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Abstract. This paper presents and discusses the procedures used to estimate the measurement uncertainty when 

determining circularity and cylindricity deviations. Measuring systems and devices frequently used for geometric 

control of parts both in industrial and in research laboratories were analysed. The work was carried out according to 

the following steps: (i) analysis of the known Standards and documents used to uncertainty determination, in particular 

ISO GUM approach; (ii) analysis of the existing measurement systems and devices, with emphasis on their working 

principles, characteristics and error sources; (iii) identification of the variables that influence the determination of 

geometry deviations; and (iv) development of mathematical models with analysis and discussion. It was concluded that 

although the procedures carried out in circularity and cylindricity measurements using different measurement systems 

are similar, the mathematical models associated with them are different, because each measurement system presents 

different characteristics and working principles.  
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1. INTRODUCTION 

 

The main goal of any machining operation is to produce interchangeable parts with maximum functionality at 

reasonable costs. Such need requires each part or assembly of parts of a final product to be manufactured according to 

predefined specifications for dimensions, geometry and surface finish.  

The evolution of machining tools has enabled the manufacturing of parts to be faster and more practical. New 

technologies implemented in machining processes have also contributed to improve final products significantly. Despite 

all of that, the occurrence of dimensional and geometrical deviations is inevitable. An appropriate understanding and 

use of the existing standards related to GD&T (Geometric Dimensioning and Tolerancing) and of the ISO-GPS 

(Geometric Product Specification) standards both in engineering departments and in metrology rooms are fundamental 

to guarantee that the deviations occurred during manufacturing do not jeopardize the proper assembly and functioning 

of the manufactured parts.  

Sousa and Wandek (2009) have identified in Brazil deficiencies in the understanding and proper application of   

GD&T in design and manufacturing of parts. The main deficiencies found were related to a superficial knowledge of 

the existing standards for geometrical specification of parts and to a little experience of designers and manufacturing 

workers in the extrapolation of such knowledge to help defining good measurement practices, which have caused 

various problems for Brazilian industry. According to the authors, in addition to the difficulties related to GD&T 

specifications, difficulties to evaluate uncertainty measurements and to verify if they are adequate according to the 

specified tolerance are another problem. It is important to invest time and money in a series of actions to minimize such 

problems, in particular in the qualification of personnel involved in the whole design and manufacturing chain. 

Also, dimensional and geometrical control goes beyond the manufacturing chain and gains vital importance in 

manufacturing research, which can enable many manufacturing processes to be improved.  

This paper aims to present procedures to estimate circularity and cylindricity measurements according to ISO GUM 

(Guide to the Expression of Uncertainty in Measurement) requirements using three measurement systems: (i) a dial 

gauge attached to a tailstock device; (ii) a Coordinate Measuring Machine (CMM); and (iii) a roundness and 

cylindricity measurement equipment. We expect this work to help personnel involved in design, manufacturing and 

quality control to estimate measurement uncertainty  and to adequate such measurements to  NBR ISO/IEC 17025 

(2005). We also expect to contribute to the improvement of scientific rigour in research and therefore in publications in 

the area.  

 

2. THEORETICAL BACKGROUND  

 

A significant amount of manufactured parts has cylindrical shape or at least some portions with a cylindrical section. 

Form tolerances (circularity and cylindricity) are frequently applied to such parts, which are particularly important in 
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designs that require high accuracy. The development of instruments and procedures to verify if these tolerances are in 

accordance with the design requirements is of utmost importance to ensure the interchangeability and functionality of 

the manufactured parts.  

A classic measurement system to verify the form tolerance of parts is composed of a dial gauge attached to a 

tailstock device. This system has a simple working principle and is relatively cheap, and therefore it has the largest 

application in industry. It allows measurements to be fast, reliable, and subject to minor influence by the operator.  

However, the recent literature in the area shows that other measurement systems are more widely used in research 

related to form control of machined parts, in particular Coordinate Measuring Machines (Santos 2004, Tedesco et al. 

2006, Barbosa 2007 and Cavalcante 2010) and Roundness Cylindricity Measurement Systems (Souza et al. 2004, Costa 

et al. 2007, Almeida 2008, Oliveira 2008 and Alves et al. 2009).  

Independently of the measurement system and of the methodology used, the results will always be associated with a 

measurement uncertainty. Measurement results that are only presented as an arithmetic mean value are not meaningful, 

since they do not provide all the information about the measurement. Even when the standard deviation is also 

presented, various other variables that influence the measurements are not considered, such as the uncertainty related to 

the calibration of the measurement system and to distancing of the temperature in relation to 20 °C. 

In order to estimate the measurement uncertainty, the concepts and recommendations presented in ISO GUM must 

be properly known. This document, published first in 1993, is the result of an international consensus about how to 

calculate measurement uncertainty.  

The application of ISO GUM requires a mathematical model of the measurement process, e.g., the output variable 

(measurand) must be expressed as a function of the input variables, as shown Eq. (1). 

 

 321 ,...,, XXXfY   (1) 

 

Where Y represents the output variable and X1, X2, ..., XN are the input variables. 

For example, for length measurements, some of the input variables are: resolution of the measurement system; 

uncertainty associated with the calibration of the measurement system (reported in the calibration certificate); reading 

variability; distancing of the temperature in relation to 20 °C and temperature variation during measurement.  

The calculation of the measurement uncertainty is more realistic if the operator is perfectly knowledgeable about the 

measurement system and the measurement procedure. Only a qualified operator is able to: define properly the 

measurand; choose the most adequate measurement system and procedure; define a correct measurement strategy; 

define environment factors that influence the measurement result; define a representative sample and interpret properly 

calibration certificates, manuals and catalogues in order to extract relevant information for the uncertainty calculation.   

 

2.1. Circularity and cylindricity deviations 

 

Circularity deviation is graphically equivalent to the minimum radial distance between two concentric 

circumferences within which the real profile of the part must be contained. As shown in Fig. 1a, the largest circle 

inscribed in the cross section of the part and the smallest circumscribed circle are considered in order to minimize the 

distance between the circles.  

 

 
 

Figure 1. Graphic representation of circularity (a) and cylindricity (b) deviations. 

 

The determination of circularity deviation is carried out in a circular section of a cylindrical part. It must be 

emphasized that some measurement systems take into account an infinite number of points of the analysed cross 
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section, while others can only make a discrete evaluation by considering a determined number of points over a given 

cross section.  

In many projects, only the application of circularity tolerances is not sufficient to guarantee a good performance of 

the manufactured parts. In such cases, cylindricity tolerances must also be used to limit the maximum deviations.  

Cylindricity deviation is defined as the radial difference between two coaxial cylinders between which the real 

surface of the part must be contained (Figure 1b). This difference must be equal or less the specified cylindricity 

tolerance. It is important to point out that cylindricity deviation is a composed form deviation used to control both   

circularity and straightness of the generatrix.  

The verification of circularity and cylindricity deviations is carried out in production lines during the form control of 

machined parts, as well as during research in machining. In order to follow the standards related to GPS, research has 

been conducted in the area. Sami et al. (2008) have described a method to analyse uncertainty in cylindricity 

measurements using a CMM. Zhao et al. (2010) have proposed a method to estimate uncertainty propagation during the 

verification of cylindricity deviations according to GPS. Sun et al. (2009) have estimated uncertainty in the 

measurement of form deviations in CMMs following the requirements of the new GPS system.  

 

3. METHODOLOGY 

 

Circularity and cylindricity deviations were measured for a cylindrical aluminium part with a length of 44.68 mm 

and a diameter of 18.82 mm using three different measurement systems (Figure 2): System 1: Dial gauge attached to a 

tailstock device; System 2: CMM and (iii) System 3: Roundness cylindricity measurement equipment. 

The measurements were carried out by a single operator in only one day at the Dimensional Metrology Laboratory 

(Laboratório de Metrologia Dimensional), School of Mechanical Engineering (FEMEC), Federal University of 

Uberlandia (UFU), at a controlled room temperature of 120 °C. A thermo-hygrometer with a digital increment of 0.1 

°C and measurement range of -20 to 60 ºC was used to monitor the temperature. All the instruments and parts used in 

the measurement tests were exposed to this temperature for approximately 12 h before the measurements. In order to 

remove dust or other dirty particles that could interfere with the measurement results, all the instruments and parts were 

cleaned using isopropyl alcohol, gloves, cotton buds and dry cloths.  

 

3.1. Measurement System 1 

 

This system is composed of dial gauge manufactured by Mitutoyo with a measurement range of 1 mm, where the 

smallest division corresponds to 1 µm, attached to a tailstock device. The circularity and cylindricity measurements 

were carried out by positioning the parts as indicated in Fig. 2. This figure also shows a steel ruler with nominal range 

of 600 mm. 

 

 
 

Figure 2. Dial gauge attached to a tailstock device. 

 

In the case of circularity, the measurement used a single cross section of the part, which was turned around its own 

axis giving a complete turn. The maximum and minimum values indicated in the dial gauge were registered. The 

circularity deviation for a measurement cycle (DCIRi) was calculated as indicated in Eq. (2). 

 

MinMaxCIRi LLD 
 
 (2) 

 

Where LMax and LMin represent the maximum and minimum values indicated by the dial gauge, respectively.  
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This procedure was repeated at least three times in order to detect possible errors and to perform a statistical 

analysis of the results. Therefore, the circularity deviation (DCIR) was averaged as the arithmetic mean of the n 

measurement cycles, as shown in Eq. (3). 

 

n

D
D CIRi

n

i
CIR

  1
 (3) 

 

On the other hand, cylindricity evaluation must consider different cross sections along the cylinder length. The 

number of cross sections depends on the part dimensions, the measurement duration and the required measurement 

accuracy.  

For one measurement cycle, cylindricity deviation is determined by the difference between the maximum and 

minimum values indicated in the dial gauge during the evaluation of all the cross sections considered in the 

measurement, Eq. (4). It is worth emphasizing that the dial gauge is only zeroed at the beginning of the measurement of 

the first cross section.  

 

.. MinMaxDCILi   (4) 

 

Where Max. and Min. represent the maximum and minimum values indicated by the dial gauge during the 

evaluation of all the cross sections considered in a measurement cycle, respectively.  

In sequence, cylindricity deviation (DCIL) is averaged as the arithmetic mean of the values found for the n 

measurement cycles, according to Eq. (5). 

 

n

D
D CILi

n

i
CIL

  1
 (5) 

 

A similar procedure was extrapolated for the two other measurement systems.  

The variables that influence the measurements must be identified in order to estimate the measurement uncertainty 

associated with circularity measurements (DCIR).  The identified variables were: (i) the deviation variability considering 

the n measurement cycles (Var(DCIRi)); (ii) the dial gauge resolution (RDG); (iii) the dial gauge hysteresis (HDG); (iv) the 

uncertainty associated with the dial gauge calibration (UCDG); (v) the distancing of the temperature in relation to 20 °C 

(ΔT20) and (vi) the temperature variation during the measurements (δT). Therefore, a mathematical model was proposed 

for DCIR, as shown in Eq. (6). 

 

  TTUCHRDVarD DGDGDGCIRiCIRC  20  (6) 

 

If the measurements are carried out at a controlled room temperature of 120 °C, ΔT20 can be neglected, since the 

geometrical deviation values are very small, only of the order of a few micrometers. If the measurements are carried out 

within a short period of time, δT can also be neglected. These observations are also valid for the two other measurement 

systems.  

Neglecting the two last terms of Eq. (6) and applying the law of propagation of uncertainty, we obtain Eq. (7). 

 

 
 

    

   DG

DG

CIRC
DG

DG

CIRC

DG

DG

CIRC
CIRi

CIRi

CIRC
CIRCc

UCu
UC

D
Hu

H

D

Ru
R

D
DVaru

DVar

D
Du

2

2

2

2

2

2

2

2

2

                     





























































 (7) 

 

In Eq. (7), the combined standard uncertainty is the sum of the product of the squared standard uncertainties for 

each influencing and their respective sensitivity coefficients (also squared). These coefficients (partial derivatives) 

describe how the output estimate (circularity or cylindricity) varies when the input estimates change. The calculation of 

the standard uncertainties is described in sequence. 

The standard uncertainty related to the deviation variability u(Var(DCIR)) can be calculated as shown in Eq. (8). 

 

  
 

n

Ds
DVaru CIR

CIRi   (8) 
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Where s(DCIR) is the standard deviation of the deviation readings and n is the total number of measurement cycles.  

This uncertainty is classified as Type A. It presents a normal probability with degree of freedom of (n-1), i.e., the 

total number of cycles minus 1. 

The resolution of the dial gauge presents a Type B standard uncertainty u(RDG) with an infinite number of degrees 

of freedom, considering a rectangular probability distribution. The uncertainty u(RDG) can be estimated using Eq. (9). 

 

 
3

resolution
Ru DG   (9) 

 

The uncertainty related to the dial gauge hysteresis u(HDG) is of Type B, since information related to its expanded 

uncertainty can be found in the instrument calibration certificate. The degree of freedom is 4 and the value of  k is 2. Eq. 

(10) can be used to calculate u(HDG). 

 

   

k

U
Hu

hysteresisP

DG                                                                                                                                                (10) 

 

Finally, the standard uncertainty related to the dial gauge calibration u(UCDG) is classified as Type B, with a normal 

distribution, 4 degrees of freedom and k of 2.3. u(UCDG) standard uncertainty is calculated according to Eq. (11). 

 

   

k

U
UCu

ncalibratioP

DG                                                                                                                                            (11) 

 

The combined standard uncertainty calculated using Eq. (7) presents a coverage probability of only 68% and 

therefore the calculation of the expanded uncertainty (UP) becomes necessary. For that, the combined standard 

uncertainty must be multiplied by a coverage factor k (Eq. (12). This factor is obtained from the T-Student Table 

according to the measurement effective degree of freedom veff, in order to increase the coverage probability to 95 %. 

 

cP ukU                                                                                                                                                                  (12) 

 

The effective number of degrees of freedom is given by the Welch-Satterthwaite expression, as shown in Eq. (13). 

In this expression, the symbols uc(y) represents the combined standard uncertainty, ui(yi) is the standard uncertainty for 

each variable, and νi is the degrees of freedom associated with the distribution of each input variable.  
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3.2. Measurement System 2 

 

Measurement System 2 is a manual CMM, type moving bridge, manufactured by Mitutoyo. The resolution is 0.001 

mm and the work volume is 300 mm (Axis X) x 400 mm (Axis Y) x 300 mm (Axis Z).  

Despite the different possible configurations of CMMs, their working principle is similar. They work by storing 

digitally the coordinates of the measurement points (X, Y and Z). Computational programs use these coordinates to 

calculate the desired feature (circle diameter, sphere diameter, distance, angle, form deviations, etc.).   

These programs are based on analytical geometry and vector analysis principles. They generally use least squares 

methods to adjust the part geometry. Therefore, the uncertainty associated with the adjustment method must also be 

considered to estimate the measurement uncertainty. For that, the law of propagation of uncertainty must be applied in 

the mathematical model until the calculation of the final characteristic.  

All measurements must start with the definition of the number of measuring points on the part surface (sample size). 

In the case of circularity, these points must be determined in a cross section. During the measurement, a computer 

software stores the coordinates X, Y and Z of each point, projecting them in a so-called projection plane. In sequence, 

the radius (r) and the coordinates of the centre (xc, yc) of the circle that adjusts best to the n points projected onto the 

plane XY are determined (Eq. 14). 

 

    222
ryyxx cc                                                                                                                                         (14) 
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To estimate the radius and coordinates of the centre of this circle, the expression given by Eq. (15) must be 

minimized.  

 

        
2222222222 22 ryxyxyyxxrr cciiciciii                                                (15) 

 

Rearranging variables as shown in Eq. (16), the expression given by Eq. (15) can be rewritten in a linear form (Eq. 

(17)).  

 

cxa  2                   cyb  2                        
222 ryxc cc                                                                          (16) 

 

   
222 cyxybxaMQ iiii                                                                                                                  (17) 

 

The least squares coefficients are determined by equating the partial derivatives of MQ in relation to a, b e c to zero, 

Eqs. (18)-(20).  
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In the matrix form, we obtain the linear system (21). 
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In sequence, the distance (Di) of each point  Pi  to the centre of the circle (Pc) is calculated, identifying the most 

distant point (Pmax) and least distant point (Pmin) in relation to Pc (22). 

 

       222
, ciciciicPi zzyyxxPPDD                                                                                        (22) 

 

Where (xc, yc, zc) and (xi, yi, zi) are the coordinates of the points Pc and Pi respectively. 

The circularity deviation is given by the difference between the maximum and minimum distances, as shown by Eq. 

(23). 

 

minmax PPCirc DDD                                                                                                                                               (23) 

 

This process must be repeated at least three times and the results must be averaged by calculating the arithmetic 

mean.  

The deviation measurement uncertainty (DCIRC) is influenced by the uncertainty of the coordinates of the points that 

generate the circle and by the uncertainty of the coordinates of the points Pmax and Pmin. Therefore, the law of 

propagation of uncertainty must be applied to express the combined standard uncertainty as: 
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In sequence, all the partial derivatives in Eq. (24) must be calculated. The calculations are complex and require the 

use of applicative programming languages such as Mathematica. The whole mathematical development can be found in 

Vieira Sato (2003). 

However, in this case a simplification can be used to calculate the measurement uncertainty, as proposed by Eq. 

(25). 

 

  TTUCERDVarD CMMTPSCMMCIRCIR  20                                                                                      (25) 

 

Applying the law of propagation of uncertainty to equation (25), we have:  
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It is important to consider that the uncertainty associated with circularity deviation depends on many variables: (i) 

Variability of the circularity values for the n measurement cycles; (ii) resolution of the CMM (RCMM); (iii) errors of the 

CMM probe system (ETPS); (iv) uncertainty associated with the CMM (UCCMM); (v) distancing of the temperature in 

relation to 20 °C (ΔT20); and (vi) temperature variation during measurement (δT). 

 

3.3. Measurement System  3 

 

This measurement system consists of a roundness cylindricity measurement equipment manufactured by Taylor 

Hobson, model Talyrond 131, with a resolution of 0.01 µm and a measurement range of 370 mm. 

This equipment presents excellent metrological properties and high diagnosis power. During the circularity and 

cylindricity measurements, it also provides a graph related to the profile or effective surface of the part.  Due to such 

characteristics, these equipments have experienced an increased use in research development in areas where the 

geometrical evaluation of parts is required. 

During the measurements the parts are positioned in a rotating table. Adjustment screws and a computational 

program are used to level and centre the equipment. A stylus containing a ruby sphere touches the parts in different 

cross sections.  

Circularity measurements are carried out in a cross section of the part considering all the infinite number of points 

of the profile. For cylindricity measurements, different cross sections along the length of the part are assessed. The 

measurement process is completely automated, which minimizes errors associated with the operator.  

The variables that can influence the measurement results are: (i) variability of the circularity values found for the 

different measurement cycles (VarDCIR); (ii) machine resolution (RM); (iii) uncertainty associated with the machine 

calibration (UCM); (iv) probing error (PEM); (v) eccentricity deviation of the machine table (EDM); (vi) distancing of the 

temperature in relation to 20 °C (ΔT20); and (vii) temperature variation during measurement (δT), which were summed 

in Eq. (27). 

 

TTEDPEUCRVarD MMMMDCIRCIR  20                                                                                   (27) 
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Applying the law of propagation of uncertainty:  
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                                     (28) 

 

In this case, the uncertainty associated with the adjustment method was not considered.  

 

4. RESULTS AND DISCUSSION 

 

In this section we only present the results obtained using the Measurement System 1. The results obtained with the 

two other measurement systems will not be published in this paper.  

Table 1 presents the circularity values for the five measurement cycles carried out with Measurement System 1. 

Although the smallest division of the dial gauge was 1 µm, all the measurements were carried out with interpolation, 

which was possible due to both the excellent quality of the gauge visor and the experienced operator.  

 

Table 1. Values obtained during the circularity deviation measurement tests. 

 

Parameters (mm) 1
st
 Cycle 2

nd
 Cycle 3

rd
 Cycle 4

th
 Cycle 5

th
 Cycle 

Maximum reading 0.4075 0.4075 0.4080 0.4080 0.4080 

Minimum reading 0.3620 0.3625 0.3630 0.3625 0.3625 

Circularity deviation 0.0455 0.0450 0.0450 0.0455 0.0455 

Mean 0.0453 

Standard deviation 0.0002 

 

Table 1 shows that the circularity deviation values are similar for the different measurement cycles, varying 

between 0.0450 and 0.0455 mm. After averaging the circularity deviation values obtained in the 5 measurement cycles, 

the circularity deviation of the part was calculated as 0.0453 mm, with a standard deviation of 0.0002 mm. 

Similarly, the maximum and minimum values along the length of the part were obtained in order to calculate 

cylindricity deviation. The values for each measurement cycle are presented in Tab. 2.  

 

Table 2. Values obtained during the cylindricity deviation measurement tests. 

 

Parameters (mm) 1
st
 Cycle 2

nd
 Cycle 3

rd
 Cycle 4

th
 Cycle 5

th
 Cycle 

Max(Maximum reading) 0.4510 0.4425 0.4450 0.4440 0.4340 

Min(Minimum reading) 0.3810 0.3705 0.3680 0.3580 0.3545 

Cylindricity deviation 0.0700 0.0720 0.0770 0.0860 0.0795 

Mean 0.0769 

Standard deviation 0.0063 

 

Table 2 shows that the cylindricity deviation values varied between 0.0700 and 0.0860 mm for the different 

measurement cycles. A mean of 0.0769 mm and a standard deviation of 0.0063 were obtained after averaging the values 

for the different cycles.  

Comparing Tabs. 1 and 2, a clear difference between circularity and cylindricity deviation values is detected, where 

cylindricity deviation is shown to be more relevant than circularity deviation. The standard deviation associated with 

cylindricity measurements is also greater than that for circularity measurements, since it is not possible to analyse the 

same cross sections during the 5 cylindricity measurement cycles. During circularity measurements, the part is not 

translated, whereas the dial gauge is moved along the length of the part during cylindricity measurements in order to 

analyse all its relevant cross sections.  
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Table 3 summarizes all information related to the calculation of the circularity deviation measurement uncertainty.  

 

Table 3. Uncertainty associated with the circularity deviation measurements. 

 

Source of 

uncertainty (Xi) 

Mensurand 

Estimation xi 

Probability 

Distribution 

Sensitivity 

Coefficient 

Uncertainty 

Type 

Degrees of 

Freedom 

Standard 

Uncertainty 

Standard 

Deviation of LDG 

0.0002 mm Normal 1 A 4 0.0894 µm 

RDG 0.5 µm Rectangular 1 B  0.2882 µm 

HDG 0.7 µm Normal 1 B 4 0.3500 µm 

UCDG 0.6 µm Normal 1 B 4 0.2609 µm 

Combined standard uncertainty (uc)    0.53 µm 

Effective degrees of freedom (veff)    16.02 

Coverage factor (veff, 95 %)    k = 2.12 

Expanded uncertainty (Up)    1.12 µm 

 

The variable that exerts the strongest influence on combined standard uncertainty, and therefore on expanded 

uncertainty, is the dial gauge hysteresis (0.0004 mm). The weakest influence was exerted by the deviation variability, 

with a standard uncertainty of 0.1 µm. 

The expanded uncertainty was calculated as 1.1 µm for a coverage probability of de 95 % and k of 2.12. 

The uncertainty associated with cylindricity deviation measurements was also calculated and the results are 

presented in Tab. 4.  

 

Table 4. Uncertainty associated with the cylindricity deviation measurements. 

 

Source of 

uncertainty (Xi) 

Mensurand 

Estimation xi 

Probability 

Distribution 

Sensitivity 

Coefficient 

Uncertainty 

Type 

Degrees of 

Freedom 

Standard 

Uncertainty 

Standard 

Deviation of LDG 

0.0063 mm Normal 1 A 4   2.8390 µm 

RDG 0.5 µm Rectangular 1 B    0.2882 µm 

HDG 0.7 µm Normal 1 B 4   0.3500 µm 

UCDG 0.6 µm Normal 1 B 4   0.2609 µm 

Combined standard uncertainty (uc)    2.89 µm 

Effective degrees of freedom (veff)    5.34 

Coverage factor (veff, 95 %)    k = 2.53 

Expanded uncertainty (Up)    7.30 µm 

 

Deviation variability was the variable with the strongest influence on the final uncertainty during cylindricity 

measurements, assuming a value 2.8 µm. This occurred because the value of the standard deviation of the readings was 

high, in particular when compared with that obtained in the circularity measurements.  

In order to reduce the standard uncertainty associated with deviation variability, it is possible to increase the 

number of cross sections analysed in each measurement cycle, which increases the sample size. However, this would 

result in higher costs and lengthier measurements.  

The standard uncertainty associated with the dial gauge calibration had the weakest influence on the final 

uncertainty, only ± 0.0003 mm. 

The expanded uncertainty associated with cylindricity measurements was calculated as ± 0.0073 mm, for a 

coverage probability of  95 % and k of 2.53. 

 

5. CONCLUSIONS 

 

Although the procedures carried out in circularity and cylindricity measurements using different measurement 

systems are similar, the mathematical models associated with them are different, because each measurement system 

presents different characteristics and working principles.  

In the mathematical models presented for each measurement system, the following variables influenced the results 

obtained: Resolution of the measurement system; uncertainty associated with the calibration of the measurement 

system; distancing of the temperature in relation to 20 °C; and temperature variation during measurement. 

For the measurements using the dial gauge, the mean value of the circularity deviation of the analysed part was 

0.0453 mm, with a standard deviation of 0.0002 mm. On the other hand, cylindricity deviation measurements presented 

a mean value of 0.0769 and a standard deviation of 0.0063 mm, which were greater than those obtained for circularity 
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measurements. This must have occurred because cylindricity deviation takes into account not only circularity but also 

the straightness of the generatrix.  

The circularity expanded uncertainty was ± 0.0011 mm, for a coverage probability of 95 % and k of 2.12. The dial 

gauge hysteresis had the strongest influence on the final uncertainty, assuming a value of ± 0.0004 mm. 

The cylindricity expanded uncertainty was ± 0.0073 mm, for a coverage probability of 95 % and k of 2.53. The 

variability between values obtained in different measurement cycles had the strongest influence on the final uncertainty, 

assuming a value of ± 0.0028 mm. 
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