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Abstract. This paper presents a proposal for a new extended Jacobian method based on kinematic constraints, exploring
only singularities of the kinematic chain. It is presented the development of the new extended Jacobian as well as their
properties. These method can be applied to analyze the behavior of redundant robots on perfoming a task. Redundant
robots are used to perform tasks which require some type of extra mobility, for example when it is necessary to avoid
obstacles inside their workspace. In general the kinematic redundancy condition does not allow to find the solutions
the solution of inverse kinematics directly. Methods based on pseudoinverse matrix and extended Jacobian are generally
useful for solving inverse kinematics for redundant robots. However, these methods have limitations like metric problems
and algorithmic singularities that do not belong to the kinematic chain. These limitations decrease the robot’s ability
to perform movements, while away from their kinematic singularities. Based on screw theory, the method of kinematic
constraints consists in add Assur virtual chains to perform tasks that retricts movements, such as trajectory generation,
collision avoidance, among others. To validate the proposal an example for redundant robotP3R is developed.
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1. Introduction

A robotic system typically consists of a mechanical manipulator, an end-effector, a microprocessor-based controller
and a computer. A mechanical manipulator comprises several links connected by joints forming a kinematic chain. Some
of the joints in the manipulator are actuated; the others are passive. Typically, the number of actuated joints is equal to the
degrees of freedom (Tsai, 1999).

Parallel robots are a class of manipulator that become more complex as a growing number of joints and circuits. This
complexity is evident in the kinematic and dynamic models. Another factor that have to take in account, this kind of robot
is classified as redundant (Tsai, 1999).

The kinematics modeling requires a systematic strategy that should be attend, as possible as, all these aspects related to
the complexity of the kinematic chains of robot manipulators. To surround such complexities connected to the kinematic
manipulator modeling has been used the Davies method associated with the Assur virtual chains. This methodology is
also called method of kinematic constraints Camposet al. (2009).

The Davies method are extensively studied in Davies (1981), and discussed in Camposet al. (2009) and Simaset al.
(2009), provides to achieve the differential kinematic model for closed kinematic chains with several loops. The method
equation relate the velocities of the passive joints and those actuated joints. So, the kinematic chain can be now classified
as a system with virtual and real joints.

Using the method of kinematic constraints, in some cases not all virtual joint are actuated, and as consequence the
passive joints belonging to the virtual chains will be part of the secondary joints. In practice, kinematic analysis of the
parallel robots imply to use only "real" passive joints, while the velocities and positions computed for the secondary virtual
joints have no use. The presence of secondary virtual joints on the kinematics model requiring greater computational
effort in such analysis. It is interesting to set up strategies to eliminate the secondary virtual joint from the model. The
differential model based on the screw theory allows to eliminate the screws of secondary virtual joints, through reciprocal
screws.

Reciprocal screw$r represents a set of forces and moments applied over a rigid body, that moves along of a infinestesi-
mal screw and that doesn’t produce work (Gibson and Hunt, 1990). In this paper the concept of reciprocal screw is used in
a way to eliminate of equation model the screws of the virtual secondary joints from the kinematics model. The proposed
method is applied in a simplified redundant robot, where the final results is an extended Jacobian with only structural sin-
gularities. The classical extended Jacobian presented in Baillieul (1985) and applied in Antonelli and Chiaverini (1998) to
URV’s, is a strategy where additional tasks are included in structural Jacobian making it invertible. The classical extended
Jacobian developed in Baillieul (1985) has, generally, singularities that don’t belong to kinematic structure.

The main contribution of this work is present a systematic method to eliminate secondary virtual joints or its screws
from differential kinematic model, obtained from the method of kinematic constraints. Also, it will be shown an new
extended Jacobian to redundant robots with only structural singularities as result. The present method and its validation
will be proved using aP3R planar redundant robot with a obstacle inside in its workspace.
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2. Fundamental tools

The approach, here proposed, is based on the Davied method, where the screw displacement are successively applied
(Tsai, 1999), together with the Assur virtual chain concept, which is briefly presented in following sections.

2.1 Screw theory

The general spatial differential movement of a rigid body consists of a differential rotation about an axis, and a
differential translation along the same axis named the instantaneous screw axis. The complete movement of the rigid
body, combining rotation and translation, is called screw movement or twist and is here denoted by$. The ratio of the
linear velocity to the angular velocity is called pitch of the screw denoted ash.

The twist may be expressed by a pair of vectors$ =
[

ωT ;V T
p

]T
, whereω represents the angular velocity of the

body with respect to the inertial frame andVp represents the linear velocity of a pointP attached to the body which is
instantaneously coincident with the originO of the reference frame. A twist may be decomposed into its magnitude and
its corresponding normalized screw. The twist magnitudeq̇ is either the magnitude of the angular velocity of the body,
‖ω‖, if the kinematic pair is rotative (h= 0) or helical, or the magnitude of the linear velocity,‖Vp‖ , if the kinematic

pair is prismatic (h→ ∞). The normalized screŵ$ is a twist of unitary magnitude, i.e.

$ = $̂q̇ (1)

The normalized screw coordinates$̂ is written as:

$̂ =

[

si

soi × si + hsi

]

(2)

wheresi =
[

six
, siy

, siz

]

denotes an unit vector along the direction of the screw axis, and vectorsoi represents the
position vector of a point lying on the screw axis.

Thus, the twist in Eq. (2) expresses the general spatial differential movement (velocity) of a rigid body relative to an
inertial reference frameO − xyz. The twist can also represents the movement between two adjacent links of a kinematic
chain. In this case, twist$i represents the movement of linki relative to link(i − 1).

More details of the screw theory and its applications can be found in the following works: Hunt (2000) and Davies
(1981).

2.2 Davies method

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derived a solution to
the differential kinematics of closed kinematic chains from Kirchhoff circulation law for electrical circuits. The resulting
Kirchhoff-Davies circulation law states that "The algebraic sum of relative velocities of kinematic pairs along any closed
kinematic chain is zero" (Camposet al., 2009). This method is used to obtain the relationship between the velocities of a
closed kinematic chain. Since the velocity of a link with respect to itself is null, the circulation law can be expressed as:

n
∑

0

$̂iq̇i = 0 (3)

where$̂i, q̇i represent respectively the normalized screw and the magnitude of twist$i andn is the number of joints.
Equation (3) is the constraint equation which, in general can be written as

Nq̇ = 0 (4)

whereN = [$̂1 $̂2 · · · $̂n] is the network matrix containing the normalized screws, with the signs of the screws de-
pend on the definition of the circuit orientation (as will be presented later) (Camposet al., 2009), anḋq = [q̇1 q̇2 · · · q̇n]
is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here named primary joints, and passive joints, named secondary joints.
The constraint equation, Eq. (4), allows the computation of the secondary joint velocities as functions of the primary joint
velocities. To achieve this, the constraint equation is rearranged highlighting the primary and secondary joint velocities
and Eq. (4) is rewritten as follows:

[

Np

... Ns

]





q̇p

. . .
q̇s



 = 0 (5)
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whereNp andNs are the primary and secondary network matrices, respectively, andq̇p and q̇p are the corresponding
primary and secondary magnitude vectors, respectively.

So, Eq. (5) can be rewritten as

Npq̇p + Nsq̇s = 0 (6)

The secondary joint position can be computed by integrating Eq. (6) as follows:

qs(t) − qs(0) =

∫ t

0

q̇sdt = −

∫ t

0

N−1
s Npq̇pdt (7)

2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just virtual chain, is essentially a tool to get information on the
movement of a kinematic chain or to impose movements on a kinematic chain (Camposet al., 2009).

This concept was first introduced by (Camposet al., 2009), which defines the virtual chain as a kinematic chain
composed of links (virtual links) and joints (virtual joints) which possesses three properties: a) the virtual chain is open;
b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of the real kinematic
chain.

From the the third property, the virtual chain proposed by (Camposet al., 2009) is in fact an Assur group, i.e. a
kinematic subchain with null mobility such that, when connected to another kinematic chain preserves its mobility (Arto-
bolevskii, 1970-75).

2.4 The direct graph notation

Consider a kinematic pair composed of two linksEi andEi+1. This kinematic pair has its relative velocity defined by
a screwR$j (joint j) relative to a reference frameR. Jointj represents the relative movement of the linkEi with respect
to the linkEi+1. This relation can be represented by a graph (Camposet al., 2009), where the vertices represent links and
the arcs represent joints.

Now, studying a simple graph, where jointj is part of two closed chains. For each closed chain the circuit direction
is chosen (Camposet al., 2009). In a direct mechanism graph, if the joint has the same direction as the circuit, the twist
associated with the joint has a positive sign in the circuit equation (constraint equation on Eq.(3)), and a negative sign if
the joint has the opposite direction to the circuit.

3. Redundant robots and its solutions for inverse kinematics

A robot is said redundant when the number of joints available to be actuated is greater than those needed to perform
the task. This can be best understood by making the relationship between the joint space and Cartesian space.

The joint space is defined by the number of joints that compose the robot (here, is calledn degree of control), while
the Cartesian or operational space is defined by the number of coordinates used to describe it (connectivityr). If in a
task onlyr coordinates are be used, and sor < n, then there are degree of redundancy for that task, where the degree of
redundancy isn − r (Sicilianoet al., 2009). Redundancy can be formally defined as the difference bbetween the degree
of control and connectivity of a kinematic chain (Martins and Carboni, 2007).

The differential kinematic model expresses the end-effector linear velocityṗ and the angular velocityω as a function
of the joint velocitiesq̇ by means of the Eq. (8).

v =

[

ṗ
ω

]

= J(q)q̇ (8)

where the matrixJ (r×n) is the robotJacobianmatrix and determining the differencial mapping between the joint space
and Cartesian space andq̇ = [q̇1, · · · , q̇n]

T represents the joints velocities vectorÂt’s.
Equation (8) can be inverted, allowing to compute the joints velocities according to desired end-effector velocity. Thus

it can be written as in Eq. (9):

q̇ = J−1(q)v (9)

whereJ−1(q) is the Jacobian inverse matrix.
The Jacobian, in general, is function of the joint positionq. Depending on the configuration of the robot, the Jacobian

may not possess full rank and it implies that the robot is in a condition ofsingularity(Sicilianoet al., 2009), what yield to
J(q) not invertible. Under this condition, Eq. (8) can admit an infinite number and the robot loses their mobility or, like
parallel robot, can increases their mobility.
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The Jacobian matrix of redundant manipulator has largest number of columns,n than rowsr, since the dimension of
the space joint is greater than the dimension of the operating space, i.e.,n > r. So the differential inverse kinematics,
shown in Eq. 9, presents an infinite number of solutions. The problem is to find a systematic method to find among these
infinite solutions an suitable solution to a particular task.

In the next section, are shortly discussed the methods for solving inverse kinematics for redundant robots.

3.1 Differential inverse kinematic through Moore-Penrose PseudoInverse

In a task planning, a simpler strategy is to distribute the motion needed to perform a task for all joints of the robot.
The purpose of this distribution is to minimize the energy used by the joints in their movements. The solution can be
formulated as an optimization problem whose solution is obtained using Lagrange multipliers method (Sicilianoet al.,
2009).Thus the differential inverse kinematics can be expressed by the following relationship in Eq. (10).

q̇ = J†

v (10)

where the matrixJ† = W−1(JT (JW−1JT )−1 is defined as the Jacobianpseudoinversematrix and the matrixW is a
suitable (n× n) diagonal positive definite weighting matrix.

Changes in the optimization function allows the inclusion of velocities in the joints that are projected into nullspace
of the direct differential mapping (Sicilianoet al., 2009).

The pseudoinverse matrix of Jacobian is used in other resolution strategies, such as theTask priority method(Antonelli
and Chiaverini, 1998), theTask priority robust to singularities(Chiaverini, 1997) andDumped least square(Chiaverini
and Siciliano, 1994).

The methods based on pseudoinverse have limitations such as: a) In the case of the matrixW , must to be setn
variables in its main diagonal, through an empirical adjust; b) the numerical stability of the inverse kinematics depends on
the trajectory and; c) problems occur caused by metric problems of the pseudoinverse in the case of robots with structure
constituted by rotative and prismatic joints (Camposet al., 2009).

3.2 Extended Jacobian method

The method of extended Jacobian solves the redundancy of robots through a non-redundant system. This solution is
gotten by adding kinematic constraints in order to make the Jacobian matrix invertible.

Constraints are based on functions of the form:h(q) = 0. In general, it uses the functionh(q) as an approximation
of the energy of motion. This choice aims at optimizing the distribution of the energy through the joints of the robot
(Chiaverini, 1997).

Consideringh(q) differentiable onq, we obtain the derivative on Eq. (11):

[

v
0

]

=

[

J(q)
∂h(q)

∂q

]

q̇ ⇒ ve = Jeq̇ (11)

whereJe is the extended Jacobian andve is the augmented vector of velocities of the end-effector.
The extended Jacobian method has a limitation, by inserting algorithms singularities into differential model of the

robot, what difficult its implementation and uses. These new singularities are not part of the robot kinematic chain and
should be also monitored. The singularities vary according to the functionh(q) chosen.

Next section presents the proposed extended Jacobian, obtained from the kinematic constraints.

4. Extended Jacobian from kinematic restrictions

This section presents a mathematical development based on the differential kinematic model and on kinematic con-
straints, yielding to a equivalent extended Jacobian.

At the end of this section a study of the singularities shows that the proposed extended Jacobian does not introduce
algorithmic singularities as classical methods discussed on section 3.2.

The method is implemented in aP3R redundant robot with an obstacle inside its workspace. To impose the trajectory,
a PPR virtual chain is attached between the base and the end-effector of theP3R redundant robot; and to collision
avoidance aRPR virtual chain is attached between the obstacle and the link3 (near to jointC) of theP3R redundant
robot. Figure 1 depicts theP3R redundant robot and Fig.2 depicts theP3R robot with the virtual chains attached.

In the Fig (1) are showed theP3R redundant robot composed by one prismatic joint:A and three rotative joints:B,
CandD; with links 0 (base),1, 2, 3 and4. JointA has its direction indicated by a fixed unit vector with coordinates
[Pa, Qa, 0]

T . ThePPR trajectory virtual chain is composed by prismatic jointstx, andty and a rotative jointrz and
links 5 and6. TheRPR collision avoidance virtual chain is composed by two rotative jointrz1 andrz2, a prismatic joint
pr and the links7 and8. The circuits1 and2 give the direction needed in the differential model by Davies’ method.

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section VII - Robotics 
Page 1008



2

DC

B

1A

0

obstacle

base

P3R robot

y

x

4

3

Figure 1.P3R redundant robot with an obstacle inside
its workspace.
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Figure 2.P3R redundant robot with the virtual chains
attached.

4.1 Methodology for elimination of the passive joint

The method of kinematic constraints have limitations as the kinematic chain becomes more complex, or according
to the task. This limitation occurs because of the presence of screws from the virtual chains onNs matrix. When the
position of secondary joints are calculated, using Eq. (7), and it is obtained the displacement for secondary joints from the
virtual chain which has no practical application. To simplify the inversion of the matrixNs, it is necessary to eliminate
the screws of the virtual chains.

The elimination of secondary virtual screws can be performed through reciprocal screws. The reciprocal are arranged
in a matrix defined as annihilating matrix (Camposet al., 2009).

The concept of annihilating matrix presented in (Camposet al., 2009) to parallel manipulators is discussed below,
using theP3R robot.

By using theP3R redundant robot with the virtual chains to impose trajectories and avoid collision shown on Fig.2,
will be shown that it is possible to eliminate from equations, the virtual joints from secondary matrixNs making it
equivalent to the extended Jacobian.

Using the Davies method were obtained matricesNp eNs.

Nq̇ =

[

$̂A $̂B $̂C $̂D 0 0

$̂A $̂B 0 0 −$̂rz1
−$̂rz2

]

















q̇A

q̇B

q̇C

q̇D

q̇rz1

q̇rz2

















+

[

0 −$̂rz −$̂px −$̂py

−$̂pr 0 0 0

]









q̇pr

q̇rz

q̇px

q̇py









= 0

= Nsq̇s + Npq̇p = 0

(12)

The robot has four joints,A, B, C andD, whose screws that are part of the secondary matrix, together with the screws
of the virtual jointsrz1 andrz2. The velocities of the jointsrz1 andrz2 are not necessary to compute the position of the
robot, so, it is useful to eliminate them from the secondary matrixNs.

To eliminate these screws (columns) from secondary matrix, a second partition can be done as follows in Eq. (13).

Nsq̇s =

[

$̂A $̂B $̂C $̂D

$̂A $̂B 0 0

]









q̇A

q̇B

q̇C

q̇D









+

[

0 0

−$̂rz1
−$̂rz2

] [

q̇rz1

q̇rz2

]

= Nsaq̇sa + Nspq̇sp (13)

whereNsa corresponds to the screws of the joints of interest (here called active) andNsp corresponds to the screws of the
joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate matrixK which has the following structure on Eq. (14) (Campos
et al., 2009).
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K =

[

Ir×r 0
0 refWNsp(n−r)×d

]

(14)

whererefWNsp
, whose dimension is(n − r) × d, is a set of reciprocal screws from secondary passive matrixNsp.

(Camposet al., 2009)(Martins, 2002).
The reciprocal screws represent a set of external forces and torques that do not generate movements on secondary

passive joints. Therefore pre-multiplyingNsp byK, produces:

KNsp = 0 (15)

To maintain equality is necessary that the Eq. (12) is rewritten, considering the Eq. (13), as follows in Eq. (16).

KNpq̇p + KNsaq̇sa + KNspq̇sp = 0 (16)

Using equality in Eq. (15) we have the Eq. (17).

KNpq̇p + KNsaq̇sa = 0 (17)

The velocities of the primary joints are then obtained by Eq. (18).

q̇p = −(KNp)
−1KNsaq̇sa (18)

So using the usual definition of the Jacobian (Eq. (8)), we have the Eq. (19).

J = −(KNp)
−1KNsa (19)

Considering the expression in Eq. (8), it can be observed that in Eq. (18) that the vectorq̇p represents the magnitudes
of the velocities of end-effector, increased with the magnitudes of the velocities of the actuated virtual joints as well as,
q̇sa represents the magnitudes of the velocities of active joints of the manipulatorP3R. So, the Jacobian expressed by the
Eq. (19) is a desired extended Jacobian matrix.

5. Application of the method and obtaining the new extended Jacobian

To evaluate the method of elimination of passive joints, an application was developed for theP3R redundant robot.
Consider the problem of trajectory generation and collision avoidance forP3R redundant robot shown in the previous

and in the Fig. (2).
Taking as reference coordinate systemOr, it is obtained the normalized screws for each joint of theP3R redundant

robot and for thePPR trajectory virtual chain as following in Eq.(20).

$̂A =





0
Pa

Qa



 $̂B =





1
LaQa

−LaPa



 $̂C =





1
LaQa + L2s2

−LaPa − L2c2



 $̂D =





1
xd

yd





$̂rz =





1
xe

ye



 $̂px =





0
1
0



 $̂py =





0
0
1





(20)

wherePa andQa define the direction of the prismatic jointA; La represents the displacement of the prismatic jointA;
L2, L3 andL4 are the length of the links2, 3 and4; si is thesin(θi); ci is thecos(θi); sij is thesin(θi + θj); cij

is thecos(θi + θj); θ2, θ3 andθ4 are the angles of the joints of theP3R robot; the magnitudesxd andyd are given
by: xd = LaQa + L2s2 + L3s23 and yd = −LaPa − L2c2 − L3c23 and the magnitudesxe and ye are given by:
xe = LaPa + L2s2 + L3s23 + L4s234 andye = −LaQa − L2c2 − L3c23 − L4c234.

The coordinates of the normalized screws of theRPR collision avoidance virtual chain, with respect to the coordinate
systemOr are given as in Eq. (21):
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$̂rz1
=





1
py

−px



 $̂pr =





0
crz1p1

srz1p1



 $̂rz2
=





1
py + Lrsrz1p1

−px − Lrcrz1p1



 (21)

where: px andpy are the position coordinate of the base of the collision avoidance virtual chain (Ov) with respect to
coordinate system of the base of theP3R redundant robot (Or); θp1

is the rotation angle between the systemsOv and
Or, taken in the directionz in relation to the base coordinate system (Or); θrz1

, θrz2
are the angles of the rotative joints

of the chain virtualRPR; andLr represents the displacement of prismatic jointpr chainRPR.
Aiming to simplify the development below, the angleθp1

will be considered equal to zero. This condition requires
that the coordinate system of the collision avoidance virtual chainOv will be parallel to the base coordinate systemOr.

Substituting the coordinates of$̂rz1
and$̂rz2

in Nsp we have as result the Eq. (22).

Nsp =

















0 0
0 0
0 0
−1 −1
−py −py − Lrsrz1

px px + Lrcrz1

















(22)

Campos (2004) develops a systematic methodology for obtaining the annihilating matrix. Using this procedure it can
be obtained the annihilating matrix toNsp as shown in Eq. (23).

K =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 Lr(pxsrz1

− pycrz1
) Lrcrz1

Lrsrz1









(23)

So: a) knowing thatKNsp = 0; b) applying the matrix obtained in Eq. (23) in the Eq. (17); it results in the matrices
KNp andKNsa, that can be written as Eq. (24):

KNsa =









0 1 1 1
Pa LaQa LaQa + L1s2 xd

Qa −LaPa −LaPa − L1c2 yd

x3 x4 0 0









KNp =









−1 0 0 0
−xe −1 0 0
−ye 0 −1 0
0 0 0 −Lr









(24)

wherex3 = Lr(Pacrz1
+ Qasrz1

) andx4 = −Lr((py − LaQa)crz1
− (px − LaPa)srz1

).
By geometric inspection in the kinematic structure of Fig. (2) it can obtained the following equalities in Eq. (25),

which help to simplify the equations.

px = LaPa + L2c2 − Lrcrz1
py = LaQa + L2s2 − Lrsrz1

(25)

The extended Jacobian matrix is then obtained by the Eq. (19) as shows the Eq. (26).

J =









0 1 1 1
Pa −L2s2 − L3s23 − L4s234 −L3s23 − L4s234 −L4s234

Qa L2c2 + L3c23 + L4c234 L3c23 + L4c234 L4c234

Pacrz1
+ Qasrz1

L1srz1−2 0 0









(26)

and the vectorsv andq̇ are given by:

v =
[

q̇rz q̇px q̇py q̇pr

]T
q̇ =

[

q̇A q̇B q̇C q̇D

]T (27)

Comparing the Jacobian of Eq. (26) with the Jacobian obtained by classical methods, it can be observed that its last
line has the additional line that characterizes it as an extended Jacobian. This line relates the vector of joint velocitiesq̇
with the velocity of the actuated joint virtualpr.

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section VII - Robotics 
Page 1011



5.1 Evaluation of the singularity

The extended Jacobian matrix obtained in the previous section, allows to study some properties of theP3R kinematic
structure. This section will discuss the singularities introduced by the virtual chain, using the determinant of the new
extended Jacobian.

Initially the singularities ofP3R robot are discussed using a methodology to study the singularities for redundant
robots (Nokleby and Podhorodeski, 2001).

5.1.1 Singularity for P3R redundant robot

Nokleby and Podhorodeski (2001) proposes a method to analysis the singularities in redundant robots. The method
is based on analysis of sub-matrices of the Jacobian. So, it is observed that the singularity condition toP3R redundant
robot is achieved when:

• θ3=±k1π (k1 = 0, 1, 2, · · ·) and;

• the angleθa is equal to−θ2, thus the angle between the prismatic jointA and the link2 has magnitude equal to
±(2k2 + 1)π

2
; k2 = 0, 1, 2, · · ·.

Makingk1 = 0 ek2 = 0 it has the configuration shown in Fig. (3).
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π
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$py

$rz
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−θ2

aθ

y

Figure 3. Singular condition forP3R redundant robot.

It can be observed that trajectories commanded in the perpendicular direction to the prismatic jointA can not be
performed. This restriction of movement indicates a singular condition.

Now based on the determinant of the extended Jacobian matrix (Eq. (26)), are analyzed the singularities imposed by
the collision avoidance virtual chain.

5.2 Singularities of the P3R robot with kinematic restrictions

Computing the determinant of the extended JacobianDJ , it has as result Eq. (28).

DJ = −L2L3(Pac2 + Qas2)srz1−2−3 (28)

wheresrz1−2−3 is thesin(θrz1
− θ2 − θ3).

Analyzing theDJ it can be observed that the singular condition is achieved under two different conditions:

• Pac2 + Qas2 = 0; and srz1−2−3 = 0

Considering thatL1 andL2 are constants and different from zero,DJ is zero only if one of the above conditions are
achieved.

From the first condition it has the Eq. (29).

Pa

Qa

= −
s2

c2

(29)

in other words, geometrically, the angle between the vector direction of the prismatic jointA of theP3R robot and the
link 2 is equal to±(2k + 1)π

2
with k = 0, 1, 2, · · ·. This condition is shown in Fig. (4).
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Figure 5.2nd singularity condition

The angle formed by the prismatic jointA has as complement to the angleπ
2

the angleθa, which, by Eq. (29), must
be equal to−θ2. By this equality, the singularity exists if the direction of the jointA is perpendicular to link2.

It can be observed that keeping the prismatic pair$pr fixed at a certain position, avoiding a collision for example, the
P3R redundant robot can not move because any movement that results on movement of the virtual jointrz1 do not causes
movements in the jointsA andB. This singularity is a generalization of the case of the singularity of redundant robot
shown in Fig. (3), since this singularity condition applies to any value for the angleθ3.

Applying the singularity condition to extended Jacobian matrix it has the following result in Eq. (30).

J =









0 1 1 1
−s2 −L2s2 − L3s23 − L4s234 −L3s23 − L4s234 −L4s234

c2 L2c2 + L3c23 + L4c234 L3c23 + L4c234 L4c234

srz1−2 L2srz1−2 0 0









(30)

Note that the second column ofJ can be obtained by the sum of first column multiplied byL2, with the third column.
From the second condition it has:

qrz1
= q2 + q3 + kπ, k = 0, 1, 2, · · · (31)

Considering the condition thatk = 0, it has the kinematic configuration resulting in Fig. (5).
This configuration determines a condition of parallelism between the link3 and prismatic jointpr. It is observed from

Fig. (5) that there is no possibility to impose trajectories in the direction of jointpr if this joint is being actuated, as when
under collision avoidance. In this condition, the Jacobian matrix has the following configuration in Eq. (32).

J =









0 1 1 1
Pa −L2s2 − L3s23 − L4s234 −L3s23 − L4s234 −L4s234

Qa L2c2 + L3c23 + L4c234 L3c23 + L4c234 L4c234

Pac23 + Qas23 L2s3 0 0









(32)

The Jacobian of the Eq. (32) presents a condition of dependence by the fact that, the fourth line is equal to the sum of
the products of the first line byL4s4, second line byc23 and third line bys23.

These results showed that the introduction of kinematic constraints to avoid collisions, introduces two additional
singularities to the kinematics model. Thus, the method of extended Jacobian from kinematic constraints also introduce
algorithmic singularities.

These algorithmic singularities are caused by restrictions on movement and occur in the configuration of the kinematic
chain in which there are incompatibilities between the movements imposed to the end-effector and the other restrictions.

In the example, this incompatibility occurs in situations in which the trajectory imposed to the end-effector can not be
performed without collision.

As a practical results it should be emphasized that, in this method the singularity has a clear and physical significance
and can be detected and avoided.
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6. Conclusion

This paper presented a systematic method to obtaining an extended Jacobian matrix. The methodology aimed to show
that there is a representation for the extended Jacobian obtained by the method of kinematic constraints.

The proposal extended Jacobian is demonstrated mathematically and through a differential kinematic model to solv-
ing the redundancy in aP3R robot by inclusion of a collision avoidance task of a joint robot to an obstacle inside its
workspace.

In the analysis of the determinant of the obtained extended Jacobian matrix, it was shown that other singularities
occur. However it was shown that unlike the results for the classical extended Jacobians found in the references, the
new extended Jacobian has singularities that belong exclusively to the kinematic chains. These singularities reflect the
conditions of incompatibility between the task imposed for end-effector and the collision avoidance.

The main advantage of the method presented is the possibility of a complete study of the mechanism behavior, includ-
ing detection and control of conflicts between movements imposed on the end-effector and secondary tasks.

Preliminary studies, applied to 2D models, have shown good results in applications, where the same is waited when
applied for spatial redundant robots.
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