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Abstract. This paper presents a proposal for a new extended Jacobian method based on kinematic constraints, exploring
only singularities of the kinematic chain. It is presented the development of the new extended Jacobian as well as their
properties. These method can be applied to analyze the behavior of redundant robots on perfoming a task. Redundant
robots are used to perform tasks which require some type of extra mobility, for example when it is necessary to avoid
obstacles inside their workspace. In general the kinematic redundancy condition does not allow to find the solutions
the solution of inverse kinematics directly. Methods based on pseudoinverse matrix and extended Jacobian are generally
useful for solving inverse kinematics for redundant robots. However, these methods have limitations like metric problems
and algorithmic singularities that do not belong to the kinematic chain. These limitations decrease the robot’s ability
to perform movements, while away from their kinematic singularities. Based on screw theory, the method of kinematic
constraints consists in add Assur virtual chains to perform tasks that retricts movements, such as trajectory generation,
collision avoidance, among others. To validate the proposal an example for redundanfP®Bas developed.
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1. Introduction

A robotic system typically consists of a mechanical manipulator, an end-effector, a microprocessor-based controller
and a computer. A mechanical manipulator comprises several links connected by joints forming a kinematic chain. Some
of the joints in the manipulator are actuated; the others are passive. Typically, the number of actuated joints is equal to the
degrees of freedom (Tsai, 1999).

Parallel robots are a class of manipulator that become more complex as a growing number of joints and circuits. This
complexity is evident in the kinematic and dynamic models. Another factor that have to take in account, this kind of robot
is classified as redundant (Tsai, 1999).

The kinematics modeling requires a systematic strategy that should be attend, as possible as, all these aspects related to
the complexity of the kinematic chains of robot manipulators. To surround such complexities connected to the kinematic
manipulator modeling has been used the Davies method associated with the Assur virtual chains. This methodology is
also called method of kinematic constraints Camgioal. (2009).

The Davies method are extensively studied in Davies (1981), and discussed in Garap§¢2009) and Simast al.

(2009), provides to achieve the differential kinematic model for closed kinematic chains with several loops. The method
equation relate the velocities of the passive joints and those actuated joints. So, the kinematic chain can be now classified
as a system with virtual and real joints.

Using the method of kinematic constraints, in some cases not all virtual joint are actuated, and as consequence the
passive joints belonging to the virtual chains will be part of the secondary joints. In practice, kinematic analysis of the
parallel robots imply to use only "real" passive joints, while the velocities and positions computed for the secondary virtual
joints have no use. The presence of secondary virtual joints on the kinematics model requiring greater computational
effort in such analysis. It is interesting to set up strategies to eliminate the secondary virtual joint from the model. The
differential model based on the screw theory allows to eliminate the screws of secondary virtual joints, through reciprocal
screws.

Reciprocal scred” represents a set of forces and moments applied over a rigid body, that moves along of a infinestesi-
mal screw and that doesn’t produce work (Gibson and Hunt, 1990). In this paper the concept of reciprocal screw is used in
a way to eliminate of equation model the screws of the virtual secondary joints from the kinematics model. The proposed
method is applied in a simplified redundant robot, where the final results is an extended Jacobian with only structural sin-
gularities. The classical extended Jacobian presented in Baillieul (1985) and applied in Antonelli and Chiaverini (1998) to
URV’s, is a strategy where additional tasks are included in structural Jacobian making it invertible. The classical extended
Jacobian developed in Baillieul (1985) has, generally, singularities that don’t belong to kinematic structure.

The main contribution of this work is present a systematic method to eliminate secondary virtual joints or its screws
from differential kinematic model, obtained from the method of kinematic constraints. Also, it will be shown an new
extended Jacobian to redundant robots with only structural singularities as result. The present method and its validation
will be proved using &3R planar redundant robot with a obstacle inside in its workspace.
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2. Fundamental tools

The approach, here proposed, is based on the Davied method, where the screw displacement are successively applied
(Tsai, 1999), together with the Assur virtual chain concept, which is briefly presented in following sections.

2.1 Screw theory

The general spatial differential movement of a rigid body consists of a differential rotation about an axis, and a
differential translation along the same axis named the instantaneous screw axis. The complete movement of the rigid
body, combining rotation and translation, is called screw movement or twist and is here denéte@hzyratio of the
linear velocity to the angular velocity is called pitch of the screw denotéd as

The twist may be expressed by a pair of vectdrs: [wT; VpT]T , Wherew represents the angular velocity of the
body with respect to the inertial frame aihf) represents the linear velocity of a poiRtattached to the body which is
instantaneously coincident with the origihof the reference frame. A twist may be decomposed into its magnitude and
its corresponding normalized screw. The twist magnitgde either the magnitude of the angular velocity of the body,
llwl|, if the kinematic pair is rotative (k= 0) or helical, or the magnitude of the linear velocify, | , if the kinematic

pair is prismatic (h— oc). The normalized screwis a twist of unitary magnitude, i.e.
$ =3¢ @)

The normalized screw coordinatgss written as:

. s;

$_|:50,L'X8i+h51':| (2)
wheres; = [slx,sLy,sz] denotes an unit vector along the direction of the screw axis, and vegtoepresents the
position vector of a point lying on the screw axis.

Thus, the twist in Eq. (2) expresses the general spatial differential movement (velocity) of a rigid body relative to an
inertial reference framé@® — xyz. The twist can also represents the movement between two adjacent links of a kinematic
chain. In this case, twidt; represents the movement of linkelative to link(i — 1).

More details of the screw theory and its applications can be found in the following works: Hunt (2000) and Davies
(1981).

2.2 Daviesmethod

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derived a solution to
the differential kinematics of closed kinematic chains from Kirchhoff circulation law for electrical circuits. The resulting
Kirchhoff-Davies circulation law states that "The algebraic sum of relative velocities of kinematic pairs along any closed
kinematic chain is zero" (Campes al., 2009). This method is used to obtain the relationship between the velocities of a
closed kinematic chain. Since the velocity of a link with respect to itself is null, the circulation law can be expressed as:

> $igi =0 ®)
0

whereéi, ¢; represent respectively the normalized screw and the magnitude ofsjvaistin is the number of joints.
Equation (3) is the constraint equation which, in general can be written as

Ng=0 (4)
whereN = [$1 $2 e $n] is the network matrix containing the normalized screws, with the signs of the screws de-
pend on the definition of the circuit orientation (as will be presented later) (Cagtpbs2009), and = [¢1 ¢2 -+ ¢n]

is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here named primary joints, and passive joints, named secondary joints.
The constraint equation, Eq. (4), allows the computation of the secondary joint velocities as functions of the primary joint
velocities. To achieve this, the constraint equation is rearranged highlighting the primary and secondary joint velocities
and Eq. (4) is rewritten as follows:

N, N || =0 ©)
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where N, and N, are the primary and secondary network matrices, respectivelyj,aadd g, are the corresponding
primary and secondary magnitude vectors, respectively.
So, Eqg. (5) can be rewritten as

Np(jp'f'qu's =0 (6)

The secondary joint position can be computed by integrating Eq. (6) as follows:

t t
qs(t) — ¢5(0) :/ Godt = —/ NN, gpdt (7
0 0
2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just virtual chain, is essentially a tool to get information on the
movement of a kinematic chain or to impose movements on a kinematic chain (Catgo2009).

This concept was first introduced by (Campaisal., 2009), which defines the virtual chain as a kinematic chain
composed of links (virtual links) and joints (virtual joints) which possesses three properties: a) the virtual chain is open;
b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of the real kinematic
chain.

From the the third property, the virtual chain proposed by (Cangtad., 2009) is in fact an Assur group, i.e. a
kinematic subchain with null mobility such that, when connected to another kinematic chain preserves its mobility (Arto-
bolevskii, 1970-75).

2.4 Thedirect graph notation

Consider a kinematic pair composed of two lifksand £;;. This kinematic pair has its relative velocity defined by
a screw*$; (joint 5) relative to a reference franmte. Joint; represents the relative movement of the lifkwith respect
to the link ;1. This relation can be represented by a graph (Carapak, 2009), where the vertices represent links and
the arcs represent joints.

Now, studying a simple graph, where joints part of two closed chains. For each closed chain the circuit direction
is chosen (Campost al., 2009). In a direct mechanism graph, if the joint has the same direction as the circuit, the twist
associated with the joint has a positive sign in the circuit equation (constraint equation on Eq.(3)), and a negative sign if
the joint has the opposite direction to the circuit.

3. Redundant robots and its solutions for inver se kinematics

A robot is said redundant when the number of joints available to be actuated is greater than those needed to perform
the task. This can be best understood by making the relationship between the joint space and Cartesian space.

The joint space is defined by the number of joints that compose the robot (here, isrcdlgdee of control), while
the Cartesian or operational space is defined by the number of coordinates used to describe it (connedfivitya
task onlyr coordinates are be used, andrsa n, then there are degree of redundancy for that task, where the degree of
redundancy ist — r (Sicilianoet al., 2009). Redundancy can be formally defined as the difference bbetween the degree
of control and connectivity of a kinematic chain (Martins and Carboni, 2007).

The differential kinematic model expresses the end-effector linear velpeityl the angular velocity as a function
of the joint velocitiesj by means of the Eq. (8).

v—{fj]—J(q)q ®

where the matrix/ (r x n) is the robotlacobianmatrix and determining the differencial mapping between the joint space
and Cartesian space agé= [¢q, - - -, qn]T represents the joints velocities vectorAt's.

Equation (8) can be inverted, allowing to compute the joints velocities according to desired end-effector velocity. Thus
it can be written as in Eq. (9):

g=J (g )

whereJ ~1(q) is the Jacobian inverse matrix.

The Jacobian, in general, is function of the joint positjoiDepending on the configuration of the robot, the Jacobian
may not possess full rank and it implies that the robot is in a conditi@mgiularity (Sicilianoet al., 2009), what yield to
J(g) not invertible. Under this condition, Eq. (8) can admit an infinite number and the robot loses their mobility or, like
parallel robot, can increases their mobility.
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The Jacobian matrix of redundant manipulator has largest number of colurtires) rowsr, since the dimension of
the space joint is greater than the dimension of the operating space, zer,. So the differential inverse kinematics,
shown in Eq. 9, presents an infinite number of solutions. The problem is to find a systematic method to find among these
infinite solutions an suitable solution to a particular task.

In the next section, are shortly discussed the methods for solving inverse kinematics for redundant robots.

3.1 Differential inverse kinematic through M oor e-Penr ose Pseudol nver se

In a task planning, a simpler strategy is to distribute the motion needed to perform a task for all joints of the robot.
The purpose of this distribution is to minimize the energy used by the joints in their movements. The solution can be
formulated as an optimization problem whose solution is obtained using Lagrange multipliers method (Satiliano
2009).Thus the differential inverse kinematics can be expressed by the following relationship in Eq. (10).

q=Jv (10)

where the matrixJT = W=1(JT(JW~1JT)~1 is defined as the Jacobigseudoinversenatrix and the matri¥¥’ is a
suitable (nx n) diagonal positive definite weighting matrix.

Changes in the optimization function allows the inclusion of velocities in the joints that are projected into nullspace
of the direct differential mapping (Siciliaret al., 2009).

The pseudoinverse matrix of Jacobian is used in other resolution strategies, suches& fwéority methogAntonelli
and Chiaverini, 1998), th@ask priority robust to singularitiegChiaverini, 1997) an@umped least squargChiaverini
and Siciliano, 1994).

The methods based on pseudoinverse have limitations such as: a) In the case of théimatst to be set
variables in its main diagonal, through an empirical adjust; b) the numerical stability of the inverse kinematics depends on
the trajectory and; c) problems occur caused by metric problems of the pseudoinverse in the case of robots with structure
constituted by rotative and prismatic joints (Campbal., 2009).

3.2 Extended Jacobian method

The method of extended Jacobian solves the redundancy of robots through a non-redundant system. This solution is
gotten by adding kinematic constraints in order to make the Jacobian matrix invertible.

Constraints are based on functions of the foffy) = 0. In general, it uses the functidi(¢) as an approximation
of the energy of motion. This choice aims at optimizing the distribution of the energy through the joints of the robot
(Chiaverini, 1997).

Considering:(q) differentiable ong, we obtain the derivative on Eq. (11):

J

[H:[aﬁ&wq S we= an)
dq

whereJ. is the extended Jacobian andis the augmented vector of velocities of the end-effector.

The extended Jacobian method has a limitation, by inserting algorithms singularities into differential model of the
robot, what difficult its implementation and uses. These new singularities are not part of the robot kinematic chain and
should be also monitored. The singularities vary according to the funktipnchosen.

Next section presents the proposed extended Jacobian, obtained from the kinematic constraints.

4, Extended Jacobian from kinematic restrictions

This section presents a mathematical development based on the differential kinematic model and on kinematic con-
straints, yielding to a equivalent extended Jacobian.

At the end of this section a study of the singularities shows that the proposed extended Jacobian does not introduce
algorithmic singularities as classical methods discussed on section 3.2

The method is implemented inf283 R redundant robot with an obstacle inside its workspace. To impose the trajectory,
a PPR virtual chain is attached between the base and the end-effector ¢f3Reredundant robot; and to collision
avoidance aR PR virtual chain is attached between the obstacle and thelifitlear to jointC) of the P3R redundant
robot. Figure 1 depicts thB3 R redundant robot and Fig.2 depicts tR8 R robot with the virtual chains attached.

In the Fig (1) are showed thB3 R redundant robot composed by one prismatic joihiand three rotative jointsB,
Cand D; with links 0 (base),1, 2, 3 and4. Joint A has its direction indicated by a fixed unit vector with coordinates
[Pa, Qa,s O]T . The PPR trajectory virtual chain is composed by prismatic joints andty and a rotative joinitz and
links 5 and6. The RPR collision avoidance virtual chain is composed by two rotative jointandr.o, a prismatic joint
pr and the links7 and8. The circuitsl and2 give the direction needed in the differential model by Davies’ method.
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Figure 1.P3 R redundant robot with an obstacle inside Figure 2. P3R redundant robot with the virtual chains
its workspace. attached.

4.1 Methodology for elimination of the passive joint

The method of kinematic constraints have limitations as the kinematic chain becomes more complex, or according
to the task. This limitation occurs because of the presence of screws from the virtual chafismatrix. When the
position of secondary joints are calculated, using Eq. (7), and it is obtained the displacement for secondary joints from the
virtual chain which has no practical application. To simplify the inversion of the mafgixt is necessary to eliminate
the screws of the virtual chains.

The elimination of secondary virtual screws can be performed through reciprocal screws. The reciprocal are arranged
in a matrix defined as annihilating matrix (Campisl., 2009).

The concept of annihilating matrix presented in (Camebal., 2009) to parallel manipulators is discussed below,
using theP3R robot.

By using theP3 R redundant robot with the virtual chains to impose trajectories and avoid collision shown on Fig.2,
will be shown that it is possible to eliminate from equations, the virtual joints from secondary matnmaking it
equivalent to the extended Jacobian.

Using the Davies method were obtained matridgse V.

qa
. N . N q.B R . . q.p'r
Nq — ?A %B $C $D AO AO (?C + 9 *$rz *$pz *$py Qrz =0
$4 $5 0 0 —$., -$., dp ~$,. 0 0 0 dpa 12)
q.T21 ‘jpy
q.rzz

The robot has four joints4, B, C' andD, whose screws that are part of the secondary matrix, together with the screws
of the virtual jointsrz, andrz,. The velocities of the jointgz; andrz, are not necessary to compute the position of the
robot, so, it is useful to eliminate them from the secondary maftix

To eliminate these screws (columns) from secondary matrix, a second partition can be done as follows in Eq. (13).

) éA %B éc $D 4B { 0 0 } { s ] . _
Nsgs = G G y + & & Lo = NsaGsa + Nspgs 13
! [ $A $B 0 0 qc 7$T21 7$7‘z2 Qrzs q pdsp ( )
4D

whereN,, corresponds to the screws of the joints of interest (here called activey gntbrresponds to the screws of the
joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate m&tnvhich has the following structure on Eq. (14) (Campos
et al., 2009).
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Ly, | 0

K= 14
0 ‘ TefWNb.p('rL—r)Xd ( )

where"ef Wn.,,,» Whose dimension i$n — r) x d, is a set of reciprocal screws from secondary passive matjx
(Campos<t al., 2009)(Martins, 2002).

The reciprocal screws represent a set of external forces and torques that do not generate movements on secondary
passive joints. Therefore pre-multiplying,, by IC, produces:

KNy, =0 (15)

To maintain equality is necessary that the Eq. (12) is rewritten, considering the Eq. (13), as follows in Eq. (16).

ICNpr + ICNsa(jsa + K:NspQSp =0 (16)

Using equality in Eq. (15) we have the Eq. (17).

’CNp‘jp + ’CNsa(jsa =0

17
The velocities of the primary joints are then obtained by Eq. (18).
q.p = _(K:Np)_lK:Nsaqsa (18)
So using the usual definition of the Jacobian (Eq. (8)), we have the Eq. (19).
J=—(KN,) 'KNg, (19)

Considering the expression in Eq. (8), it can be observed that in Eq. (18) that thegye@presents the magnitudes
of the velocities of end-effector, increased with the magnitudes of the velocities of the actuated virtual joints as well as,

4sa represents the magnitudes of the velocities of active joints of the manip#afer So, the Jacobian expressed by the
Eq. (19) is a desired extended Jacobian matrix.

5. Application of the method and obtaining the new extended Jacobian

To evaluate the method of elimination of passive joints, an application was developed fe8 fheedundant robot.

Consider the problem of trajectory generation and collision avoidandeX¥&rredundant robot shown in the previous
and in the Fig. (2).

Taking as reference coordinate systé it is obtained the normalized screws for each joint of #8382 redundant
robot and for theP P R trajectory virtual chain as following in Eq.(20).

. 0 . 1 A 1 . 1
$A = P, $B = LoQa $C = LqQq + Loso $D = Zq
Qa _LaPa _LaPa - LZCZ Yd
. (20)
. 1 . 0 . 0
$T'Z = Te $p1, = 1 $py = 0
Ye | 0 1

where P, and @, define the direction of the prismatic joirlt; L, represents the displacement of the prismatic jaint
Ly, Lz and Ly are the length of the link8, 3 and4; s; is thesin(6;); ¢, is thecos(6;); s;; is thesin(6; + 6;); c¢;;
is thecos(0; + 0,); 62, 63 and 6, are the angles of the joints of tie3R robot; the magnitudes,; andy, are given
by: x4 = L,Q4 + Losy + L3ses andyy = —L,P, — Laco — L3coz and the magnitudes, andy. are given by:
Te = LqPo + Losa + L3sag + Lasazs andye = —LoQq — Laco — L3coz — Lyco3a.

The coordinates of the normalized screws of B¥eR collision avoidance virtual chain, with respect to the coordinate
systemO,. are given as in Eq. (21):



ABCM Symposium Series in Mechatronics - Vol. 5 Section VIl - Robotics

Copyright © 2012 by ABCM Page 1011
. 1 . 0 . 1
$rzy = Dy $pr = | Craip 820 = Py + LrSrzip, (21)
—Px srzl;m Pz — chrzlpl

where: p, andp, are the position coordinate of the base of the collision avoidance virtual chgjnw(ith respect to
coordinate system of the base of tR8 R redundant robot (¢); ¢, is the rotation angle between the systethsand
O, taken in the direction in relation to the base coordinate system X®,.,, 0., are the angles of the rotative joints
of the chain virtualR P R; and L,. represents the displacement of prismatic jgpinthain RPR.
Aiming to simplify the development below, the anglg, will be considered equal to zero. This condition requires
that the coordinate system of the collision avoidance virtual cgiwill be parallel to the base coordinate systém
Substituting the coordinates ﬁﬁzl andém2 in N, we have as result the Eq. (22).

0
0 0
0 0
N@p = 1 1 (22)
—Py TPy — Lrsrzl
Pz Pz + L'r‘c'r'zl

Campos (2004) develops a systematic methodology for obtaining the annihilating matrix. Using this procedure it can
be obtained the annihilating matrix f9,,, as shown in Eq. (23).

1 0 0 0 0 0
0 1 0 0 0 0

K= 0 0 1 0 0 0 (23)
0 00 Lr (pxsrzl — PyCrz ) LrCrzl Lrsrzl

So: a) knowing thatC N, = 0; b) applying the matrix obtained in Eq. (23) in the Eq. (17); it results in the matrices
KN, andICN,,, that can be written as Eq. (24):

0 1 1 1 -1 0 0 0
_ | Pa LaQa  LaQa+ Lisz x4 -z -1 0 0
ICNSG B Qa —L.P, —LoP,—Lic Yd ICNP B —Ye 0 —1 0 (24)
€T3 Ty 0 0 0 0 0 _L'r

wherexs = L, (Pycrsy + QaSrs, ) @anday = —L,.((py — LaQy)¢rz, — (0o — LaPy)Srs, ).
By geometric inspection in the kinematic structure of Fig. (2) it can obtained the following equalities in Eq. (25),
which help to simplify the equations.

Da = Lo Py + Locy — Lycys, Py = LaQa + Las2 — Ly 8pzy (25)

The extended Jacobian matrix is then obtained by the Eq. (19) as shows the Eq. (26).

0 1 1 1
J = P, —Lasy — L3sas — Lasoza  —L3sas — Lasaza  —Lasaza (26)
Qa Loco + Lzcas + Lacasa Lzcos + Lacosa Lacasa
Pacrzl + Qasrzl Llsr2172 0 0
and the vectors andq are given by:
. . . . 4T . . . . . 4T
v = [ Qrz  4pxz  4py YGpr } q= [ qdA 4B 4qc 4D } (27)

Comparing the Jacobian of Eq. (26) with the Jacobian obtained by classical methods, it can be observed that its last
line has the additional line that characterizes it as an extended Jacobian. This line relates the vector of joint yelocities
with the velocity of the actuated joint virtug)..
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5.1 Evaluation of the singularity

The extended Jacobian matrix obtained in the previous section, allows to study some propertié33di Kirrematic
structure. This section will discuss the singularities introduced by the virtual chain, using the determinant of the new
extended Jacobian.

Initially the singularities of P3R robot are discussed using a methodology to study the singularities for redundant
robots (Nokleby and Podhorodeski, 2001).

5.1.1 Singularity for P3R redundant robot

Nokleby and Podhorodeski (2001) proposes a method to analysis the singularities in redundant robots. The method
is based on analysis of sub-matrices of the Jacobian. So, it is observed that the singularity condifi@réalundant
robot is achieved when:

o O3=tkym (ks =0,1,2,---) and;

e the angled, is equal to—0, thus the angle between the prismatic jaihtind the link2 has magnitude equal to
+(2k2 +1)5; k2 =0,1,2,---.

Making k1 = 0 e ko = 0 it has the configuration shown in Fig. (3).

-
X Sy
%
LT

Figure 3. Singular condition faP3 R redundant robot.

It can be observed that trajectories commanded in the perpendicular direction to the prismatit gaimtnot be
performed. This restriction of movement indicates a singular condition.

Now based on the determinant of the extended Jacobian matrix (Eq. (26)), are analyzed the singularities imposed by
the collision avoidance virtual chain.

5.2 Singularities of the P3R robot with kinematic restrictions

Computing the determinant of the extended Jacobianit has as result Eq. (28).

DJ = 7L2L3(Pa02 + Qa52)5r21—2—3 (28)

wheres,.,, _o_3 is thesin(0,,, — 02 — 03).
Analyzing theD it can be observed that the singular condition is achieved under two different conditions:

e P.oco+ Q(LSQ =0; and Spz—2—-3 = 0

Considering thaf.; and L, are constants and different from zef®, is zero only if one of the above conditions are
achieved.
From the first condition it has the Eq. (29).

Lo _ 52

Qa C2
in other words, geometrically, the angle between the vector direction of the prismaticijointhe P3 R robot and the
link 2 is equal to+(2k + 1) with £ = 0,1, 2, - - -. This condition is shown in Fig. (4).

(29)
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[ %o
LT

Figure 4.1% singularity condition Figure 5.2"¢ singularity condition

The angle formed by the prismatic joidthas as complement to the anglehe anglef,, which, by Eq. (29), must
be equal to-0,. By this equality, the singularity exists if the direction of the jaihts perpendicular to link.

It can be observed that keeping the prismatic pgirfixed at a certain position, avoiding a collision for example, the
P3R redundant robot can not move because any movement that results on movement of the virtual glwntot causes
movements in the jointgl and B. This singularity is a generalization of the case of the singularity of redundant robot
shown in Fig. (3), since this singularity condition applies to any value for the @ggle

Applying the singularity condition to extended Jacobian matrix it has the following result in Eq. (30).

0 1 1 1
J— —83  —Lgsy — L3sog — Lysgzs  —L3soz — Lysazs  —LaSazs (30)
C2 Lycy + Lzcaz + Lycazs Lscas + Lacasg Lycazy
Srzy—2 Ly Srz;—2 0 0

Note that the second column @fcan be obtained by the sum of first column multipliedZlyy with the third column.
From the second condition it has:

Qrz, ZQ2+QB+'I€7T7 k:071727"' (31)

Considering the condition that= 0, it has the kinematic configuration resulting in Fig. (5).

This configuration determines a condition of parallelism between thelarid prismatic joinp,.. It is observed from
Fig. (5) that there is no possibility to impose trajectories in the direction of jgiiftthis joint is being actuated, as when
under collision avoidance. In this condition, the Jacobian matrix has the following configuration in Eq. (32).

0 1 1 1
J = P, —Losy — L3saz — Lysozq  —L3So3 — Lysazqa  —L4S234 (32)
Qa Loco + Lzcaz + Lycaza L3coz + Lycasy Lycosy
Pocoz + Qqs23 Loss 0 0

The Jacobian of the Eq. (32) presents a condition of dependence by the fact that, the fourth line is equal to the sum of
the products of the first line b, s4, second line by:»3 and third line bysss.

These results showed that the introduction of kinematic constraints to avoid collisions, introduces two additional
singularities to the kinematics model. Thus, the method of extended Jacobian from kinematic constraints also introduce
algorithmic singularities.

These algorithmic singularities are caused by restrictions on movement and occur in the configuration of the kinematic
chain in which there are incompatibilities between the movements imposed to the end-effector and the other restrictions.

In the example, this incompatibility occurs in situations in which the trajectory imposed to the end-effector can not be
performed without collision.

As a practical results it should be emphasized that, in this method the singularity has a clear and physical significance
and can be detected and avoided.
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6. Conclusion

This paper presented a systematic method to obtaining an extended Jacobian matrix. The methodology aimed to show
that there is a representation for the extended Jacobian obtained by the method of kinematic constraints.

The proposal extended Jacobian is demonstrated mathematically and through a differential kinematic model to solv-
ing the redundancy in £3 R robot by inclusion of a collision avoidance task of a joint robot to an obstacle inside its
workspace.

In the analysis of the determinant of the obtained extended Jacobian matrix, it was shown that other singularities
occur. However it was shown that unlike the results for the classical extended Jacobians found in the references, the
new extended Jacobian has singularities that belong exclusively to the kinematic chains. These singularities reflect the
conditions of incompatibility between the task imposed for end-effector and the collision avoidance.

The main advantage of the method presented is the possibility of a complete study of the mechanism behavior, includ-
ing detection and control of conflicts between movements imposed on the end-effector and secondary tasks.

Preliminary studies, applied to 2D models, have shown good results in applications, where the same is waited when
applied for spatial redundant robots.
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