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Abstract. In this paper, we study the dynamics, transfer of energy and control the vibrations of a Micro 

Electromechanical Systems (MEMS) gyroscope. The MEMS are micro-transducers whose operation is based on elastic 

and electrostatic forces that convert electrical energy into mechanical energy and vice-versa. These systems can be 

modeled by 2-DOF spring-mass-damper system and the coupling of the system equations is performed by the Coriolis 

force. This coupling is responsible for energy transfers of the two vibration modes (drive-mode and sense-mode) and 

for the resonance in MEMS gyroscope. The model equations have periodic coefficients and as the dimensions of the 

quantities involved in the system can be inconsistent, it is not advisable, like it is done in literature, the use of 

perturbation methods for the solution of the system. For this reason, in the analysis and control of MEMS gyroscope 

we use a technique based on Chebyshev polynomial expansion, the iterative Picard and transformation of Lyapunov-

Floquet (LF). For the analysis of the problem, we did the diagram of stability, phase planes and time history of 

transfer of energy. Finally, we control the MEMS an unstable orbit to a desired periodic orbit. 
 

 

Keywords: Micro Electromechanical system, Non-Linear Dynamics, Control Design, Periodic System, Lyapunov-

Floquet transformation. 

 

1. INTRODUCTION 

 

Micro-electromechanical systems (MEMs) are devices that, even unseen by most, are present in many electronics 

circuits due to their small mass, high sensitivity and low costs. This technology allows fabrication of electronic 

components in smaller scale features, hence decreasing amplitudes of motion, but micro-electromechanical devices do 

not always behave the way one would like them to (Adms,1998) because the devices are small, and the electrical 

isolation is not perfect, there is some coupling of the actuating drive signal to the sensing capacitors (Turner,1998). 

On the other hand, the MEM resonant micro-oscillators have very high natural frequencies and can be operated in 

nonlinear regime to offer an enhanced performance for device (Shaw and Balachandran, 2008). Thus, the resonant 

micro-electromechanical oscillators have a great number of applications, mostly, electro-mechanical filters, biological 

and chemical sensing, force sensing, scanning probe microscopes and sensors, like gyroscope and accelerometer.  

Recently, have been developed vibratory micro-electromechanical gyroscopes that separate oscillation modes for 

drive (actuation) and sense (detection). The drive mode is based on variable force actuators that depend on the force-

time variation relation and in the sense mode the response is measured and calibrated with the rotation rate. 

Vibrating MEMGyroscopes is based on the energy transferred on the coupling of two resonant modes from the 

Coriolis force. Such devices employ a proof mass constrained to move in a plane with two orthogonal resonant modes. 

The two modes are coupled only by the rotation of the gyroscope about the normal vector to displacement plan of 

modes. High rate sensitivity for such devices requires high resonance quality and matched modal frequencies for the 

two orthogonal modes (Yazdi, 1998). 

The design requirements such as orthogonality and frequency matching are not generally robust under parameter 

uncertainty. Frequency misalignment causes substantial decrease in rate sensitivity, and model misalignment causes 

erroneous rate measurement (Miller, 2008). 

The analysis of the dynamic of the MEMGyroscopes has been showing that the sensitivity those devices improve as 

the frequency mismatch between the two modes decreases. Moreover, the mechanical coupling between drive mode and 

sense mode makes the dynamic of the system unstable (Mochida, 1999). 

Application of some nonlinear effects on system can be used to alter, significantly, the behavior dynamic of the 

MEMGyroscopes. The idea is to separate the drive and sense signals by parametrically exciting the device far from its 
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natural frequency. This is only possible in systems governed by Mathieu-type equations, due to the unique way energy 

is transferred during parametric excitation (Turner, 1998). 

Zhang (Zhang, 2002) reports the effects of nonlinearity on the behavior of parametric resonance of a 2-DOF MEM 

vibratory gyroscope. In this 2-DOF system, the drive-mode consists of a 1-DOF oscillator governed by a nonlinear 

Mathieu equation and the sense-mode is a 1-DOF oscillator governed by a Duffing equation, both of them coupled by 

the Coriolis force. 

The nonlinear Mathieu equation is the simplest second order nonlinear differential equation with periodic 

coefficients that describes the parametric excitations. Thus, in this system can produce large responses even if the 

excitation frequency is far away from the natural frequency (Nayfeh, 1979). Moreover, in the case of the second-order 

system with time periodic coefficients, the dynamics a parametrically driven oscillator, the sensitivity depends on the 

transition between zero and large response and the transition can be very sharp (Oropeza-Ramos, 2005).  

In order to achieve high sensitivity, the drive and the sense resonant frequencies are typically designed and tuned to 

match, and the device could be controlled for the dynamic oscillate at or near the peak of the response curve. (Oropeza-

Ramos, 2008) 

The solution analysis of the 2-DOF MEM vibratory gyroscope, traditionally, was examined in term of perturbation 

method (Oropeza-Ramos, 2008; Zhang, 2002). Due to small quantities of magnitudes that are involved in the problem, 

especially when these quantities are coefficients of periodic terms, we analyze the problem from the Lyapunov-Floquet 

theorem. 

This work, we study the dynamic of the 2-DOF MEM vibratory gyroscope by analysis of the Floquet multiplier of 

the approximate fundamental solution matrix of the 2-DOF periodic system. The technique used on approximation 

employs both Picard interaction and expansion in shifted Chebyshev polynomials (Sinha, 1997; Peruzzi, 2006). 

Moreover, we obtain the Stability diagram for the control parameters voltage e frequency where were determine the 

bifurcations Fold, Hopf and Flip. For a values set of control parameters unstable, the dynamics of the system was 

subsequently studied and controlled to a desired periodic orbit, by a states feedback control technique based on 

Lyapunov-Floquet transformation. 

 

 

2. MEMGYROSCOPE MODEL 

 

On MEMGyroscope the energy transferred on the coupling of two resonant modes. Thus, a vibratory micro-

gyroscope can be modeled as two independent spring-mass-damper oscillators coupled by Coriolis force. The physical 

model (Fig. 1), shows the proof-mass is suspended by a set of springs that allow oscillations in two orthogonal 

directions and the angular rotation z  about z-axis (Oropeza-Ramos, 2005). 

 

 
Figure 1. Physical model of a 2-DOF vibratory gyroscope 

 

The governing equations of this 2-DOF system in the drive mode (x-direction) and sense mode (y-direction) were 

modeled mathematically in (Oropeza-Ramos, 2007) as: 

 











xmyFycym

ymtxFxFxcxm

zry

zarx





2)(

2),()( *

                                      (1) 

 

where, m represents the mass of the shuttle, cx and the damping coefficient of oscillator in the x-direction, cy the 

damping coefficient of oscillator in the y-direction. Fr(x) represents the elastic restoring force from the springs drive 

mode and Fr(y) the elastic restoring force drive sense. ),( *txFa  is the actuation force and 2-DOF is coupled by terms 

ym z 2  and xm z 2  which represent the rotation-induced Coriolis forces.  
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 The restoring forces )(xFr  and )(yFr  were modeled as: 

3
31

)( xkxkxF xxr   and  3
31

)( ykykyF yyr                   (2) 

 

where, 
1x

k  and 
1yk  are linear stiffness coefficients and 

3xk  and 
3yk  are cubic stiffness coefficients for drive and sense 

modes. 

In order to generate a parametric resonance response, the actuation force is defined by: 

)()(),( *23
31

* tVxrxrtxFa  (t)                   (3) 

 

where, 1r  and 3r  are linear and cubic electrostatic stiffness, respectively. The voltage applied on system is 

)cos(1)( ** tVtV A  , where AV  is the input voltage amplitude and   is the actuation frequency. 

Substituting (2) and (3) in the equation (1), rescaling the time variable by *2 t   and considering dimensionless 

parameters  (Oropeza-Ramos, 2007): 
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4
, we can write the dimensionless equations of motion of the 

MEMGyroscope as: 
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            (4) 

where, 
d

d )(
)(


 . 

Note that, first equation of the dimensionless system (4) is nonlinear Mathieu-type equation and the second is 

Duffing equation. Since it is not possible to obtain an exact closed form solution of the nonlinear Mathieu equation 

(Oropeza-Ramos, 2009), the stability analysis of the solutions of the nonlinear periodic system (4) has been examined 

numerically in term of transition curves that define the boundaries of instability regions.  

The method that was used for analysis and control of 2-DOF vibratory micro gyroscope is based on L-F 

transformation (Lyapunov-Floquet transformation), the Chebyshev polynomial expansion and the Picard iterative 

method (Sinha, 1997 and 2000; Peruzzi, 2005 and 2006). 

According to (Nayfeh, 1979) the first-order parametric resonance for a linear Mathieu equation, occurs when the 

driving frequency is near twice the natural frequency of the system 02  . Thus, we take as control parameters the 

voltage ( AV ) and the actuation frequency ( ).  

On numerical simulation of the system (4), we used Kgem 84.1  , KHz48.260   and we considered the 

nondimensional parameters: 

 

35.1  ex ; 35.1  ey ; 201.1
1

 ex ; 475.83  ex ; 01.1
1
x ; 

   31.5
3

 ex ; 11.1
1
y ; 0123.0

3
y ; 017.0                  (5) 

 

In numerical simulations were implemented in Matlab® 6.1 (The Mathworks, Inc., 2001, USA). We used 

Chebyshev polynomials of the first kind modified with grade 20 and 40 Picard interactions, as in (Peruzzi, 2005 and 

2006).  

  

3. NUMERICAL SIMULATIONS RESULTS AND DYNAMICS ANALYSIS 

 

Figure 2 (a,b) shows drive and sense modes dynamic of the vibratory MEMGyroscope for the control parameters 

VVA 20  and KHz52 , ie, the system was driving near of the parametric resonance. The Floquet multiplier are 

i0615.09957.02,1  , 0097.13   and 9857.04  . As the magnitude of the four Floquet multipliers is next 

to 1 ( 9977.02,1  , 0097.13   and 9857.04  ) the system is operating on bifurcation boundaries.  

This can be observed transient response part of the Fig. 2(a,b). Both drive and sense modes are showing unstable 

exponential growth before of stable periodic orbit. Figures 3(a,b) present transfer energy between drive and sense 
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modes due to Coriolis force. Observe in the Fig. 3b (zoom of the marked area) the intensive transfer of energy between 

the vibration modes, mainly, in the transient part. 

 

 

 
Figure 2. Time history a) drive mode, and b) sense mode. 

 

 
 

Figure 3. a) time history of the transfer of energy between drive and sense modes due to Coriolis force; b) zoom of the marked area. 

 

 

To better understand the behavior of the dynamics of vibratory MEMGyroscope we obtain the stability diagram for 

control parameters the voltage ( AV ) and the actuation frequency  . To this, must be found the values in the plane 

2)( RVA   that make the critic system, ie, the voltage ( AV ) and frequency ( ) values for which Floquet multipliers 

have magnitude 1.  

For the control parameters 605  AV  (Volts), 551   (KHz) and considering the values parameters (5), we 

obtain the stability diagram in the Fig. 4. In the plane ( AV ), we can be observed the bifurcation boundaries (Flip, 

Fold and Hopf) of the vibratory micro gyroscope. 
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Figure 4. Stability diagram of the MEMGyroscope. 

 

Figures 5(a,b) show the chaotic dynamic (λ1=0.05) of Lyapunov exponent of the MEMGyroscope and zoom of the 

marked area. 
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Figure 5. a) Dynamics of Lyapunov expoents of the MEMGyroscope, and b)  Zoom of the Lyapunov exponents. 

 

 

4. CONTROL DESIGN BASED ON SINHA`S THEORY 

 

Considerer the controlled vibratory MEMGyroscope obtained from equation (4). 

 

   











2
3

1
3

31

3311
))2cos(2())2cos(2(

uxyyyy

uyxxxx

yyy

xxxxx




           (6) 

 

where, 1u  and 2u  are linear state control laws (Sinha, 1994, 1997 and 2000). 

The term of control  tvuuu )()()( 21    is defined as: 
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are feedforward part of the control law, and: 
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are states feedback where )(tFi  was defined in (Sinha,1994) as )()()()( 1* tQktQtBtFi
 .  

Figures 6 and 7 (a,b) present the time history and phase plane for simulations of the non-controlled vibratory 

MEMGyroscope (6) when 021  uu , VVA 50  and KHz50 . Observe that both drive and sense modes 

dynamics are unstable. Note that, in the Fig. 5, the displacement amplitudes are increasing in the time and, in the Fig. 7, 

we can see unstable orbits. 

In fact, the Floquet multipliers of the system (6) are i1758.09819.02,1  , -1.10183   and 9032.04  . The 

magnitude of the multiplier 1.10183   confirms the instability of the system (6) for these set of parameters values. 

The strategy of linear control proposed in (7) can be used to control the instabilities of the vibratory micro 

gyroscope. In this control design the objective is conduct the unstable orbit to a desired periodic orbit applying the 

Lyapunov-Foquet transformation. The desired orbits, for control design to drive and sense modes, are the simple 
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Figure 6. Time history for non-controlled MEMGyros.  a) drive mode, and b) sense mode 

 

   
Figure 7. Phase plane for non-controlled MEMGyros. a) drive mode, and b) sense mode 
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Substituting the equation (10) in (8) and the result in (6), we determine the dynamic error between the drive mode 

trajectory )(x  and desired one ( )(dx , )()(  dx xxe  ), and sense mode trajectory )(y  and )(dy , 

( )()(  dy yye  ).  

Thus, the dynamic error between the systems (6) and (10) can be written as: 
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Considering A=2, B=1, C=1, B=1 and a=1 
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Changing the variables 1zex  ; 2zey  ; 3zex  , 4zey   and Tt   we can rewrite the nonlinear equation (12) 

in the linearized space-state form, on principal period 2T , as: 
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where, )]4sin()4cos()2sin()2cos([),( 43210 tAtAtAtAATVA A   , ].1,0[t  The matrix 0A , …, 4A  are 

defined on appendix A. 

The states transition matrix of (13), calculated in the end of period T, was obtained numerically as: 
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The Floquet multipliers of the system (14) are i2983.09518.02,1  , -1.16833   and 8517.04  . The 

magnitude of the multiplier 1.16833   shows that (13) still unstable the set of parameters values. 

Applying the Lyapunov-Floquet transformation ( )()()( tqtQtz  , where RteTtQ  )()(  ) in the equation (13) we 
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Note that the linear part is time invariant and the eivenvalues are: 0.0967i-0.0007 , 0.04951 and -0.0511. The 

presence of 0.04951 indicates the instability of (15). Applying the pole placement technique is possible to obtain the 

state feedback part )(tut .  

Considering the news poles of (15): - 2, -1, -2, -1; we could calculate, numerically, the time invariant gain matrix 

(Sinha, 2000): 

 





















7.2549-0.006-19.8153-0.6519-

0.2916-7.368-1.522-61.93-

1.55810.0092- 4.2546 0.0515 

0.01220.52020.08474.3717

K          (16) 

Thus, the control law  tvuuu )()()( 21    can be used to control a vibratory MEMGyroscope (6) to the 

desired periodic orbit (10). 

Figure 8(a,b) present the time history of the controlled vibratory MEMGyroscope (6) for VVA 50  and 

KHz50 . Observe that both drive and sense modes dynamics are stable periodic orbit. The phase plane to the 

controlled system and the desired orbits are show in Fig. 9(a,b). Note that control design was successful.  

 

 
Figure 8. Time history for controlled MEMGyros.  a) drive mode, and b) sense mode 

 

 

 

 
Figure 9. Phase plane and desired orbits for controlled MEMGyros. a) drive mode, and b) sense mode 

 

 

Finally, Fig. 10(a,b) shows the time history of the  transfer energy  in the vibratory MEMGyroscope of the non-

controlled and controlled system for VVA 50  and KHz50 . In the non-controlled system (Fig. 10a) we can 

observe that the energy of the drive mode isn’t being transferred to sense mode by Coriolis force. It means that the most 

part of system energy is accumulated in the drive mode. On the other hand, (Fig. 10b) we can note the transfer of energy 

between drive and sense modes. Furthermore, the energy consumption of the system was controlled. 
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Figure 10. Transfer of energy between drive and sense modes due to Coriolis force. a) non-controlled, and b) controlled. 

 

 

5. CONCLUSIONS 

 

In this paper, was analyzed the dynamic of the mathematical model of the 2-DOF MEM vibratory gyroscope. We 

determined the stability diagram by numeric approximations of the Picard interaction and expansion in shifted 

Chebyshev polynomials which shows bifurcations boundaries of the system for the control parameters voltage e 

frequency. The dynamics and the transfer of energy of the system were studies for a values set of control parameters 

unstable of the stability diagram. Finally, dynamics and the transfer of energy were controlled to a desired periodic 

orbit, through a states feedback control technique based on Lyapunov-Floquet transformation. The control design 

reduced and controlled the transfer of energy. 
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9. APPENDICE  

 

The matrix A is defined:  
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