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Abstract. In this paper, a simplified model of a magnetically levitated body is considered. The origin O of an inertial
Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state
(the gap between the magnet on the base and the magnet on the body in this state). The levitated body, is restrained to
move freely only in the z-direction. The motion is expressed by the displacement of the pivot from O in the vertical
direction. The repulsive nonlinear magnetic force between the magnet on the body and the magnet on the base, for
finite small variations of the gap between the magnets, can be well approximated by a polynomial function with
guadratic and cubic terms. A pendulum, whose length is r and mass m, is attached to the body as an active vibration
absorber and is subjected to a time-varying torque t at its pivot point. The motion of the pendulum is nonlinearly
coupled with the main system. Therefore, the absorber addition does not increase the number of linear vibrational
modes. The governing equations of motion were derived and the characteristic feature of the strategy is the
exploitation of the nonlinear effect of the inertial force associated with the motion of a pendulum-type vibration
absorber driven by an appropriate control torque. The problem was analyzed and also an optimal linear control
design to stabilize the problem was developed. The simulations results showed the effective of the linear optimal
control design.
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1. INTRODUCTION

The suspension of objects and people with no visible means of support is fascinating to most people. To deprive
objects of the effects of gravity is a dream common to generations of thinkers from Benjamin Franklin to Robert
Goddard, and even to mystics of the East. This modern fascination with magnetic levitation stems from two singular
technical and scientific achievements: (i) the creation of high-speed vehicles to carry people at 500 km/h and (ii) the
discovery of new superconducting materials.

The modern development of magnetic levitation transportation systems, known as Mag-Lev, started in the late
1960s as a natural consequence of the development of low-temperature superconducting wire and the transistor and
chip-based electronic control technology. In the 1980s, Mag-Lev had matured to the point where Japanese and German
technologists were ready to market these new high-speed levitated machines (Moon, 2004).

In this paper, a pendulum-type vibration absorber is applied to a magnetically levitated system &abur@89;

Zhenget al, 2000) which is subjected to an unsymmetrical restoring force exciting the principal parametric resonance.
An active control strategy for the stabilization of parametric resonance in a magnetically levitated body was proposed
(Yabunoet al, 2004) and the characteristic feature of the strategy was the exploitation of the nonlinear effect of the
inertial force associated with the motion of a pendulum-type vibration absorber driven by an appropriate control torque.

In the last years, a significant interest in control of the nonlinear systems, exhibiting unstable behavior, has been
observed and many of the techniques discussed in the literatuiet &)t1990; Sinhat al, 2000; Rafikov, Balthazar,

2008; Coultier et al, 1996; Mracelet al, 1996; Bankset al, 2007; Shawkyet al, 2007). Among strategies of control

with feedback, the most popular is the OGY (Ott-Grebogi-York) method ¢Cdt, 1990). This method uses the
Poincaré map of the system. Recently, a methodology based on the application of the Lyapunov-Floquet transformation,
was proposed by Sinha et al. (Sirdtal, 2000; Peruzzet al, 2007; Déavid, Sinha, 2000) in order to solve this kind of
problem. This method allows directing the chaotic motion to any desired periodic orbit or to a fixed point. It is based on
linearization of the equations, which described the error between the actual and desired trajectories. Recently, a
technique was proposed by Rafikov and Balthazar in (Rafikov, Balthazar, 2008): The linear feedback control problem
for nonlinear systems has been formulated, under optimal control theory viewpoint. Asymptotic stability of the closed-
loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of
the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. The formulated theorem
(Rafikov, Balthazar, 2008), expresses explicitly the form of minimized functional and gave the sufficient conditions,
which allow using the linear feedback control for nonlinear system. The aim of this paper is to propose the application
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of the optimal linear control (Rafikov, Balthazar, 2008) to control the unstable movement of the Magnetically Levitated
Body.

We organized the paper as follows: in Section 2, we presented the used mathematical model, analyzed the dynamics
and stability of the non-linear dynamics of the Magnetically Levitated Body model. In Section 3, we discussed an
optimal control design problem for the Magnetically Levitated Body. In Section 4, we made some concluding remarks
of this paper. In Section 5, we made some acknowledgements. Following, we list out the bibliographic references.

2. MAGNETICALLY LEVITATED BODY MODEL

Here, we consider a mechanical model and the derivation of governing equations done by (&fab@tif)4) for
the magnetically levitated body with the active vibration absorber, shown in Fig. 1.

i tz{i
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sz_zbic{}&\*"i Base magnet
Figure 1. Model of the magnetically levitated body with the active vibration absorber (Yabah2004).

The originO of an inertial Cartesian reference frame is set at the point of the pendulum on the levitated body in its
equilibrium point state (the gap between the magnet on the base and the magnet on the body in this state is denoted by
Zy). The levitated body, whose masgrig is restrained to move freely only in thelirection. The motion is expressed
by the displacement of the pivot fro@ in the vertical direction and is denoted By The repulsive magnetic force
between the magnet on the body and the magnet on the base, for finite but small variations of the gap between the
magnets, can be well approximated by a polynomial function with quadratic and cubic terms. (¥ablri®89;

Yabunoet al, 1991).

A pendulum, whose length tswith a tip massm, is attached to the body as an active vibration absorber and is
subjected to a time-varying torqueat its pivot point. The motion of the pendulum is nonlinearly coupled with the main
system. Therefore, as mentioned, the absorber addition does not increase the number of linear vibrational modes. The
angled, denoting the current pendulum configuration, is measured from the pasitiis. The base is sinusoid ally
excited in the vertical direction with a prescribed displacenmmny,,; cos Qt, wherez,; andQ are the amplitude and
frequency of the base excitation, respectively.

The natural frequency of the body, when the pendulum is locked, is denofd Hye dimensionless variablés
ad Z4 as t=(UQ)t and z=zyz, respectively. The following dimensionless parameters arezyr

my=(My+my)m’, Wg = (g/r)Qf, =mrgr, €=7y/z4, andv= Q/Q, Substituting the dimensionless variables and putting

7 =b cos(v,t +y) in the dimensional equations of motion yield the following no dimensional equationsQfg’x@nd
O(6% (Yabunoet al, 1991):

*

Y +7 =-p 7 +0Ocost” +2a, 07 cost” —a,z° a7 +m7Z & +mr w2 -mr 6
-mr wib dcosf,t” +y) +Em r'wib'6° cosg,t” +y), @
-

[9+(W§ + JH =—1,0+Wob' cos,t” +)) +%W§6’3,

where ,uzz* and ,ugéexpress the linear viscous-type forces acting in the main system and the pendulum, respectively;

b" v, andythe dimensionless amplitude, frequency, and phase of the tanqueanda,, are the coefficients of

andZ, in the Taylor series expansion of magnetic force (Yatmumb, 1989). Henceforth, the star (*) is omitted for
ease of notation and thg lepresents differentiation with respect the dimensionless time.
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The Figure 2 illustrates the experiment setup the work done by Yabah@Yabunoet al, 2004) and the Figure 3
illustrate the dynamics behavior of the adopted dynamics model, by using numerical values of experiment setup, for the
chosen parameters €=0.0629, r=7.28, b=4.56, 0,=-0.732, m=0.0795, m,=0.0000588, 0,,=0.442,

= 0144, u, = 0345, u, = 00281 Q, /2r= 395Hz,and Q, /27=150Hzis the natural frequency of the
pendulum.

l.e\'irmc? body Levitated body
|

Motor
3

Displacement i k
transducer

Rotary
encoder

Pendulum

r Electromagnetic shaker

PLL circuit
BPF |=— square SU—
€Os wave WRVE r\
=
Y'Y
€Os wave

Power amplifier
Electromagnetic shaker

Figure 2. Experimental Setl@{abunoet al, 2004).

Yabuno et al (Yabunat al, 2003) verified theoretically and experimentally that an auto parametric vibration
absorber can prevent the occurrence of 1/3-order sub harmonic resonance regardless of the initial conditions. The
vibration absorber is a passive-type pendulum and the linear natural frequency is tuned to be in the neighborhood of
one-half the linear natural frequency of the main system. In (Yaétuadp2004), was attached the same absorber to the
magnetically levitated body under parametric excitation, and the pendulum-type vibration absorber, although effective
in stabilizing the 1/3-order sub harmonic resonance, does not act as an effective absorber for parametric resonance.
Furthermore, parametric excitation of the auto parametric resonance generates chaotic motions in the main system and
absorber, the Figures 3-5 illustrated this behavior, when the system is coupled with the pendulum has chaotic behavior
and when this behavior without the pendulum is stable.
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Figure 3. Time history for system with and without pendulum.

Figure 4 (a) presents the time history Zofb) presents the time history far. (c) presents the time history fér(d)

presents the time history f@. (e) presents the phase portrait f@nd z; (f) shown the phase portrait fér and 4.
(g) illustrate the stability diagram foq, and (h) forxs, of the adopted dynamics model, by using numerical values for

the chosen paramete€s=0.0629, r=7.28, b=4.56, m;=0.0795, m,=0.0000588, 0.,=0.442, W, = 0144, u, = 0345,
U, = 00281anda,=varied.
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The eigenvalues ari; = 0,024122+1.6027ijAs= -0.9820;2,= 1.0246. The eigenvaluds , indicates that the
magnetically levitated body is unstable and the Figure 4 illustrates the chaotic dyhg0id§) of Lyapunov exponent
for magnetically levitated body.
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This chaotic behavior illustrated in Figure 5, motivated us to establish a stabilization control method aimed at direct
cancellation of the parametric excitation without using the auto parametric energy transfer that requires special tuning
of the natural frequencies of the main system and the absorber.
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Figure 5. Dynamics of Lyapunov expoents for the magnetically levitated body

3. CONTROL DESIGN

In this section, we applied optimal linear control design for the magnetically levitated body (figure 1), reducing the
oscillatory movement to a small stable orbit. Next, we present the theory of the used methodology.

Due to the simplicity in configuration and implementation, the linear state feedback control, it is especially attractive
(Rafikov, Balthazar, 2008; Chavaretteal, 2010a; 2010b; 2009; Fenili, Balthazar, 2010).

We remarked that this approach is analytical, and it may use without dropping any non-linear term.

Let the governing equations of motion (1), re-written in a state form

X = Ax+g(Xx). (2)

If one considers a vector functioX , that characterizes the desired trajectory, and taken the cthtvettor
consisting of two partstl being the feed forward anglis a linear feedback, in such way that

U, =Bu (3
where B is a constant matrix. Next, one taking the deviation of the trajectory of system (2) to the desired one
y = X=X, may written as being

y=Ay+9(x)-9(X) +Bu &
where G(y,)?) is limited matrix we proved the important result (Rafikov, Balthazar, 2008).

If there exit matricesQ(t) and R(t), positive definite, beingQ symmetric, such that the matrix
Q=Q-G'(y,X)P(t) - P(t)G(y, X) is positive definite for the limited matrig, then the linear feedback control is

u=-R'B"Py. (5)

It is optimal, in order to transfer the non-linear system (6) from any initial to final \&tgte0, minimizing the
functional J = j(yT6y+ uTRu)dt, where the symmetric matri(t) is evaluated through the solution of the matrix

0
Ricatti differential equation

PA+A"P-PBR'B'P+Q=0 (6)
satisfying the final conditioR(t;)=0.

In addition, with the feedback control (6), there exists a neighborhgad I, ' T 0", of the origin such that if
X, Ol,, the solution x¢)=0, t=0, of the controlled system (4) is locally asymptotically stable, and

Jin = ng(O) X,.Finally, if T=0" then the solutiony¢)=0, t>0, of the controlled system (4) is globally
ag/mptotically stable.
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Using the theorem by Rafikov and Balthazar the dynamic gream be minimized ¥y —» 0 ) (Chavarettet al,
2010a; 2010b; 2009; Rafikov and Balthazar, 2008).

3.1 Theorem (Rafikov and Balthazar, 2008).

If there is matrixe® andR, positive definiteQ symmetric, such that the matrix

Q=0Q-G" (x,X)P-PG(x,X) @)
is positive definite for the limited matrixz , then the linear feedback control

u=-RB'Py (8)
is optimal, in order to drive the non-linear system (6) of any initial state to the terminal state

y()=0 9

minimizing the functional
J=[(y'Qy+u" Rujdt (10)
0

where the symmetric matrix B calculated from the nonlinear Riccati equation:
PA+ATP-PBRIBTP+Q=0 (11)

Next, we will apply this methodology in the magnetically levitated body (1).

3.2 Application of the Linear Optimal Control to the Non-linear System.

The equations (1) describing the magnetically levitated body controlled:
747 =-p 7 +0cost” +2a, 07 cosvt’ —a, 7" —a, 2 +mZ & +mr' W& —mr 6’

-mr wib dcosf,t” +y) +%m*r*vv§b’*6’3 cosf,t +))+U, (12)
6+ (WS + {jﬂ = —H,0+ Wb  cos@t’ + )+ % w;6°,
r
where the function of control U is defined in the equation (1).
1 X, — Z 006 0 1 0 0
. . 1 X, — iz - 006 - 1092 0057 - 0072 O
We will obtainB=| |, y= — |, x= , Q=lg, A= ,
1 X3 = X5 006 0 0 0 1
1 X\4—§4 006 0 - 0008 -0353 0
where the controllability matrix R of the system to the pair [A,B] is obtaine®by[B |AB |AZB...| Azn_lB] .
1 1 - 11069 - 12282
Thus, R = 1- 11069- 12282 11644 '
1 1 - 03421 - 03439

1- 03621- 03439 01386
71068- 08881- 05870 20366
Then the Matrix P(t) is done by p=|” 08881 63010 — 16019 - 34036/and (an optimal control)
- 05870- 16019 38756 11664

20366—- 34036 11664 83649
u= 0.3884 00203+ 0142&, + 04082Z,. The trajectories of the system with control may be seen,
through Figure 6. According to the optimal control verification (Rafikov, Balthazar, 2008), the function (4) is
numerically calculated acrods(t) = yTéy ,whereL(t) is defined positive and it is show in Fig. 6-g.
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We observe inFigures 6 and 7 that the performance of the proposed controller reduced the amplitude of oscillation
of the system, eliminating the chaotic behavior shown in Figure 5. It is noted from Figure 7 that the orbits of the
controlled system (blue) is smaller than the uncontrolled (black). It is noted also that the positive feature presented in
Figures 6e and 6f and consequence of the proposed controller illustrating the efficiency of this.

4. CONCLUSION

In this work, a dynamics of the magnetically levitated body proposed (Ya#uwahp2004) is investigated through
numerical simulations using the software Matlab 7.0®. The model of the magnetically levitated body with the active
vibration absorber is shown in Figure 1 and Figure 2 shown the experimental setup this work €fah@n4).

The Figure 4 illustrated the behavior dynamics proposed by (Yadtiwahp2004) and Figure 5 illustrated the chaotic
dynamic through of positive Lyapunov exponént(.46) for magnetically levitated body.

This chaotic behavior illustrated in Figure 5, motivated us to establish a stabilization control method aimed at direct
cancellation of the parametric excitation without using the auto parametric energy transfer that requires special tuning
of the natural frequencies of the main system and the absorber. We proposed the application of the optimal linear
control (Rafikov, Balthazar, 2008) to control the unstable movement and this kind control strategy reduced the chaotic
movement to a small stable orbit. Figures 6 and 7 illustrates the effectiveness of the control strategy. We see Figures. 4
and 6, that the control technique applied to the chaotic system has the amplitude of the oscillation decrease.

The data obtained here are in agreement with the experimental work by (Yaiaiir2004), but with the difference
that in this work, we can see that the amplitude of oscillation of the controlled system is smaller than the result
presented by (Yabura al, 2004) allowing a gain in performance of the controlled system.
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