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Abstract. In this paper a control strategy composed by fuzzy mapped nonlinear terms based on the robot dynamic model is
proposed. The proposed controller is evaluate on a research robot manipulator performing a task in the operational space.
The tests attempt to achieve fast motion with reasonable accuracy associated with lower computational load compared to
the conventional approach. A stability analysis to conclude about the mapping error influence and to obtain precondition
criteria to the gains adjustment face to a trajectory tracking problem is presented. Experimental tests are conducted on a
robot manipulator with SCARA configuration, to demonstrate the feasibility of this strategy.
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1. INTRODUCTION

When robot manipulators are requested to perform agile motion, conventional strategies based on PD (proportional-
derivative) action may become inaccurate due to inherent nonlinear dynamics existing in the real mechanisms. Facing
these problems, the control action must be enhanced in such a way to incorporate some model features.

Other difficulties arises when the characteristics of the model comprise the control action and the tasks are performed
in the operational space and controlled in the joint space. This control action becomes even more complex, since the
mathematical transformations require a substantial number of matrix operations, resulting in an excessive computational
load (considering the average capacity of processing cores embedded in robot manipulators) and the magnitudes of the
partial error become more expressive due to parametric uncertainties.

A control methodology has been used to circumvent those inconveniences by using kinematics transformations, lead-
ing the control paradigm to the operational space, relating the joint torques to forces in the operational space by means
of the Jacobian matrix (Sciavicco and Siciliano, 2000). To illustrate, in Fig. 1 are depicted the control structure in the
joint space (left) and in the operational space (right), whre= [p; py Dyl is the matrix of desired trajectory in the
operational spacd® = [p p fj] is the matrix of posture in the operational spa@g,= [q, G, G4 is the matrix of desired
trajectory in the joint spac& = [q ¢ §] is the matrix of posture in the joint space and= [r; 7»]" is the vector of joint
control torques.
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Figure 1. Control structures

Fuzzy sets and systems have passed by a substantial development since it was introduced by Zadeh (1973). The most
used inference process was proposed by Mamdani (1974). However, in this work we used the Sugeno inference process
(Takagi and Sugeno, 1985), also known as Takagi-Sugeno-Kang or T-S fuzzy.

Among the features of fuzzy systems, there are two of them that justify its use in this study: the possibility of iden-
tifying only systems using sets of input-output pairs (Zhang and Liu, 2006) and the possibility to reduce the order of the
system model with consequent reduction of computational load (Tanaka and Wang, 2002).

To treat the operational space control problem with agile motion and low computational load, a control action with
addition of model-based nonlinear terms is proposed. However, these terms are mapped by a fuzzy inference system. This
fuzzy mapping provides the capability of reducing the amount of mathematical operations of the control law, decreasing
the computational load.
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This paper is organized as follow: in Section 2 are described the the mathematical model of the robot manipulator and
its relations and transformations necessary to perform the operational space control. In Section 3 section are presented
the proposed control action, the stability analysis of the system is treated in Section 4. In the Section 5 are reported the
details of the mapping process. Finally, the experiments results and the conclusions are presented in Sections 6 and 7,
respectively.

2. MATHEMATICAL MODEL OF THE ROBOT MANIPULADOR

For the experiments it was used a robot manipulator, Fig. 2, with a SCARA (Selective Compliant Assembly Robot
Arm) configuration. This robot, that was made in ZurichEiggenossische Technische HochsclEIEH), is used only
for academic research in theboratério de Controle e Automac&bCA) of the Departamento de Automacéo e Sistemas
(DAS) in theUniversidade Federal de Santa CatarifldFSC).

VELLLLL) ) )

Figure 2. SCARA robot

The robot manipulator dynamics can be written according to the following mathematical model (Siciliano and Khatib,
2008):

B(@)g+C(g9,9)q+ Fg+9(q) = 7. 1)

Equation (1) describes the robot manipulator dynamics in the joint space, vid{epas the inertia matrixC(q, ) is
the Coriolis and centrifugal forces matrik, is the friction forces matrixg(q) is the gravitational forces vector andis
the joint torques vector.

By using the relational properfy= J(q)¢ of the Jacobian matrix and rewritidgq) asJ for simplification, the Eq. (1)
can be rewritten as:

ITB()I"p + I7[C(q, 6)3* — B(q)I I p+ ITFI*p+ I7g(q) = I 7T )
Renaming some equation terms, Eq. (2) can be resumed to:

B(a)p+ C(q. q)p+Fp+7(q) =, ®)

witch describes the dynamics of the robot manipulator in the operational spaceB (gjtheing the symmetric inertia
matrix, C(q, ¢) the Coriolis and centrifugal forces matrix and the frictional forces are related to the Mataik these
matrices are in the operational space base. $fit}) is the gravitational forces vector equivalent to the operational space
and the joint torques vectar is related to the operational space by the forces vegtor

For our tests, it was used a reduced mathematical model based on the first two joints of the robot, i.e., it was considered
two degrees of freedom related to two rotational joints. Then, since the two rotational joint axes are parallels, the task
space is reduced to a plane. Another consequence is that the gravitational forces vector become negligible-i @, ,
this occurs because the gravitational force is parallel to the joints axes.

Below are detailed the matrices of the dynamic model that need to be computed to perform the control, as shown by
Vargas “et al.” (2004).
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Inertia matrix:

al + 2(m2111C2 + (m3 + m4)1211) COS(QQ) a9 —+ (m2111C2 —+ (mg + m4)1211) COS(QQ)

B = .
(a) as + (malilea + (mg 4+ my)laly ) cos(gz) ag + jok?2 ’

. ) 4
ap :a2+11+(m2+m3+m4)1%+m11§1 + j1kZ, @

ag =i +ig +1ig + m2122 + (mg + m4)1§
Coriolis and centrifugal forces matrix :

C(q,§) = —(malilez + (m3 +my)laly) sin(gz)ge —(mzlilez + (m3 + my)laly) sin(g2) (g1 + Ga) )
’ (moliles + (m3 + my)loly) sin(ge)gr 0 '

Jacobian matrix:

I(q) = | Thsin(a)—lasin(ar + @) —lsin(g: +g) ©)
1y cos(q1) + lacos(qr + g2)  lacos(qn + q2) |’

Frictional forces matrix:

-l )

for simplicity, the friction matrix is considered to be composed only by dynamic friction coefficients. In Tab. 1 are detailed
the parametric values that compose the dynamic model matrices.

Table 1. Inter robot manipulator parameters

Symbol Description Value
1; andl, Length of links 1 and 2 0.25 [m]
le1 Center of mass of link 1 0.118 {m
leo Center of mass of link 2 0.116 |m
mi Mass of link 1 11.40 kg
mso Mass of link 2 19.50 [kg
ms Mass of link 3 2.00 kg
my Mass of link 4 1.50 kg
iy Moment of inertia of link 1 0.23 [kg.m?]
i Moment of inertia of link 2 0.16 [kg.m?]
i3 Moment of inertia of link 3 0.10 [kg.m?]
iy Moment of inertia of the 4 0.10 [kg.m?]
j1 andj, | Moment of inertia of the rotors] 5.00 x 10~° [kg.m?]
M1 Viscous friction coeff. of joint 1|  11.50 [Nms/rad]
Mo Viscous friction coeff. of joint 2| 6.00 [Nms/rad]
ky Joints gear relation 100

3. PROPOSED CONTROLLER

The aim of the proposed controller is to perform tasks in the operational space based on a reduced algorithm, which
means low computational load. This is achieved by inserting fuzzy logic in the control action. Such insertion has the
function to replace the nonlinear terms of the matrix by means of fuzzy sets mapping.

The proposed control structure is based on a stiffness control strategy presented by Slotine and Li (1987), which uses
the concept of an auxiliary error to achieve better rates of convergence to the tracking errors. The control action consists
of a PD action, to obtain trajectory tracking due the modeling errors, and a model-based mapped term to compensate
inertial forces.

Since the focus of this paper is to provide satisfactory results in tasks performed in the operational space allied to a low
computational load, after some tests it was decided to neglect the terms derived from the Coriolis and centrifugal forces.
The fundamental idea of the control action refers to a PD controller with addiction of a term that interacts with inertial
forces. Moreover, the terms in the control action related to accelerations are based on the properties of the inertia matrix
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(positive definite), which can be considered as a gain matrix with positive variable values. Thus, the basic control action
is given by:

7 = J[kyP + kap + B(q)Py), ®)

wherep = p; — p is the end-effector position error vectpr= p, — pis the end-effector velocity error vecter= [z 3]
is the end-effector position vectq, = [z, y4]' is the desired position vectgp, = [i 7] is the end-effector velocity
vector,p; = [24 7a]" is the desired end-effector velocity vector gid= [i4 4i4]" is the desired end-effector acceleration
vector, all in the operational spade, andkq are the proportional and derivative gains, respectively.

Compared to a simple PD controller, the control action shown in Eq. (8) presents a considerable reduction of the
tracking errors provided by the addition of the teffg)p,. However, the convergence rate of the error can be increased
by using the auxiliary error proposed by Slotine and Li (1987).

Thus, the controller action is modified to provide such increasing in the tracking:

7 = J'[kao + B(Q)R,], 9)

whereo = p + kyp is the filtered tracking error ang = p; + kyp is the reference velocity based on the position error.
In this stage the fuzzy logic is introduced to substitute the nonlinear functions by mapped functions.

This mapped functions are better understood by expanding the inertia Bég)ixand rewritingB(q) as B for sim-
plicity, in the Eq. (9):

7 = Jkqo + BI'P,. (10)

Then, the mapping is made over the transposed Jacdbjamhich is represented b? and over the matri8J*,
which is represented tBT yielding the following expression to the control law:

T = Jkgo + BIp,. (11)

To complete the mathematical analysis on the controller, in the next section is described the stability analysis of the
closed-loop system.

4. SYSTEM STABILITY ANALYSIS

Consider the mapped terms rewritten as follow:

BJ'=BJ'Y(I+ ¥,), (12)

T =31+ ¥,), (13)

where ¥, and ¥, are matrix that contain error functions related to the mapping and vary with the robot manipulator
posture. Substituting Eq. (13) and Eqg. (12) in Eq. (11), one can describe the closed loop dynamic system as:

(I+ @1)Bo + (I+ ¥a)kqo = (C+F)p—B&p. (14)

From Eq. (14) it is possible to conclude that the system will be stable since achieved the condtitions-1 and
¥, > —1I. This criteria can be verified in the mapping stage.

One can even note that is impossible to achieve null errors when the robot manipulator performs motion, because the
perturbation is directly related to the velocity and acceleration of the end-effector in the operational space.

This remark can be better noted expanding the variabtesuch a way to rewrite Eq. (14) in terms of errors:

B(p+kpP) + (I+ o)ka(p+kpp) = —(C+F)p+ (C+F)py — BT 1py, (15)
after some manipulation and substitution, Eq. (15) can be rewritten as,

I'ip+T'op+ Isp=(C+F)py — By, (16)
whereI'y =B, I'y = (I+ ¥1)Bk, + (I+ ¥2)kq + C+FandI's = (I + ¥5)kakp. o

Thus, it is identified the direct relationship of the perturbation with the desired velocities, théQerr)p,, and the

desired acceleration, the tef®&W ;. This way, with the absence of desired velocity and acceleration, i.e., in regulation
cases, by the Eq. (16) we conclude that the error tends to zero when the time goes to infinite.
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5. FUZZY MAPPING

In this section is described the mapping of the nonlinear matrifesndBJ™, presented previously. The mapping
area is restricted to the first quadrant of the robot manipulator workspace and delimited by a radius range of 295mm
to 495mm, crosshatched in Fig. 3. The work plane is delimited at such a way only to avoid problems with singularity
postures during the experiments.

In the Fig. 4 are depicted the graphical representation of each element of the nonlinear aait@B8J", varying
with the end-effector position in polar reference (angle and radius), concerning with the work plane.

Figure 3. Work space of the SCARA robot
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Figure 4.J" andBJ™* and elements

The fuzzy set arrangement do not constitute of a trivial task and so this paper is not focused in the mapping optimiza-
tion, but in its computational load and mapping accuracy (to fulfill the stability conditions). Future works will be driven
to search for optimal mappings.

To the mapping task one has opted to use the Adaptive Neuro-Fuzzy Inference System Editor (ANFIS Editor), which
is part of the fuzzy logic toolbox of the Matl&bsoftware. This tool provides a back-propagation algorithm combined
with a least square method to setup the fuzzy rules using a set of conjugate input/output pairs of the nonlinear matrices to
be mapped.

The Sugeno inference method, the mapping process can use linear or constant output membership functions (MF),
and the input MFs can be any equation that represents a statistical distribution. The selection of these MFs will influence
directly in the accuracy and computational load of the controller.

Two arrangements of fuzzy mapping are tested in this work. The first one aims to a reduction of the mapping error
using a generalized bell-shaped input MF, see Eq. (17), with linear output MF. The other arrangement aims to a reduction
of the computational load in detriment of the mapping error using an triangular-shaped input MF, see Eq. (18), and a
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constant output MF.
1
gbellmf(z) = ————. (17)
zZ—C
1+
a
trimf(z) = in | —— == .0 (18)
rimjf(z) = max | min b—ac—bl’ .

In Eqg. (17) and Eq. (18) the parametar$ andc are obtained by the adaptive neuro-fuzzy system. The results for
these mapping setups are shown in next section.

6. EXPERIMENTAL RESULTS

In this section the details of the experiment are described. To evaluate the performance of the fuzzy mapping approach
on the termg™ andBJ*, it was stipulated a desired trajectory in the work plane and tested the following three strategies: a
basic PD control, a PD control with terms based on the model, described in Eq. (10), and the control described in Eq. (11),
which has the model-based nonlinear terms mapped via fuzzy systems.

The desired trajectory, described in Eq. (19) and depicted in Fig. 5, is located in the first quadrant of the work plane,
in such a way that one can use the mapping detailed in Section 5.

At) = { zq = (0.39 + 0.08 sin () cos (0.0397¢ + L)

<
ya = (0.39 + 0.08 sin (1)) sin (0.0397¢ + 1) = 10s
traj(t) = . (19
24 = (0.39 + 0.08 sin (T0(t — 10))) sin (0.0397T(t — 10) + &)
= <
f2(t) { ya = (0.39 + 0.08 sin (Tt(t — 10))) cos (0.0397T(t — 10) + I ) 10s <1< 20s
Trajectory in the operational space Trajectory in X and Y coordinate
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Figure 5. Task trajectory reference

Furthermore, to realize the effect of the nonlinear terms added in Eq. (10) as in Eg. (11), all PD actions in the three
strategies have the same values, as detailed in Tab. 2.

Table 2. Equivalence of control actions

Controller | Gain value | Gain value| Equivalent proportional actiof Equivalent derivative actiof
PD kp, = 20000 | kg =200 k, = 20000 kg = 200

PD+MBT! | k, = 100 kg = 200 kpkq = 20000 kg = 200

PD+FMT? | k, = 100 kg = 200 kpkg = 20000 kg = 200

IModel Based Term.
2Fuzzy Mapped Term.
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It is important to mention that the robot has harmonic drives as transmission system device, therewith the friction
effects are significantly witnessed. Thus, to improve the quality of the controller a simple friction compensation could
be inserted in parallel to the PD strategy. However for the tests were only used the controllers specified up to now, i.e.,
friction compensation is not employed.

6.1. Control Strategies Performance

Based on the experiments, in Fig. 6 one can observe that the PD+MBT (Model Based Term) controller presents a
considerable reduction of the tracking errors, when compared with the PD controller. From the information depicted in
the graphic of the task performance, see Fig. 7 (left), one can verify that the PD controller shows a quadratic error of
6.01 x 10~3 m with variance ofi5.05 x 10~¢ and the PD+MBT controller shows an erroro?7 x 10~2 m with variance
of 3.48 x 1076, These data came to realize the improve of quality on the PD+MBT controller over the only PD one.

Another important feature to be mentioned is the difference between control actions, as shown in Fig. 7 (right). The
magnitude of the control action is reduced once the levels of tracking are increased due to the model-based terms added
in the control law.

PD control, Cartesian position error
T T T T T

PD+MBT control, Cartesian position error
T T T T T
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Figure 6. Trajectory tracking errors
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Figure 7. Control position performance and control signals

6.2. Reducing the computational load

As presented in Section 5, to reduce the computational load, a fuzzy map over the nonlinear model matrices is pro-
posed. In the Tab. 3 one can see the setup parameters used in the mapping process and the calculated error for each
element of the matrid", i.e., input variables, number of input MFs for each element, sort of each input and output MF
and maximum errors obtained in the mapping.

The setup information is only presented for further reproduction. The error is the head information obtained and serves
to evaluate the mapping process over the system stability, as presented in Section 4.
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Table 3.J" mapping configuration parameters and error

Setup parameters Calculated error
Element| Inputvars| Number of MFs| Input MF type | Output MF type
?11 angle 3 trimf continuous 0.040
?12 angle 3 trimf continuous 0.040
?21 angle 3 trimf continuous 0.024
?22 angle 3 trimf continuous 0.046

To visually compare the mapped functions, one can see the original function elements of thel htFiig. 4 (left)
and the mapped elements at Fig. 8.
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Figure 8. Mapped elements &f

For the matrixJ™ one can find that the mapping process, utilizing triangular functions and at most three input MFs,
presents sufficient low computational load at high mapping performance (low error). So the mapping of this matrix stated
no problem since it is a matrix with nonlinearities subordinated to only one input variable.

Already with respect to the matri8J”, it has three dimensional elements and its computational time become a
problem to be solved. As reported in Section 5, two kinds of mapping are made and compared for this matrix, one
utilizing an accurate mapping and other valuing the low computational load. So the mapping process focuses in the trade
off accuracy/load.

Table 4 depict the setup parameters and the calculated errors obtained for thédiattiizing the accurate mapping
process, i.e., utilizing the input functigiellm f (z) (Eq. (17)) and a linear output MF. This results compared to the results
shown in Tab. 5, that shows the mapping setup parameters and errors for the low cost mapping process, shows a huge
mapping accuracy for the first mapping process. Nevertheless, in practical tests, the high accuracy of the first method
presents higher computational load compared to the second one, and the performance results do not show sufficient
differences. The two process of mapping present so similar performance results that the accurate one proved to be not a
good choice.

Table 4.BJ* accurate mapping configuration parameters and error

Setup parameters Calculated errof
Element Input vars Number of MFs| Input MF type | Output MF type
BJ*;; | angle and radius [3 3] gbellmf linear 0.098
BJ*> | angle and radius [3 3] gbellmf linear 0.070
BJ*5; | angle and radiug [3 3] gbellmf linear 0.050
BJ*y, | angle and radius [3 3] gbellmf linear 0.066

In Fig. 9 one can see the visual representation of the two mapping process, the accurate (left) and the low cost (right)
one, this two mapping, can be compared to the original matrix at Fig. 4 (right).
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Table 5.BJ™ low cost mapping configuration parameters and error

Setup parameters Calculated error
Element Input vars Number of MFs| Input MF type | Output MF type
ﬁn angle and radiug [3 2] trimf continuous 0.563
BJ*1> | angle and radiug [2 2] trimf continuous 0.575
BJ';; | angle and radiug [2 2] trimf continuous 0.424
BJ*5> | angle and radiug [2 2] trimf continuous 0.646

Radius [m]

Value

Radius [m]

As a last result, the performance of the mapped controller is show in the Fig. 10. Compared to the reference trajectory,
the calculated quadratic errordss5 x 103 and its variance i8.40 x 10~°. This validate the mapping process as a good
choice to maintain the performance of the controller with a lower computational load. The load reduction is explained by
the reduction in the order of the nonlinear matrices, now represented by the mapped ones, and the eminent elimination of
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Figure 9. Mapped elements BO™*

the nonlinear terms and some matrix operations.
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Figure 10. Performance of the PD+FMT controllers

7. CONCLUSION

In this paper is proposed a control action for robot manipulators, based on the stiffness control strategy presented
by Slotine and Li (1987), where the task and the control are performed in the operational space. Since this strategy is
basically a PD action with an addition of a model based term (PD+MBT), it provides a considerable improvement in the

results (lower levels of error) at the expense of a computational load larger than a simple PD.

To circumvent the computational load problem, a mapping of the nonlinear terms of the controller (PD+FMT) is
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proposed and experimentally tested over a SCARA configuration robot. One concludes that the fuzzy mapping with high
accuracy can lead to greater computational load, not being a good choice for the task control. However, if the mapping
process is made by reducing the accuracy, this fuzzy approach can present satisfactory results, without considerable loss
of tracking quality, with reduced computational load.
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