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Abstract. In a real process, all used resources, whether physical or developed in software, are subject to interruptions
or operational commitments. However, in situations in which operate critical systems, any kind of problem can bring big
consequences. A coupled water tank system was used as a study case model for implementing and testing the proposed
methodology. The developed system should generate a set of signals to notify the process operator about the faults that
are ocurring, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors,
actuators and amplifiers of the real plant, the data set of the faults are computationally generated and the results will
be collected from numerical simulations of the process model. The system will be composed by structures with Artificial
Neural Networks.

Keywords: Critical Systems, Fault Detection, Fault Diagnosis, Artificial Neural Network.

1. INTRODUCTION

In the past, the automated supervising process, were mostly composed by some kind of system that had the simple task
of checking whether a given variable, such as strength, speed, pressure, level or temperature, exceeds a certain limit or
threshold previously specified. If it has ocurred, an alarm was triggered and the operator was warned about the incident,
acting in a way to correct the problem. Sometimes the problem could also be corrected in an automatic way for some
protection subsystem. This procedure, in many cases, was enough to prevent failures or severe damages to the process,
but, the failures or errors were detected only after a certain period of time, which prevents the system from obtaining a
detailed diagnosis about what happened (Isermann, 2006).

Considering the methods of Fault Detection and Diagnosis (FDD) that use Artificial Neural Networks (ANN), a series
of contributions can be highlighted, such as Gaoet al.(2000), where a system composed by an Elman neural network was
trained to detect faults on engine units, Guoet al. (2005), that combines wavelet transform with ANNs to detect faults in
rotation machines, Tianet al. (2007), where a neuro-fuzzy system was used to detect faults on pipelines and Khaledet al.
(2010) where a principal component analysis was combined to ANNs to detect faults in manufacturing processes.

Based on this methods, this paper aims to develop a FDD system with ANNs for a dynamic process. The system
should be capable to generate alert signals to the process operator in such way that they can be post processed by another
system. Thereunto, the system will use a residual error generated by the difference between the real measured variable
and the estimated value of this variable obtained from an identification structure of a study case model.

In the following sections the proposed system will be described with more details. The second section should summa-
rize the main concepts of the used ANNs, showing its architecture and model. Following, the third section will show the
basic concepts and terminology about FDD, and the proposed system will appear after the study case model description
at the fourth section. The last two sections shows the obtained results and conclusions.

2. NEURAL NETWORKS

According to Haykin (2000), the Artificial Neural Networks (ANNs) are parallel structures, massively distributed,
composed by simple processing units, named neurons. These structures resemble the human brain due to its ability to
acquire knowledge from the environment. This learning occurs through an adjustment of the connection weights, or
synaptic weights, which exists between neurons. These connections stores the information acquired by the network.

Among the various neural network architectures, such as radial basis function networks, Kohonen networks, support
vector machine and so many others, this work uses a Multilayer Perceptron (MLP), due to its simplicity and applicability.
The training algorithm used was the Levenberg-Marquardt (LMA), available in mathematical software MatlabR©.

2.1 Process identification with neural networks

As described in Lucena (2005), the model suitable structures for nonlinear system identification are generalizations
of linear models. These structures are characterized by their regression vector, which is a vector containing the variables
used to estimate the system output. Depending on the choice of the regression vector, different neural model structures
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may arise. FIR (Finite Impulse Response), ARX (AutoRegressive eXternal input), ARMAX (AutoRegressive Moving
Average eXternal input), OE (Output Error) and SSIF (Innovations State Space Form) are some of the best known linear
structures. If the regression vector is selected for ARX models, for example, the structure of the neural model will be
called NNARX (Neural Network ARX). Similarly, there will also NNFIR models, NNARMAX, NNOE and NNSSIF.

In this work a NNARX model, based on Nørgaardet al. (2000) description, was used in the process identification and
in the FDD networks. The regressors of the model, relates the network output with its past values of input and output.
Because of that, the use of these regressors are fundamental for system identification. The mathematical expression that
describes the nonlinear model used can be viewed in Eq. (1).

ŷ(t) = f (y(t− 1), . . . , y(t− n), u(t− d), . . . , u(t− d−m)) (1)

In this equation̂y represents the estimated output,d the transport delay,n the output order,m the input order,f(· ) a
nonlinear function maped by the neural network,y the output andu the input. In order to ease the implementation, in all
trained networks, the input order was the same as the output order (m= n).

An estimative generated by NNARX structure is always stable, since it represents purely algebraic relations between
the variables and there is no feedback of the estimated output.

3. FAULTS, ERRORS AND FAILURES

The computer systems can be characterized by five fundamental properties: functionality, usability, performance, cost
anddependability(Kaânicheet al., 2002). According to Laprieet al. (1992), the term dependability is related to the
system ability to provides a service that can be, justifiably, reliable. Following this reasoning, Aviz̆ieniset al. (2000)
subdivides a dependable system into the three parts, as shown in Fig. 1.

Figure 1. Dependability systematic classification, based on Aviz̆ieniset al. (2000).

The first group is used to provide an analysis about the quality of a dependable system. The second group brings the
terms used to express undesirable threats – but, in principle, not unexpected – that makes the system become not depend-
able. Finally, the third group shows the means and the techniques by which it becomes possible to offer a dependable
service.

About the second group, the termfailure must be used to indicate when occur a deviation of the system behavior,
making it incapable to provide the service for which it was designed. Anerror, however, is related to the system state and
can lead to a failure. Briefly, if there is an error, then there is a sequence of actions that can lead to a failure. Last, but
not least, the termfault is the cause of an error and is related to a defect. Normally, it is said that the termfault may be
defined as a defect that has the potential to generate errors.

3.1 Fault detection and diagnosis

In order to ensure the success of planned operations and recognize the behaviorial problems in the process, many
supervision and monitoring systems are being developed. According to Chianget al. (2001), among other functions,
these systems can detect, diagnose and eliminate faults, ensuring that the process operations satisfies the performance
specifications.

Additionally, the information provided by a monitoring system should not only inform the system operator about what
is going on, but also help him to take corrective actions in order to remedy the problem. As a result, the ineffective time
will be reduced, the system protection will be increased and the operational costs will be decreased.
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Chianget al.(2001) shows that there are four states involved in the process monitoring: fault detection, fault isolation,
fault diagnosis and fault recovery, as shown in Fig. 2. Although arranged as a sequence of actions, all states are not always
strictly necessary. Often, automated changes from one state to another is transparent to the operator, displaying only the
crucial information to take appropriate action.

Figure 2. States of fault detection and diagnosis, based on Chianget al. (2001).

4. PROPOSED SYSTEM

This paper proposes a system development for FDD in a dynamic process. The process in question consists of a
coupled water tanks system developed by QuanserR©, schematically represented in Fig. 3(a).

(a) Original configuration. (b) Proposed configuration.

Figure 3. Case study – Coupled Water Tanks.

The tanks (T1 eT2) are mounted on the front of the support base and positioned in such way that the water flows from
the upper tank (T1) to the bottom tank (T2) through orificea1, and from theT2 to the water reservatory through orificea2.
The output water flow varies according to the orificesa1 anda2, available in three different diameters.

Since the two tanks have the same cross-sectional area (A1 = A2 = A), their dynamics are similar. However, find a
mathematical model that adequately describes the dynamics of such tanks is not so simple, because the general equations
of motion and energy that describe the fluid flow are quite complicated. Therefore, some fundamental assumptions are
needed. So, it is assumed that the water in the tank is incompressible and the flow is non-viscous, non-rotational and
regular (Dorf and Bishop, 2009). Considering these aspects, after a series of algebraic manipulations using Bernoulli’s
equation, the equations for a direct feed inT1, can be described by Eqs. (2) and (3).

L̇1 =
Km

A
Vp −

[a1
A

√
2g

]√
L1 (2)

L̇2 =
[a1
A

√
2g

]√
L1 −

[a2
A

√
2g

]√
L2 (3)

whereKm represents the pump flow constant,Vp the voltage applied to the pump,ai theTi’s output orifice,Li the water
level inTi andg the gravity acceleration.
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In order to make the proposed system more generic and possibly make further studies on fault tolerance, the system
was modified by introducing another pump with the same characteristics as the first one, as shown in Fig. 3(b). Clearly,
in this case, the system has no more only a single input and a single output (SISO). Now, the equations of the multiple
input and multiple output (MIMO) system can be described by Eqs. (4) and (5).

L̇1 =
Km

A
Vp1

−

[a1
A

√
2g

]√
L1 (4)

L̇2 =
Km

A
Vp2

+
[a1
A

√
2g

]√
L1 −

[a2
A

√
2g

]√
L2 (5)

whereVp1
is the voltage applied to the first pump andVp2

is the voltage applied to the second pump.

4.1 Simulated faults

Despite the various faults that may exist in a coupled water tanks, only some of these were selected to be simulated,
as shown in Tab. 1.

Table 1. Selected faults – Classification.

Fault # Name Acronym
Sensors

1 Uncalibrated Gain UGSeF
2 Uncalibrated Offset UOSeF
3 Noise Sensitivity NSSeF
4 Burned Sensor BSeF

Actuators
5 Uncalibrated Gain UGAF
6 Uncalibrated Offset UOAF
7 Noise Sensitivity NSAF
8 Km variation KmAF
9 Burned Actuator BAF

Structural
10 Tank’s Leak TLStF
11 Tank’sai variation TaiVStF
12 Tank’sai obstruction TaiOStF

Since in these types of simulation the system is normally exposed to adverse conditions, which could cause damage
throughout the structure involved, the proposed system was computationally simulated.

4.2 Neural structures

The neural networks for identification and FDD should be carefully chosen, since an inappropriate choice can make
the system innefective, not performing the function for which it was assigned.

The neural structure for identification, that must represent the dynamics of the system, has a single neural network,
which receives as input the past values of the levels,L1(k − 1) andL2(k − 1), and voltages applied,Vp1

(k − 1) and
Vp2

(k − 1), generating, on its output, estimated levels, calledL̂1(k) andL̂2(k). The best trained neural network to this
purpose was obtained from a second-order model NNARX with eight neurons on hidden layer. The validation mean
square error was3.73× 10−6.

The structure of FDD, in turn, was composed by twelve neural networks, in which each of these is associated with
a single fault, configuring a set of “specialists”. However, it is not a committee machine, since there is no network that
performs the decision-making.

The input of each network is composed by the past values of the levels,L1(k− 1) andL2(k− 1), the voltages applied
to the pumps,Vp1

(k − 1) andVp2
(k − 1), and the residual errors produced from the difference between the real and

estimated output,ei(k) = Li(k)− L̂i(k). The output of each network is a 2-bit binary word, which indicates whether the
fault is being detected inT1, in T2 or in T1 andT2 simultaneously. A schematic diagram can be viewed in Fig. 4.

Opting for this disarticulated neural networks structure occurs by several factors. An example that can be highlighted
is the fact that more than one fault may be happening simultaneously in the system. In this case, if only one neural network
was used, beyond theN distinct words (one for each fault), the FDD system should indicate each fault combination in the
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Figure 4. Neural network structure for fault detection and diagnosis.

output. Considering only the twelve selected faults, taken two by two, a total of 66 possible combinations should to be
generated. If all combinations were considered this number would grow exorbitantly.

Moreover, a simple modification at one neural network will not affect in any other. Thus, if at any time is noticed that
the introduction of a new variable improves the detection for one fault, only one neural network needs to be retrained. In
future works, hibrid structures – like neuro-fuzzy networks, Kalman filters, statistical analysers and many more –, can be
also utilized as a specialist.

Once known all used subsystems, the proposed FDD system can be viewed in Fig. 5. Attach this system to another,
or associate it with a Fault-Tolerant Control System (FTCS), can be made in a simple way, by processing the information
available at the output interface, namedF1, F2, . . . ,Fn. However, this is not the objective here.

Figure 5. Proposed system schematic diagram.

5. RESULTS

5.1 Data acquisition

The first step to be taken for the identification and detection processes, is to obtain the experimental samples for
a supervised neural networks training. So, the data acquisition was done by a stimulation of the system through the
application of pseudo random binary signals (PRBSs) in the setpoint of each tank and in the system fault parameters.

The range values applied to the setpoint varies between the minimum (zero) to the maximum (thirty), while for the
fault detection, the values were applied as shown in Tab. 2. The values generated in the interval determined by the
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minimum and maximum of each parameter were multiplied by the default values and applied to the model.

Table 2. Applied values for training step.

Fault Default value Min Max Representativeness
UGSeF 0,16∗ 0,8 1,2 Up to±6 cm
UOSeF 1,0 -3,0 3,0 Up to±3 cm
NSSeF 1,0 -0,03 0,03 Up to±9 cm
BSeF 1,0 0,0 0,0 –
UGAF 1,0 0,8 1,0 Up to -3 Volts
UOAF 1,0 -1,0 0,0 Up to -1 Volts
NSAF 1,0 -0,03 0,03 Up to±0,45 Volts
KmAF Km 0,7 1,1 –
BAF 1,0 0,0 0,0 –

TLStF aiMED
∗∗ 0,25 0,75 25 a 75% ofaiMED

TaiVStF aiMED 0,75 1,25 ±25% ofaiMED

TaiOStF aiMED 0,0 0,5 –
∗ Established by the manufacturer.
∗∗ Cross-sectional area is approximately 0.1781 cm2.

During the identification process were obtained 6,000 (six thousand) samples, wich is equivalent to 10 (ten) minutes
of simulation. About the fault detection process, 12,000 (twelve thousand) samples were obtained, wich is equivalent to
20 (twenty) minutes of simulation. All data were collected with a sampling period of 100 ms, identical to that used in the
real process.

In possession of the obtained values, the training of the neural networks was started. All networks were trained in
offline mode with the neural networks toolbox of MatlabR©, using the LMA algorithm.

5.2 Selected neural structures

As has been seen, the best network used for the model identification was obtained from a second-order NNARX
structure with eight neurons on hidden layer. This network was selected among 54 others who had been trained for this
same purpose and has a mean square error of3.73× 10−6.

The number of trained neural networks increases significantly for the FDD. For each order of the NNARX structure,
the number of the neurons on hidden layer was changed three times. Each time that number was changed, six neural
networks were trained, which guarantees that the selected networks would not be compromised by convergence problems
due the bad weights initialization or due to local minima. Thus, for a second order structure, for example, were trained
3× 6 = 18 neural networks.

The networks were selected from a second, third and fourth-order structures. So, the number of trained networks
would amount to18 × 3 = 54 for each fault. However, there were twelve faults to be trained. Thus, the total was
54× 12 = 648 distinct neural networks.

Because of this large number, all the networks went through a validation process with three simulations. In each
simulation were recorded Type I and Type II errors, composing an average error for each structure. The average values
obtained during the selection process can be viewed in Tab. 3.

The system was composed after a selection of the best structures and submited to the final simulation of one minute
and forty five seconds, divided into intervals of fifteen seconds as shown in Fig. 6.

Figure 6. Final simulation – Intervals.

In this final test, the values of each fault parameter were kept fixed during the interval in which that fault was acting
on the system. The values of these parameters are shown in Tab. 4.
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Table 3. Best ANNs for FDD.

Fault Order HLN ∗ Train. #
Correct Type I Type II Total
Answers Errors Errors Errors (%)

UGSeF 4 28 2 23491,33 203,33 305,33 2,12%
UOSeF 4 28 5 23890,33 8,66 101 0,46%
NSSeF 4 20 3 23317 324,66 358,33 2,84%
BSeF 4 20 4 23994 0,66 5,33 0,02%
UGAF 2 8 3 20710,33 1626,66 1663 13,7%
UOAF 4 28 3 23075,33 635,66 289 3,85%
NSAF 2 8 6 14153,33 3407 6439,66 41,03%
KmAF 2 8 5 20764,66 1551,33 1684 13,48%
BAF 4 28 6 23980 2,33 17,66 0,083%

TLStF 4 24 1 23774,33 74 151,66 0,94%
TaiVStF 2 8 3 22465,33 437 1097,66 6,39%
TaiOStF 2 12 4 23995,66 1 3,33 0,018%
∗ Hidden layer neurons.

Table 4. Used parameter values.

Sim. # Fault Modified value
1 UGSeF Gain= 0, 128
2 UOSeF -2,0 cm
3 NSSeF ±2%
4 BSeF Gain= 0, 0
5 UGAF Gain= 0, 8
6 UOAF -0,5 Volts
7 NSAF ±2%
8 KmAF Km = 3, 45
9 BAF Gain= 0, 0
10 TLStF aVZ = aMED/2
11 TaiVStF ai

′ = aMED/2
12 TaiOStF ai

′ = aMED/4

5.3 Obtained results

The obtained results can be seen in Figs. 7 to 18. In these images, the red hatched areas represents the intervals in
which the fault was detected inT1, while the blue hatched areas represents the intervals in which the fault was detected in
T2.

The first fault to be simulated was UGSeF, whose the results can be seen in Fig. 7. In this simulation the value of
the sensor gain was reduced to 80% of the default value. In this figure, the system identified the presence of the fault
only when the parameter value was modified. After this period, the fault was “compensated” by the controllers, who sent
more voltage to the pump, causing the return of the output to the setpoint. However, that “compensation” was made in a
improperly way, since the sensor’s reading had an error of 20%.

Thus, when the value read by the sensors is 24 cm, the tank is about to overflow, reaching, in fact, the upper limit of
30 cm. In an academic application this may not represent any risk to equipments beyond those that the water could cause.
But, in critical applications, that “compensation” may bring several damages.

The system behaved in a similar manner to that in UOSeF and TLStF, as observed in Figs. 8 and 9. Especially for the
TLStF simulation, another output orifice, namedaL, was considered. This orifice has the same characteristics of the tank
output orificeai, but has a different diameter.

The results for these faults are not consistent with the Tab. 3. This situation may be ocurring because the networks has
identified the rapid dynamic changes of the PRBS, failing to identify continuous abrupt changes.

A possible alternative to solve this problem would be to use binary flags, activated at the time that the first variation
was detected and deactivated in the next detection. These flags indicate that the faults are acting during the time interval
in which they were active.

Another simulation shows that the NSSeF was easily identified by the system, as shown in Fig. 10. However, due to
the noise with uniform distribution (±2%), the system can not detect the fault at some points. At these points, the value
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generated by therand function keeps the signal next to the setpoint.
Unlike the NSSeF, the simulation performed to the NSAF was not so easily identified, as shown in Fig. 11. The

results obtained forT1 can even be considered reasonable, while the results forT2 are clearly unacceptable, since none
of the points in which the fault should have been identified were recognized by the network. Nevertheless, the results are
consistent with the Tab. 3, where the total error exceeds 40%.

As well as NNSeF, all other remaining faults were also easily identified by the system, as shown in Figs. 12 to 18.

6. CONCLUSIONS

This work was developed in order to provide a FDD system for a coupled water tanks. Thereunto, the system uses a
neural structure to process the available values and inform the user about the faults that are ocurring.

Since this structure is completely disjointed, another techniques can be mixed to compose a hibrid fault detection and
diagnosis system. The used techniques can replace those networks whose the performance were below the expectations.

Among the twelve selected faults, eight were easily identified and three had a satisfactory performance, with a small
detection problem that can be solved with binary flags. The other fault was not correctly identified forT2, but can be
considered reasonable for detection onT1.

The results may improve when the real values are used, since they vary within the range of values in which the networks
were trained. This situation can correct the problem that occurs for detecting UGSeF, UOSeF and TLStF, avoiding the
use of binary flags.

Thus, the system had a satisfactory performance and could be capable to identify about 92% of the proposed faults,
proving that MLP networks are efficient structures for identification and for the fault detection and diagnosis.

Once tested with various excitation signals, the system could be attached to a FTCS. In this case, the signals generated
by the FDD system will serve as an “alarm”. The FTCS, in turn, may perform the controllers reconfiguration by modifying
their parameters, or even their structures, making that the system keep functioning properly, until the fault is corrected.
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Figure 7. UGSeF simulation – Sensor’s gain reduced to
80% from the default value.

5

10

15

20

Le
ve

l[
cm

]

0

5

10

15

20

25

0 15 30 45 60 75 90 105

Le
ve

l[
cm

]

Time [s]

SetpointT1

OutputT1

SetpointT2

OutputT2

Figure 8. UOSeF simulation – Sensor’s offset configured
to−2 cm.
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Figure 9. TLStF simulation – WhereaL = aMED/2 and
aMED ≈ 0.1781 cm2.
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Figure 10. NSSeF simulation – Assumming a uniform dis-
tribution noise from±2%.
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Figure 11. NSAF simulation – Assumming a uniform dis-
tribution noise from±2%.
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Figure 12. BSeF simulation – Sensor’s gain reduced to
zero.
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Figure 13. UGAF simulation – Actuator’s gain reduced to
80% from the default value.
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Figure 14. UOAF simulation – Actuator’s offset config-
ured to−0.5 Volts.
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Figure 15.KmAF simulation –Km reduced to 75% from
the default value.
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Figure 16. BAF simulation – Actuator’s gain reduced to
zero.
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Figure 17. TaiOStF simulation – Whereai = aMED/4.
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Figure 18. TaiVStF simulation – Whereai = aMED/2.
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