in relation to the collision
plane and have displacements, andp, respectively, as consequence the third prismatic jeinis normal to the
collision plane and has displacemepts. The last three rotative joint are definiedsas., ry. andrz. pointed on the
same directions of., y. andz,. respectively, with displacements, , 6;, andd;_. The base of th8 P3R virtual chain is
located on the coordinates of the= [p,,, py,, p=,] €xpressed on inertial fran®@, — zyo2o. The last link (end-effector)
of the3P3R collision virtual chain is attached along the lifikn the intersection with the line of the screéy (see Fig.

3).

In order to simplify the model and obtain tractable results, some considerations were adopted to compute screws of

the3P3R virtual kinematic chains, as follows:

e The screws of th8 P3R virtual chains are obtained using tf# R base as reference, or the inertial fratmg —
ZoYozo, and will not be required compute the screw transformation matrix;

e The3P3R is located on the collision plane such that the displacements- 0 andp,, = 0;
e The collision plane is oriented in function of two anglgsandd, (see Fig. 3);

e are obtained using thB6 R base as reference.

Considering the simplifications presented above, the screws are obtained 3ét3tRevirtual chains and disposed in
amatrixJyi, = [$2., 8., 85, $raey Sy 81z, ]

0 0 0 Cly 0 Sly
0 0 0 Sl Sly Cl, Slmcly
0 0 0 —c. 8 s —qc
Trta = A - i (22)
a, 0 s, =s1, (Py.ct, + PzSt,) =Pz, — Pe.Cl, T Py St C, Py, + Dzs1,)
51,51, C, —Si,.4, bz, +a, (pCz + pmzsly) — S, (pa:z + Pe. Sly) —Pzx, €1, Cl, + Pz S,
—c, sy, S, ., —pycl, + s, (Pe. + Pasi,) ct, (Pay + Pe.s1,) P, 81,Cl, ~ Py 81,
wheres;, = sin(6;,), c, = cos(0,,), si, = sin(6y,), a, = cos(0y,), si, = sin(01.), ci. = cos(f;,) andp; can

be expressed geometrically in function of tRé R parameters, as following expressions obtained through geometric
inspection:

® Dy = co(ag + ages) — De. S,
® py, = —Li+azss+pc.si,a,;
o p., = s2(ag + azcs) — pe_ci, -

With the purpose to generate the trajectory for ff@R redundant robot, anoth&P3R virtual chain is used. The
trajectory virtual chain has as base the inertial frabie— xoyozo and its end-effector attached on the end-effector
of the P6R redundant robot. The three prismatic joint are defined asy; and z; and their screws are pointed on
direction ofzg, yo and zo with displacementg,,, ps, andpq., respectively. The three rotative joints are defined as
rzq, rya andrzy and their screws are pointed, also, on directione@f yo and 2o with displacementg,,, 64, and
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04, respectively Equation (23) presents the normalized screws of the trajectory virtual chain disposed in the matrix
Jtraj = [$zd7 $yd7 $zd; $rmd7 $ryda $7‘zd]

000 1 0 sa,
0 0 0 0 Cd, —5d,Cd,
0 0 O 0 Sd Cq..Cq
Jtraj = ’ . 23
e 100 0 pgsa —pacd cd,(Pd,cd, +Pd.Sd,) 23)
01 0 pa, —Dd, Sd, —Pd, Cd, Cd, — Pd.Sd,
00 1 —pag, Pd,.Cd, —Pd, Sd,Cd, — Pd,Sd,

wheresg, = sin(fq, ), ca, = cos(0a,), sa, = sin(0a,), ca, = cos(0q,), sa. = sin(0a,), ca, = cos(fa,)

Since all normalized screw, of all joints, are represented in the inertial reference frame and the constraint equation
(Eq.(9)) can be constructed, and presented in Eq.(24), considering that the complete kinematic have two circuits, in agree
with Davies method and graph notation (Davies, 1981)(Camepak, 2009)(Simast al., 2009).

o

whereg = [L1,02,03,04,05,06, 07, Do, Dy.s Pzes 7T, TYe, T2es Pags Pyas Pzg> TTds TYds T2d

The collision avoidance is accomplished through activation ofzth@int of the collision avoidance virtual chain,
because of that, the joint is primary, together with all six joint of the trajectory virtual chain (Sineasl., 2011). The
definition of the primary joints, determines a first partition on mafvixn NV, with normalized screws of the primary
joints, andN,, with normalized screws of the secondary joints as shown in Eq.(25) and Eq.(26).

>

4888 0 0 0 0 0 0 —$,,-$,, ~$., 8, ~$, —$.,
000 08, —$, —S.. ~$0. —Spy. —Spe. O 0 0 0 0

>
<>

q (24)

> €A

1%2
1 82

> >

3
3

"

. o -$., -$,. -$. -$ 8. —$ .
N — . Tq Ya Zd rTq TYd TZd 25
v l $.. 0o 0 0 0 0 ] o (3)
WhereQP = [/’gzca pld ) pyd ) pzda fjxdv /’;ydv 7;Zd]T-
. $1 S S5 84 S5 S S, 0 0 0 0 0 .
]Vsqs - Al A2 AS N > 6 7 A X X I N qS (26)
$ % % 0 0 0 0 %, -$,. 5. -$. %

Whereq.s = [Lh 927 9'37 945 9.57 967 97apmcvpyc7pzc 5 ’quc, ’ﬁyc]T-
In the Eq.(26),V, has screws of active and passive joints. In according to Eq.(13) a second partition can be performed

on theN; as presented in Eq.(27)

= [Nsa(12><7) | N5p(12><5) } (27)

0 0 0
> % 0 0 0 0]-$,. -, -$

%1 %2 S5 84 85 %6 § 0 0
$ $ Pz, _$’r'xc _$7‘yc

Computing the matriX'@fWNsp(n,m)Xd , withref = 4, n = 6, m = 5 andd = 6, that corresponds to the null space
of Ny,, we have the Eq.(28).

Wi, (axe)=[ w1 wy ws wy ws wg e (28)
where:

o wi = —Li +azsz + (a2 + azes)s2 2=,

o Wy = —(a2 + a303)(02 — ;—iz;z)

o w3 = —cy(az + 0303)% + i(Ll - 0383)%;

® Wy = i%,

° w5 = 2k

o wg =1
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The annihilating matrijhasthe following structure in Eq.(29)

100 0000 O O O O O
0100000 O O O 0 O
0010000 O O O 0 O
K=[000100/0 0 0 0 0 0 (29)
000010y, 0 O O O 0 O
0000010 0O O O 0 O
_O 0 0 0 0 O w1, W2 W3 W4 Ws ’LU6_

Using the annihilating matrixC, the matrixXC N, will bea null matrix with dimensiort x 5, and the matri¥C Ny,
has as result the Eq.(30)

>
&>
t

&>
&>

$1 2 éd $4
Zf (az + agez) (c2 — 2 ) —as (cils: (82+ ey )) 0

Cly Cly Cly Cly

6

o
o
o

’CNsa = [

' ] (30)
<7
where therespectie ., = [L1, 02, 03, 04, 05, 0, 07]
It is important to emphasize that the screws presented on Eq.(30) are represented on the inerti2} frameqzo.
In following, it is analized the singularities of the kinematic system composeed#®y redundant robo3 P3 R collision
avoidance virtual chain argiP3 R trajectory virtual chain.

4. ANALYSISOF SINGULARITIES

Equation (18) shows how to compute the velocities of the active secondary joints. The computation is feasible if
the matrixC Ny, can be inverted. The determinant/6fV,, may be used to evaluate the conditions under which this
matrix is not invertible, and respectively, the singular postures that the kinematic system can assume. So, computing the
determinant ofC N, defined adx ., we have the Eq.(31).

Din,, = —azas(az + azcs + a4c34)5356(81, 2834 + 51,¢1,C34 + 1,1, 52534) (31)
Analyzing the expression of the determinant in Eq.(31), the following singularities can be observed:

1. s3 = 0 — Corresponds to the alignment of link® 3, whenf; = kr, fork =0,1,---

2. s¢ = 0 — Corresponds to the alignment of joiiand7, whenfg = k=, for k = 0,1, --- - note in Fig. 3, that in
the initial posture of thé’6 R, the screw axe$; and$; are parallel.

3. (az + ascs + aqcs4) = 0 — According with the structure of the robot, it can be observed that the firdesd 3,
with dimensionsu; andas respectively, are contained in a plane, defineg aévhends = 0). A second plane
pp parallel top, can be defined, distanceld from the planep, and containing the link along to the its length
a4. Making a geometric analisys, the singular posture of this expression shows that the distance between the center
of the spherical wrist and the line along of the axis of the jairi$, axis, see Fig. 3) can not be equaldn If
this distance igl,, the robot has restricted their movements imposed in the normal direction of thepplassing
another form of interpretation, it can be say that, in this singular posture, the velocities imposed by screws directed
to the normal op, will be reciprocal to the screw axis of the joiat Figure 4 shown thé&’6 R posture corresponding
to the singular posture described.

4. (s1,C2834 + 51, 01,34 + €1, €1, 52534) = 0 — This expression can be rewritten as a dot product of the vectansi
¥ as show the Eq.(32)

Si C2534
y
—si.c, . —C34 =UuU-v= (Sly02534 + Slmcly(234 + clmcl?152534) (32)
a,c, 52C34

Studying vectorsi and 7, it can be identified that these vectors correspond to direction of the 4girdn 3P3R
collision avoidance virtual chain and the vecigrof the frame of the linki, respectively. In this sense, the singularity
occurs when these vectors are perpendicular. Figure 5 presents the wg@nds,,, and the angle?, which should be
different fromm /2.

The analysis developed here, shown the potential of using virtual kinematic chains in obtaining an extended Jacobian
for spatial robots. The extended Jacobian allowed to evaluate the singularities belonging to the robot kinematic structure
only, without the appearance of algorithmic singularities, as in the classical methods.
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Spherical
wrist

Figure 4.Singularposture forP6 R redundantobotcorresponding to expressiofis + azcs + aqczs) =0

20
Yo Zo

Figure5. Singular condition fo?6 R redundantobotfrom collision avoidance virtual chain.

5. CONCLUSION

Many manipulators has been designed to operate in confined environments. As shown in these paper, operations in
confined environments require methods to evaluate and to prevent that any collision may come along during the task
performing.

Therefore, the Simas approach solution may be apply to avoid collisions, stud§i6 aedundant robot operating
in confined enviroments (Simas al., 2009). It is based on screw theory and in the use of virtual chains to determine its
trajectories and to avoid collision. However, the paper do not present a study of the motion limits and the singular postures
of the P6 R including the collision avoidance virtual chain. Another work, (Siregal., 2011) presents an analitycal study
of singularities for a planar redundant robot, based on reciprocal screws using virtual chains and annihilate matrix.

This paper presented a study of singularities fdr@R redundant robot operating in a confined environment. Con-
sidering the possibility of collisions, Assur virtual chains were used in order to repositidfttRerobot away of some
imminent collision with any part inside its workspace.

The use Assur virtual chains for collision avoidance has became complex the differential kinematic model, obtained
by the Davies method. A simplified differential kinematic model was then obtained using the concept of annihilating
matrix, resulting in an extended Jacobian, similar to others proposed in references, but without algorithmic singularities
that do not belong to kinematic chain.

Partial results were presented and a final expression for the determinant of the differential kindihatics,iden-
tified all singular postures that the kinematic system, formedby redundant robot and virtual chains for trajectory
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generation and collisioavoidance, can assume.

Results showed the viability of using the annihilating matrix as a way to simplify the differential kinematic modeling
for spatial kinematic systems. Furthermore, the development showed that the obtained Jacobian is an extended Jacobian,
invertible, whose the determinant represents only singularities belonging to the kinematic system.

Agreement with the second task developed as example in this paper, the result is useful in generation trajectory
systems, since singular conditions should be monitored, and most importantly, includes the singular postures arising from
collision avoidance strategy.

Future works can be developed aiming to minimize the need for geometric inspection, as shown in Eq.(22), and to
further simplify the screws obtained, since they have its formulation dependent on the choice of a link reference.
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