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Abstract. In this paper, a simplified model of a magnetically levitated body is considered. The origin O of an inertial 
Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state 
(the gap between the magnet on the base and the magnet on the body in this state). The  levitated body, is restrained to 
move freely only in the z-direction. The motion is expressed by the displacement of the pivot from O in the vertical 
direction. The repulsive nonlinear magnetic force between the magnet on the body and the magnet on the base, for 
finite small variations of the gap between the magnets, can be well approximated by a polynomial function with 
quadratic and cubic terms. A pendulum, whose length is r and mass m, is attached to the body as an active vibration 
absorber and is subjected to a time-varying torque t at its pivot point. The motion of the pendulum is nonlinearly 
coupled with the main system. Therefore, the absorber addition does not increase the number of linear vibrational 
modes. The governing equations of motion were derived and the characteristic feature of the strategy is the  
exploitation of the nonlinear effect of the inertial force associated with the motion of a pendulum-type vibration 
absorber driven by an appropriate control torque. The problem was analyzed and also an optimal linear control 
design to stabilize the problem was developed. The simulations results showed the effective of the linear optimal 
control design. 
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1. INTRODUCTION 
 

The suspension of objects and people with no visible means of support is fascinating to most people. To deprive 
objects of the effects of gravity is a dream common to generations of thinkers from Benjamin Franklin to Robert 
Goddard, and even to mystics of the East. This modern fascination with magnetic levitation stems from two singular 
technical and scientific achievements: (i) the creation of high-speed vehicles to carry people at 500 km/h and (ii) the 
discovery of new superconducting materials. 

The modern development of magnetic levitation transportation systems, known as Mag-Lev, started in the late 
1960s as a natural consequence of the development of low-temperature superconducting wire and the transistor and 
chip-based electronic control technology. In the 1980s, Mag-Lev had matured to the point where Japanese and German 
technologists were ready to market these new high-speed levitated machines (Moon, 2004). 

In this paper, a pendulum-type vibration absorber is applied to a magnetically levitated system (Yabuno et al, 1989; 
Zheng et al, 2000) which is subjected to an unsymmetrical restoring force exciting the principal parametric resonance. 
An active control strategy for the stabilization of parametric resonance in a magnetically levitated body was proposed 
(Yabuno et al, 2004) and the characteristic feature of the strategy was the exploitation of the nonlinear effect of the 
inertial force associated with the motion of a pendulum-type vibration absorber driven by an appropriate control torque. 

 In the last years, a significant interest in control of the nonlinear systems, exhibiting unstable behavior, has been 
observed and many of the techniques discussed in the literature (Ott et al, 1990; Sinha et al, 2000; Rafikov, Balthazar, 
2008; Coultier et al, 1996; Mracek et al, 1996; Banks et al, 2007; Shawky et al, 2007). Among strategies of control 
with feedback, the most popular is the OGY (Ott-Grebogi-York) method (Ott et al, 1990). This method uses the 
Poincaré map of the system. Recently, a methodology based on the application of the Lyapunov-Floquet transformation, 
was proposed by Sinha et al. (Sinha et al, 2000; Peruzzi et al, 2007; Dávid, Sinha, 2000) in order to solve this kind of 
problem. This method allows directing the chaotic motion to any desired periodic orbit or to a fixed point. It is based on 
linearization of the equations, which described the error between the actual and desired trajectories. Recently, a 
technique was proposed by Rafikov and Balthazar in (Rafikov, Balthazar, 2008): The linear feedback control problem 
for nonlinear systems has been formulated, under optimal control theory viewpoint. Asymptotic stability of the closed-
loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of 
the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. The formulated theorem 
(Rafikov, Balthazar, 2008), expresses explicitly the form of minimized functional and gave the sufficient conditions, 
which allow using the linear feedback control for nonlinear system. The aim of this paper is to propose the application 
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of the optimal linear control (Rafikov, Balthazar, 2008) to control the unstable movement of the Magnetically Levitated 
Body. 

 We organized the paper as follows: in Section 2, we presented the used mathematical model, analyzed the dynamics 
and stability of the non-linear dynamics of the Magnetically Levitated Body model. In Section 3, we discussed an 
optimal control design problem for the Magnetically Levitated Body. In Section 4, we made some concluding remarks 
of this paper. In Section 5, we made some acknowledgements. Following, we list out the bibliographic references.  

 
 
2. MAGNETICALLY LEVITATED BODY MODEL 
 

Here, we consider a mechanical model and the derivation of governing equations done by (Yabuno, et al 2004) for 
the magnetically levitated body with the active vibration absorber, shown in Fig. 1. 

 
Figure 1.  Model of the magnetically levitated body with the active vibration absorber (Yabuno, et al 2004). 

 
The origin O of an inertial Cartesian reference frame is set at the point of the pendulum on the levitated body in its 

equilibrium point state (the gap between the magnet on the base and the magnet on the body in this state is denoted by 
zst). The levitated body, whose mass is m1, is restrained to move freely only in the z-direction. The motion is expressed 
by the displacement of the pivot from O in the vertical direction and is denoted by zd. The repulsive magnetic force 
between the magnet on the body and the magnet on the base, for finite but small variations of the gap between the 
magnets, can be well approximated by a polynomial function with quadratic and cubic terms. (Yabuno et al, 1989; 
Yabuno et al, 1991). 

A pendulum, whose length is r with a tip mass m2, is attached to the body as an active vibration absorber and is 
subjected to a time-varying torque τ at its pivot point. The motion of the pendulum is nonlinearly coupled with the main 
system. Therefore, as mentioned, the absorber addition does not increase the number of linear vibrational modes. The 
angle θ, denoting the current pendulum configuration, is measured from the positive z-axis. The base is sinusoid ally 
excited in the vertical direction with a prescribed displacement, zb=zb1 cos Ωt, where zb1 and Ω are the amplitude and 
frequency of the base excitation, respectively. 

The natural frequency of the body, when the pendulum is locked, is denoted by Ωz. The dimensionless variables t* 
and z*

d as t=(1/Ωz)t
* and zd=zstz

*, respectively. The following dimensionless parameters are: r=zstr
*, 

m2=(m1+m2)m
*, 22 )/( zrgw Ω=θ , τ=mrg τ*,  Є=zb1/zst, and v= Ω/Ωz. Substituting the dimensionless variables and putting  

τ
*=b*cos(vθt

*+γ) in the dimensional equations of motion yield the following no dimensional equations up to O(z3) and 
O(θ3) (Yabuno et al, 1991): 
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where *zz &µ  and θµθ

&express the linear viscous-type forces acting in the main system and the pendulum, respectively; 

γθ  and , ,* vb the dimensionless amplitude, frequency, and phase of the torque; zzzzz αα  and , are the coefficients of z2 

and z3, in the Taylor series expansion of magnetic force  (Yabuno et al, 1989). Henceforth, the star (*) is omitted for 
ease of notation and the (.) represents differentiation with respect the dimensionless time. 
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The Figure 2 illustrates the experiment setup the work done by Yabuno et al (Yabuno et al, 2004) and the Figure 3 
illustrate the dynamics behavior of the adopted dynamics model, by using numerical values of experiment setup, for the 
chosen parameters Є=0.0629, r=7.28, b=4.56, αzz=-0.732, m1=0.0795, m2=0.0000588, αzzz=0.442, 

144.02 =θw , 345.0=θµ , 0281.0=zµ , ,95.32/ Hzz =Ω π and Hz50.12/ =Ω πθ is the natural frequency of the 

pendulum.  

 
Figure 2.  Experimental Setup (Yabuno et al, 2004). 

 
Yabuno et al (Yabuno et al, 2003) verified theoretically and experimentally that an auto parametric vibration 

absorber can prevent the occurrence of 1/3-order sub harmonic resonance regardless of the initial conditions. The 
vibration absorber is a passive-type pendulum and the linear natural frequency is tuned to be in the neighborhood of 
one-half the linear natural frequency of the main system. In (Yabuno et al, 2004), was attached the same absorber to the 
magnetically levitated body under parametric excitation, and the pendulum-type vibration absorber, although effective 
in stabilizing the 1/3-order sub harmonic resonance, does not act as an effective absorber for parametric resonance. 
Furthermore, parametric excitation of the auto parametric resonance generates chaotic motions in the main system and 
absorber, the Figures 3-5 illustrated this behavior, when the system is coupled with the pendulum has chaotic behavior 
and when this behavior without the pendulum is stable. 
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 Figure 3.  Time history for system with and without pendulum. 

 
Figure 4 (a) presents the time history for z. (b) presents the time history for z& . (c) presents the time history for θ. (d) 

presents the time history for θ& . (e) presents the phase portrait for z and z& ; (f) shown the phase portrait for θ  and θ& .  
(g) illustrate the stability diagram for x1 and (h) for x3, of the adopted dynamics model, by using numerical values for 
the chosen parameters Є=0.0629, r=7.28, b=4.56, m1=0.0795, m2=0.0000588, αzzz=0.442, 144.02 =θw , 345.0=θµ , 

0281.0=zµ  and αzz=varied. 
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Figure 4.  (a) Time history for z. (b) Time history for z& . (c) Time history for θ. (d) Time history for θ& . (e) Portrait Phase for z and 

z& . (f)  Portrait Phase for θ  and θ& . (g) Stability diagram for z and αzz. (g) Stability diagram for θ and αzz. 
 
The eigenvalues are λ1,2= 0,024122±1.6027i; λ3= -0.9820; λ4= 1.0246. The eigenvalues λ1,2 indicates that the 

magnetically levitated body is unstable and the Figure 4 illustrates the chaotic dynamic (λ4=0.46) of Lyapunov exponent 
for magnetically levitated body. 
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This chaotic behavior illustrated in Figure 5, motivated us to establish a stabilization control method aimed at direct 
cancellation of the parametric excitation without using the auto parametric energy transfer that requires special tuning 
of the natural frequencies of the main system and the absorber. 
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Figure 5.  Dynamics of Lyapunov expoents for the magnetically levitated body. 

 
 

3. CONTROL DESIGN 
 

In this section, we applied optimal linear control design for the magnetically levitated body (figure 1), reducing the 
oscillatory movement to a small stable orbit. Next, we present the theory of the used methodology.  

Due to the simplicity in configuration and implementation, the linear state feedback control, it is especially attractive 
(Rafikov, Balthazar, 2008; Chavarette et al, 2010a; 2010b; 2009; Fenili, Balthazar, 2010).  

We remarked that this approach is analytical, and it may use without dropping any non-linear term.  
Let the governing equations of motion (1), re-written in a state form 

)(xgAxx +=& .                     (2)  

If one considers a vector function x~ , that characterizes the desired trajectory, and taken the control U vector 

consisting of two parts: u~  being the feed forward and uf is a linear feedback, in such way that 
Buut =                      (3)  

where B is a constant matrix. Next, one taking the deviation of the trajectory of system (2) to the desired one 
xxy ~−= , may written as being  

BuxgxgAyy +−+= )~()(&                             (4)  

where ( )xyG ~,  is limited matrix we proved the important result (Rafikov, Balthazar, 2008).  

If  there exit matrices Q(t) and R(t), positive definite, being Q symmetric, such that the matrix 

( ) )~,()()(~,
~

xyGtPtPxyGQQ T −−= is positive definite for the limited matrix G, then the linear feedback control is 

yPBRu T1−−= .                     (5)  

It is optimal, in order to transfer the non-linear system (6) from any initial to final state y(tf)=0, minimizing the 

functional  dtuRuyQyJ TT )
~

(
~

0

+= ∫
∞

, where the symmetric matrix P(t) is evaluated through the solution of the matrix 

Ricatti differential equation 

01 =+−+ − QPBPBRPAPA TT                      (6)  

satisfying the final condition P(tf)=0. 

In addition, with the feedback control (6), there exists a neighborhood Γ⊂Γ0 , nℜ⊂Γ , of the origin such that if 

00 Γ∈x , the solution ,0,0)( ≥= ttx  of the controlled system (4) is locally asymptotically stable, and 

.)0( 00min xPxJ T= Finally, if nℜ=Γ  then the solution ,0,0)( >= tty  of the controlled system (4) is globally 

asymptotically stable. 

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 133



  
 

Using the theorem by Rafikov and Balthazar the dynamic error y can be minimized ( 0→y  ) (Chavarette et al, 

2010a; 2010b; 2009; Rafikov and Balthazar, 2008).  
 

3.1 Theorem (Rafikov and Balthazar, 2008).  
 
If  there is matrixes Q and R, positive definite, Q symmetric, such that the matrix  

)~,()~,(
~

xxPGPxxGQQ T −−=                (7) 

is positive definite for the limited matrix  G , then  the linear feedback control   

yPBRu T1−−=         (8) 

is optimal, in order to drive the non-linear system (6) of any initial state to the terminal state 
0)( =∞y         (9) 

minimizing the functional 

dtuRuyQyJ TT )
~

(
0

+∫=
∞

                   (10) 

where the symmetric matrix P is calculated from the nonlinear Riccati equation: 

01 =+−+ − QPBPBRPAPA TT                     (11) 

 
Next, we will apply this methodology in the magnetically levitated body (1). 

 
3.2 Application of the Linear Optimal Control to the Non-linear System. 

 
The equations (1) describing the magnetically levitated body controlled: 
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where the function of control U is defined in the equation (1). 
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where the controllability matrix R of the system to the pair [A,B] is obtained by ]|...||[ 122 BABAABBR n−= .  
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and (an optimal control) 

4321 4082.01426.00203.00.3834 xxxxu +++= . The trajectories of the system with control may be seen, 

through Figure 6. According to the optimal control verification (Rafikov, Balthazar, 2008), the function (4) is 

numerically calculated across yQytL T ~
)( = ,where L(t) is defined positive and it is show in Fig. 6-g.  
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Figure 6.  Dynamics of Controlled.  (a) Time history for z. (b) Time history for z& . (c) Time history for θ. (d) Time history for θ& . (e) 

Portrait Phase for z and z& . (d)  Portrait Phase for θ  and θ& .(g) Controlled dynamical behavior of the time history 
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Figure 7.  Dynamics of Controlled and Uncontrolled.  (a) Portrait Phase for z and z& . (b)  Portrait Phase for θ  and θ& . 
 

We observe in Figures 6 and 7 that the performance of the proposed controller reduced the amplitude of oscillation 
of the system, eliminating the chaotic behavior shown in Figure 5. It is noted from Figure 7 that the orbits of the 
controlled system (blue) is smaller than the uncontrolled (black). It is noted also that the positive feature presented in 
Figures 6e and 6f and consequence of the proposed controller illustrating the efficiency of this. 

 
4. CONCLUSION 
 

In this work, a dynamics of the magnetically levitated body proposed (Yabuno et al, 2004) is investigated through 
numerical simulations using the software Matlab 7.0®. The model of the magnetically levitated body with the active 
vibration absorber is shown in Figure 1 and Figure 2 shown the experimental setup this work (Yabuno et al, 2004). 

The Figure 4 illustrated the behavior dynamics proposed by (Yabuno et al, 2004) and Figure 5 illustrated the chaotic 
dynamic through of positive Lyapunov exponent (λ4=0.46) for magnetically levitated body. 

This chaotic behavior illustrated in Figure 5, motivated us to establish a stabilization control method aimed at direct 
cancellation of the parametric excitation without using the auto parametric energy transfer that requires special tuning 
of the natural frequencies of the main system and the absorber. We proposed the application of the optimal linear 
control (Rafikov, Balthazar, 2008) to control the unstable movement and this kind control strategy reduced the chaotic 
movement to a small stable orbit. Figures 6 and 7 illustrates the effectiveness of the control strategy. We see Figures. 4 
and 6, that the control technique applied to the chaotic system has the amplitude of the oscillation decrease. 

The data obtained here are in agreement with the experimental work by (Yabuno et al, 2004), but with the difference 
that in this work, we can see that the amplitude of oscillation of the controlled system is smaller than the result 
presented by (Yabuno et al, 2004) allowing a gain in performance of the controlled system. 
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