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Abstract. In this work we study the modeling and identification of a two-link manipulator with mechanical flexibility
distributed along the links. The experimental apparatus studied is a two-link flexible manipulator moving in the
horizontal plane driven by two brushless DC motors. Experimental data collected is used for system identification. A
finite dimensional model is derived using the assumed modes method. Lagrangian approach leads to explicit equations
of motion. Actuators and sensors are also modeled in order to derive a complete and explicit model of the complete
system.
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1. INTRODUCTION

The standard assumption that robotic manipulators consist only of rigid bodies is valid only for slow motion and
small interacting forces. If flexibility is not taken into account, a degradation of the overall expected performance of the
robot motion typically occurs. Flexibility manifests itself as mechanical oscillations and static deflections, greatly
complicating the motion control of a mechanical arm. If the time to settle the oscillations is significant relative to the
cycle time of the overall task, flexibility will be a major consideration in the arm design (De Luca and Book, 2008).

In this work, we study the modeling and identification of a two-link manipulator with mechanical flexibility
distributed along the links.

The experimental apparatus is a two-link flexible manipulator driven by two brushless DC motors and monitored by
tachometers, strain gauges, and accelerometers. A pneumatic system provides a frictionless cushion of air below the
manipulator that moves in the horizontal plane. Both motors are excited with uncorrelated chirp signals and the
experimental data is obtained through a setup with dSPACE hardware and software, together with MATLAB -
Simulink.

From the modeling point of view the joint motion between the two links is separated into two inertias, each of them
clamped in one link, in contrast to the conventional modeling that considers only one inertia fixed in the previous link
as in De Luca and Siciliano (1991) and Lee and Lee (2002). Each flexible link is considered hybrid, containing rigid
segments at its extremities.

The assumed modes method is adopted in order to obtain a finite-dimensional model that includes additional
generalized coordinates that describe the elastic deflections. The Lagrangian approach is used to derive the dynamic
model of the robotic structure. Explicit equations of motion are detailed assuming five shape functions for each link.
Actuators and sensors are also modeled in order to derive a complete and explicit model of the whole system.

Furthermore, parametric system identification is done using experimental data. Theoretical and experimental results
are compared to verify the accuracy of the model. The theoretical frequency response functions are evaluated using
MATLAB software.

The paper is organized as follows: Section 2 gives the kinematic description for a planar two-link flexible
manipulator. Kinetic and Potential energies are derived in Section 3 and the Lagrangian formulation is applied. Explicit
formulation of the inertia matrix, stiffness matrix, and shape functions are detailed in Appendix. Section 4 is devoted to
the modeling of Actuators and sensors, presenting a state-space representation. Experimental and theoretical results are
presented in Section 5. Conclusions are drawn in Section 6.

2. KINEMATIC MODELING

Consider a two-link flexible manipulator with rotary joints subject to bending deformation that moves on a planar
surface as showed in Fig. 1. Each link is denoted by an index i, where i= 1, 2. Three coordinate systems are

established: the inertial system (X,Y) and two moving systems (X;,Y;) associated to each link i . The rigid motion is
described by the joint angles 6;, while y;(x;) denotes the transversal deflection of link i at abscissa x;, 0<x; </[;,
where [; is the length of the flexible part of the link. The angle between the coordinates (X,,Y,) and (X,Y) is

a, =6,+6,+y,, where y., =(dy,;/ Bxi)|x: . and we consider the approximation arctan y;, = y;, .
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Figure 1. Geometric and Inertial parameters of the two-link flexible manipulator

Vector ip i = [ri1 +x; 0y ]T represents a point along the flexible part of the link i with respect to coordinates

(X;,Y;) and p; =[x y]T is the position the same point, but with respect to coordinates (X,Y) as in Eq. (1) and (3).

14

Vector p;, represents the end of the link i with respect to coordinates (X,Y) and is denoted in Eq. (2) and (4).
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P = R(@)[ } (D
yl(xl)
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Each link has two rigid segments on its extremities with constant linear density. The center of mass of each rigid
segment is calculated as: p,,;; = }/zpl(()) s P2 = 50D +P1) s Pt = 5P P2(0)), Prs = % (02(L) +Pay) -

From Eq. (1)-(5) is possible to derive the square of velocities denoted in Eq. (6)-(12), where y;, = y;(;),
y; = y;(x;) . It was considered the approximations x; >>y; and [, >>y,; because the bending deformations are much
smaller than the link length, i.e., second-order terms involving products of deformations where neglected.

T Y
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3. LAGRANGIAN MODELING

Lagrangian mechanics is a re-formulation of classical mechanics that uses conservation of energy. In Lagrangian
mechanics, the equations of motion of a system of particles are derived by solving the Lagrange equations. The kinetic
energy T and potential energy V are computed to calculate the Lagrangian L =T —V (Lemos, 2004).

The kinetic energy of the two-link flexible manipulator in Fig. 1 the sum of the following contributions:

2 2 2 2
T=Ty+ ) D T+ > T+, +T,+ D T, (13)
i=1 i=1

i=l j=1
The kinetic rotational energy of the rigid body of moment of inertia J,, located at the basis is:

1.

The kinetic energy of the rigid segments of the links in Eq. (15) depends on the moment of inertia of the rigid
segment J;; and the mass of the segment m;; . Each segment has a constant linear density p;; along the segment.

1 . T, 1 2
sz=§mij(l’mij Pmij)+51ij%' (15)

Where o0y, = 91 , Opp = 91 + V1 Oy =0, € O,y =0, + y5,. The kinetic energy of the rigid bodies located between

the links in Eq. (16) depends on the moment of inertia of the body clamped at the first link J,;,, the body clamped at

the second link J,, and the sum of the bodies mass m, .

AN e 1,
T, :Emh(l’m plh)+5‘]h12(91+yle)z+5 It (16)

Where y;, = di((ay,. /ox; )‘ o ) The kinetic energy of the payload m, at the tip of second link is:
' =l

i

1 . ) 1 . ¥
T, :Emp(p2th2h)+E‘]p(a2+y2e)2 (17)

The kinetic energy of the flexible link i with linear density p; is:

T, = %IOL pi(piTpi )dxi (18)

We consider also the kinetic translational energy of each accelerometer with mass m,; positioned at x; =1 :

aci

Xi :laa

Taci :%maci(piTpi] (19)
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The potential energy of the system is due to the elastic potential of each flexible link i with elastic modulus E and
second moment of area density /;. No gravitational potential energy is considered because the system moves on the
horizontal plane.

V= Z J'EI[a y’(x”t)J dx, (20)

The assumed modes method is adopted in order to obtain a finite-dimensional model that includes additional
generalized coordinates that describe the elastic deflections y;(x;,?) . The deflection is separate in time and space:

Yi (5= 4 ()38, (1) @1)

Jj=1

We consider n; =5 modes for the first link and n, =5 modes for the second link. Defining ®, =[4,,..... 9, 1",

D, :[¢21,...,¢2n2 . 81 =101, by, ", and g, :[521,...,52n2]T , Eq. (21) becomes Eq. (22). The shape equations
®, and @, are calculated in Appendix.

y; (X, 1) =®] (x;)g; (1) (22)

The formula of the Lagrangian L =T -V is derived from Eq. (6)-(20) and (22) as a function of a vector of

generalized coordinates q:[té?l 6, gl gg]Tz[Hl 6, &, ... O, Oy ... 52n2]T.

n

Equation (23) is the Lagrange equation or Euler-Lagrange equation.

dafaL) _(aL) _,
dt| dq oq (23)

Where f = [Tl 7, 000 O]T is the vector of generalized forces on the system.

As result of the Lagrangian approach, Eq. (23) derives the equations of motion (24), where M is the inertia matrix,
h is the Coriolis vector and centrifugal forces, and K is the stiffness matrix as calculated in the Appendix.

M(q)i +h(q,q)+Kq=f (24)
4. ACTUATORS AND SENSORS MODELING

The generalized forces vector f presented in Eq. (23) is a function of the actuator torque in the joint of the basis
(7,) and in the joint between the two links (7,). Each actuator is a DC electric motor as showed in Fig. 2. Sensor

modeling intends to present f as a function the input vector u = [e1 ez]T .

Power Source

Power Converter

v

‘ Motor Controller ‘—b‘

~

—I Amplifier Strain Gauges

—| Amplifier Accelerometers

—| Amplifier Tachometers

Figure 2. Experimental setup



ABCM Symposium Series in Mechatronics - Vol. 5 Section VIl - Robotics
Copyright © 2012 by ABCM Page 1096

Each motor has a controller and each controller can be set at “torque mode”. At torque mode, the voltage signal e;

provided by dSPACE is converted into a proportional current signal i,; . The torque generated by the DC motor 7,, is

proportional to the armature current i, i.e. 7,, is proportional to the input voltage e;, where k, is the motor torque

constant:
T, =k.e; (25)
The resulting torque 7; is computed excluding the torque friction, where c, is the friction constant:
T, =17, —cvém (26)
From Eq. (25)-(26) it is possible to define 7; as function of e; and 9, ,where i =1, 2.
T =k,e; —c,0; @7
Using Eq. (27) it is possible to define f as function of u and Equation (24) can be rewritten as:
M(q)j +Pq +Kq+h(q.q)=Qu (28)
Q:k{ L } P:C{o Lo O o)

(ny+ny)x2 (ny+n)x2  V(ny+ny)x(ny+ny)

Where I, is the nxn identity matrix and 0 is the mXn zero matrix. We define the state vector x and the

mxn

output vector y in Egs. (30)-(31). Figure 3 shows the input vector u (two chirp signals) and the output vector y .

X = |:q = 01 92 é‘ll een é‘lnl 521 e 52,12 01 02 511 e é‘lnl 521 ee 52’12 (30)
— T

y= [eacl €ac2 exgl exg2 Cracl etacZ] (31)

e > €1

w d > eacZ

chirp signal —> esgl

e System

2 ’ esg2

inverted Clact

chirp signal ’ Crac2

Figure 3. Inputs and outputs of the system

Linearization of Eq. (28) around q=0 leads M(q):Ma +M, COS(HZ) becomes M =M, ,+M, and
h(q,q)=ha(q,q)sin(02) becomes h =0 . Equations (32)-(33) are the state-space representation, where A is the state
matrix, B is the input matrix, C is the output matrix, and D is the feedforward matrix (Ogata, 2003).

x=Ax+Bu 32)

y =Cx+Du (33)

A= 0(2+nl+n2)><(2+n]+n2) I(2+n] +n,) B = 0(2+n|+n2)><2 (34)
M, +M,)'K -M,+M,)'P|’ M, +M,)"'Q
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The output matrix C and the feedforward matrix D are shown in Eq. (39)-(40), where e, is the integral of the

accelerometer output over time, e,

is the strain gage output, and e,,; is the tachometer output as in Eq. (34)-(37).

et = Gaa () +1,0)6) + 3, (L) ) (35)
Cacr = Gaea (g +1)6 + 5 (1) + 126, + 57) + (ryy +1,e2)l + 5 (lea )} (36)
Cogi = ngi (&2)’;/&%‘2 ]xi—l_\g, (37)
€uci = Gracit, (38)

Gacl[(rll—i_lacl) 0 (DIT|I 01><n2:|[_M_1K _M_IP]
acl
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1 1 ac2
C= ng1|:0 0 (azq){/axlzl 01><n2 00 0]><n1 0]><r:2:| (39)
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ng2|:0 0 01><n] (an)g/ax22] = 00 0]><n] 01><nz:|
Xp=lsg2
Gtacl 0 0 01><n] 01><112 10 01><n] Oknzl
GtacZ 0 0 01><nl 01><i12 01 01><nl 01><r12 i
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acl
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1 1 ac2
04><2

Equations (32)-(33) derives frequency response functions H(s), where s = j2zf is the complex angular frequency.

Theoretical model frequency response functions H(s) are presented in Fig. 4.

H(s)=C(sI-A)"'B+D (41)

5. EXPERIMENTAL RESULTS

The experimental apparatus is showed in Fig. 2. The frequency range desired was 0 to 70 Hz, enough to identify the
two first vibration modes. Two uncorrelated chirp (sweep) signals are applied to the motors, one with increasing
frequencies from O to 70 Hz and another decreasing from 70 to 0 Hz. Data is collected at 250 samples per second
through a setup with dSPACE hardware and software, together with MATLAB and Simulink.

The Welch Method is used to estimate the power spectral density as in Ljung and Glad (1994). Each collected signal
was divided in 40 segments with 50% overlap to smooth the curve and a Hamming window was used. This procedure is
contained at MATLAB function “tfestimate”, generating the experimental frequency response functions.

Geometric parameters were measured, but friction constants and inertial parameters were adjusted using parametric
identification. The objective function is the quadratic error between theoretical and experimental graphs, not
considering the bias (difference between the mean of theoretical and experimental graphs). Theoretical parameters were
tuned minimizing the multivariable objective function using MATLAB function “fmincon”. Identified theoretical and
experimental frequency response functions of accelerometers, strain gages, and tachometers are compared in Fig. 4.
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Figure 4. Theoretical and experimental frequency response functions of sensors

6. CONCLUSION

This paper presented the modeling and the parametric identification of a two-link manipulator with two flexible
links. Dynamic model was derived based on Lagrangian approach assuming two modes of vibration for each link.

Sensors and actuator were also modeled, deriving a complete set of dynamic equations of motion.

The rigid joint motion between the two links was separated into two inertias, in contrast to the conventional
modeling that considers only one inertia fixed in the previous link. Rigid segments at extremities of the links were

considered in order to improve the modeling. The mass of the acceleration sensors affects the system response and is

also considered in the modeling.

Parametric identification

The theoretical model has been simulated and compared to experimental results.

successfully fit theoretical and experimental frequency response functions.
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APPENDIX
Matrices M and K.

Equation (24) is expanded and its terms are calculated using Eq. (23):

Mll M12 M13 M14 él hl

oo o o747 [
My My My My |6, h, 0
0

0 0 |6, Ty

T T LT +
Mz My; Mj; My | g h; K3 0 |g 0
My; Mz M3 My g, ] [hy] [0 0 0 Kyjg,] [0

S O O

My =Jy+Jp+dg+dn+Jy+dpn+dp+J,+J,+ 0 +my G +1y + V5120 + e (R +10)°
"‘%’"11’112 +(my +my +my +m, +my)(l + 1, + ny)* + %’"21’212 + gy (L + 1y + Jory)? + m1r112

+ mp(lz + 1y + r22)2 +2myd r, + m2r212 +2myd oty +my (L + 1 + 1)1 + 2mp(ll 1)Uy + 1 F )
+2myy (I + 1) + 1)Uy + 1y + %r22)+ 2L + 1y + g )myry +mydy)+my (g 1+ 1, + 1y +lac2)2

My =Jo + oy +Jpy+J y+ Ty + Yimyry® +m, (L + 1y + 1p) + gy (L + 1y + Y5 13p) 7+ myryy + 2mydyry,
+ Yomy (4 + 1y + 1)y +moy (I + 1y + 1)+ 1y + Yo Hmy, (L + 1y + 1)L + 1y + 1)

+ U+ ny +r)mary +mady) + Mg, (ny + 1+ 1y + 1y + o) (g + 1)

Mu=Up+ty+tin+tlyp+dpn+l, +J02)(I)g+m (’"11+11+"12+r21+lac2)(q){e+(r12+”21+l )‘Dg)
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2 2 2 T T T
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T T
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2 2 2 2
M22=121+122+th+]p+y4m21721 +my (L + 1y + Jyry) +m,(ly + 1y + 1) +myry "+ 2mydyry +J
2
+mac2(r21 +lac2)
M,; = (@] +5,®7).() I l ) d
23 = (@, +1pp le)‘(AmZIrZI—i—mp(2+r21+r22)+m22(2+r21+ér22)+m2r21+m2 2)
2 2 2 2 T
+ (g T+ + I, T g+ Yomyry” +m, (L + 1y + 1)+ mgy (L + 1y + Y1) ™ Hmary” + 2mydyry )@,
T
)D7,)

T
+Myer (Fyy + 1 )@y, + (1p + 15y +1
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My, =(Up+J )(I)ze + gy (L + 13y + Y5 1) (@5, + Y 1y @, )+m, (L +1ry + rp (@3, + 1 ®7,) + 15V + W)
+ My (P + 1 )@
My =Up+ty+tIn+tly+tdp+J,+J,+ ’"2”212 + 2m2d2r21)q)1eq)iz
+myy (@, + Y12 ®] )@, + V1, ®00) + (myy +myy +my, + m, +my)(®,, + 1, @)@, + 1, ®7)
+(J4 ”"21r212 +m, (L +ry + r22)2 +myy (L +1y +%’22)2)‘D1e‘p1€ +Z,
+ (D], @], + @ D] +21,®] D).V myy 1y +m, (L + 1y + 1) + oy (L + 1y + Y 1) + Moty +maydy)
M1 @ )
My, = +J )‘1)1(3‘1)’22 +m, (I +ry + 1)@ (@), + 1y ®7,) +myy (1 + 1y +}/”22)‘D1e(®§e +%r22(1)’2Te)

(I)lac +Myer (@, +(1y + 13 +lac2)q);e)(q){e +(hp + 1y +1

ac2 ac2

+®@], (ry vy +Wh)+ (@), + rqu)Ie)(m (@), + 1y ®@7,) + my (@, + A rp®%,) + V)
+ macZ((Dle + (r12 + 1 + lac2 )(D )(DZac

My=0Upn+J )q"zﬂ'zi + My (P, + }/zrzzq);e)(q’ge + %”22(1)'27;) +m,(P,, + 1@, (@3, + ryy®7,)

+ Z2 + macZ(DZaL(DZaC
’®, o2’ 2’®, @’
K, _J'EI1 Ly Ky —IEIZ 2 2 dr,
ax,> ox,’ dx,” Jdx,

l; l;
We consider the constant parameters of mechanical properties: m; = J. pidx; = p;l;, md, =I pixdx; = Yomyl,,
0

J. PiX; dx— mll , V; —I p;®.dx;, w; —I p;x;®.dx; , Z; Ipl® @ dx, ,and @, =®;

i x;=l

Matrix M(q)=Ma +M, cos(&z) is symmetric and has part multiplied by cos(ez), K is linear, and
h(q,q):ha (q,q)sin(ﬁz) has all terms multiplied by sin(Hz). Linearization around q =0 leads to M=M, +M, and

h=0.
Shape equations ¢, .

The deflection is separate in time and space in Eq. (21). Each flexible link may be modeled as Euler-Bernoulli beam
satisfying the equation:

Iyi(xi,0) | 97yi(xi0)
ax! Lo

l

El,

1

=0 (A1)

Proper boundary conditions are imposed at the base and end of each link. The link inertia is much smaller than
lumped bodies inertias, so it is reasonable to assume each link constrained at the base (De Luca and Siciliano, 1991).
Boundary conditions at end of each link consider the balance of bending moment and shear force:

¥;(0,1)=0 (A2
y;(O,t) =0 (A3)
072)’;'(%‘,1‘) d’ ¥ (x;,1) d’
o e IR o B L P (a9
i x,=l; Lol =l
&Sy[(x[’t) d? ( ) d? @’i(xi»t)
EI; 3 =My yi(x[,t)‘x (MD), = P (A
&xi o dt dt Xi x;=l;
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2 2 2 2
Where  Jy=Jp +myy(Y110)" + T o + Sy +mytin T +mp (J1in)" + Ty mply” =0, My =m,+my,

Generalized coordinates 5,7 (t) can be redefined as:
8; (1) =expljwyr) (A6)

Solutions for shape equations ¢ij(xi) are derived from the Euler-Bernoulli beam equation (A1) and from (20) and

(A6):
¢ii (x;)= Cl,zji sin(ﬁ‘ijx,.)+ C2,1j cos(ﬁ‘ijxi )+ C3.zﬁi sinh i X )+ C4,,~j cosh iixi) (A7)
Where ,b’ij4 =w ijz P; / EI; . Applying boundary conditions eq. (A2)-(A3) to (A7) leads to:
Csij ==Crj » Cayy ==Coy (A9

Mass boundary conditions (A4)-(AS5) applied to (A7) lead to an equation system (A9).
Cuy
[F (s )]{C N } =0 (A9)
2.

Non-null solutions for C,;, C,; are only possible if determinant of (2x2) matrix F(ﬁ”) is null, leading to

frequency equation (A10). There are considered the first n; solutions for /; and (MD)i =0.

M. 8.
Llﬂ” (sin(ﬂijl[)cosh(,b’ijli)—cos(ﬂijli)sinh(ﬁijli))
l (A10)
M iJLiﬂi'4
721(l—cos(ﬂijli)cosh(ﬁijli))=0

(1 +cos(B;1;) cosh(B;1; ))_

J..B.3
—Lﬂu(sin(,b’ijli)cosh(ﬂljli)+cos(/)’ijll»)sinh(/)’ijli))+ b

i i

Remaining constants C, ;, C,; are found using Eq. (A9) depending on a scale factor. This scale factor is chosen

using a suitable normalization as in Eq. (A11).
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Figure 5. Shape equations @;





