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Abstract. In general, the first choice for inverse kinematics solution of robots is analytical methodologies, based on 
geometric intuition. But the geometric intuition sometimes fails when the kinematic structures become increasingly 
complex, this is most evident robots with parallel structure. Some references presents analytical solutions for the 
position and differential kinematics for parallel robots, but generally the kinematics concepts of these robots are 
simple to understand. Parallel robots as the Eclipse and Eclipse-II are considered as complex kinematics chain and the 
solution of the position and velocity kinematics are obtained by analytical methods, using for both geometric analysis 
for some particular situation. This paper proposes a model to differential kinematics for robots Eclipse and Eclipse-II, 
using the method of Assur virtual chains. The use of virtual chains allows to formal systematic solution for kinematics 
and the use of a integration method based on the control of the closure error measured. It discussed the Screw theory, 
Assur virtual chain, differential model, the numerical integration method, and in the final, is presented a study of 
singularities and a simulation of a planned trajectory to validate the proposed model 
 
Keywords: Parallel robots, complex kinematic chains, Assur virtual chain, singularity analysis.  

 

1. INTRODUCTION  
 

Parallel mechanism is actually an area of interest for industrial applications and advanced researches. The advances 
in informatics technology and the development of more accurate methods, allows a rapid increasingly of parallel robots 
daily of production systems. 

This paper discusses a solution for the position and velocity kinematics of parallel robots Eclipse and Eclipse-II.  
The Eclipse parallel robot was presented by Kim and Park (1998), as a result of a design study for a kinematics 

which allow operations in 360o in its workspace. The robot Eclipse-II was first presented 2002 (Kim, 2002), showing 
itself as an evolution of the Eclipse and with the objective to be used in flight simulators. The advantage of this 
kinematic structure for the design of flight simulators, is the possibility of movements in 360o in its workspace. The 
foward and inverse kinematics discussed on these papers are based on geometric approaches, as well as the singularities 
analysis. References present alternative solution using still based on geometric treatment (Liu, 2003) (Altuzarra 2004). 
Other references treat just the forward kinematics as in Wang (2006). The proposals methods for obtaining the 
differential kinematics are don’t have a systematic way, in general are resolved in a particular way for each case. 

In parallel robots, singular condition occurs in forward and inverse kinematics (Gosselin, 1990). Its identification 
can be obtained through kinematic differential models, and this analysis requires a consistent differential kinematic 
model. Singularities are discussed from the geometric analysis (Gregorio, 2002), and Antazurra (2004) presents a study 
which is a classification of singularities in closed kinematic chains. 

This work proposes a systematic model to differential kinematics for robots Eclipse and Eclipse-II, using the method 
of Assur virtual chains (Campos, 2005). The use of virtual chains allows applying a method of integration based on the 
control of the closure error measured (Simas, 2008). It discusses the differential model, the numerical integration 
method, and in the final, is presented a study of singularities and a simulation of a planned trajectory to validate the 
proposed model. The major proposes of this paper is contribute with the study of kinematic problem of parallel robots, 
applying the results to a complex kinematic robots, Eclipse and Eclipse-II, and discuss a way to alternative analysis of 
singularity condition. 
 

2. THEORETICAL REVIEW 

  
The description of the differential kinematics of robots Eclipse and Eclipse II are based on screw representation and 

in a use of Assur virtual chains. Additionally we used the Davies’ method to describe the inverse kinematics of closed 
chains, and analysis of graphs to investigate the relationship of movement in a joint. These concepts are described 
shortly in following.  
 

2.1. Screw representation of differential kinematics 
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The general spatial differential movement of a rigid body consists of a differential rotation about, and a differential 
rotation along an axis named the instantaneous screw axis. In this way the velocities of the points of a rigid body with 
respect to an inertial reference frame O-xyz may be represented by a differential rotation ω  about the instantaneous 

screw axis and a simultaneously differential translation τ  about this axis. The complete movement of the rigid body, 

combining rotation and translation, is called screw movement or twist and is here denoted by $ . Fig. 1 shows a body 

“twisting” around the instantaneous screw axis. The ratio of the linear velocity to the angular velocity is called the pitch 
of the screw h=||τ||/||ω||.  

The twist may be expressed by a pair of vectors, i.e. [ ]TT

p

T V;$ ω= , where ω  represents the angular velocity of the 

body with respect to the inertial frame, and Vp represents the linear velocity of a point P attached to the body which is 
instantaneously coincident with the origin O of the reference frame. A twist may be decomposed into its magnitude and 

its corresponding normalized screw. The twist magnitude, denoted as q&  in this study, is either the magnitude of the 

angular velocity of the body, ||ω|, if the kinematic pair is rotative or helical, or the magnitude of the linear velocity, 

||Vp||, if the kinematic pair is prismatic. The normalized screw, $̂ , is a twist in which the magnitude is factored out, i.e. 

 

q&$̂$ =  (1) 

 

 
 

Figure 1. Screw movement or twist. 
 

The normalized screw coordinates (Davidson, 2004) may be given by, 
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where, as above, the vector s=[sx sy sz]

T  denotes a unit vector along the direction of the screw  axis,  and  the  vector  
so=[sox soy soz]

T  denotes the position vector of a point lying on the screw axis. 
Thus, the twist given in Eq. (1) expresses the general spatial differential movement (velocity) of a rigid body with 

respect to an inertial reference frame O-xyz. The twist can also represent the movement between two adjacent links of a 

kinematic chain. In this case, the twist $i represents the movement of link i with respect to link ( )1−i . 

 

2.2. Davies’ method 

  
Davies’ method is a systematic way to relate the joint velocities in closed kinematic chains. Davies (Campos 2001) 

derives a solution to the differential kinematics of closed kinematic chains from the Kirchhoff circulation law for 
electrical circuits. The resulting Kirchhoff-Davies circulation law states that “The algebraic sum of relative velocities of 
kinematic pairs along any closed kinematic chain is zero” 5.  

We use this law to obtain the relationship between the velocities of a closed kinematic chain1. Thus, considering that 
the velocity of a link with respect to itself is null, the circulation law can be expressed as 

 

0$
1

=∑
=

n

i
i  (3) 

 
where 0 is a vector the dimension of which corresponds to the dimension of the twist $i. 

According to the normalized screw definition introduced above, Eq.(2) may be rewritten as 
 

0$̂
1

=∑
=

n

i
ii q&  (4) 
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where i$̂  and iq&  represent the normalized screw and the magnitude of  twist $i, respectively.  

Equation (4) is the constraint equation which, in general can be written as 
 

0=qN &  (5) 

 

where N=[
n$̂...$̂$̂ 21

] is the network matrix containing the normalized screws, the signs of which are dependent on 

the screw definition in the circuit orientation, and [ ]nqqqq &&&& ...21=  is the magnitude vector. 

A closed kinematic chain has actuated joints, here named primary joints, and passive joints, named secondary joints. 
The constraint equation, Eq. (5), allows the calculation of the secondary joint velocities as functions of the primary joint 
velocities. To this end, the constraint equation is rearranged highlighting the primary and secondary joint velocities and 
Eq. (5) is rewritten as follows: 
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where Np and Ns are the primary and secondary network matrices, respectively, and pq&  and sq&  are the corresponding 

primary and secondary magnitude vectors, respectively. 
Equation (6) can be rewritten as 
 

0=+ sspp qNqN &&  (7) 

 
The secondary joint position can be calculated by integrating Eq. (7) as follows: 

 

( ) ( ) dtqNNdtqqtq
t

pps

t

sss ∫∫
−

−==−
0

1

0
0 &&  (8) 

 
2.3. Assur virtual chain 

 
The Assur virtual kinematic chain concept, virtual chain for short, is essentially a tool to obtain information on the 

movement of a kinematic chain or to impose movements on a kinematic chain (Campos, 2005). 
This concept was first introduced by Campos et al (2005), which defines the virtual chain as a kinematic chain 

composed of links (virtual links) and joints (virtual joints) and which possesses the following three properties: a) the 
virtual chain is open; b) it has joints whose normalized screws are linearly independent; and c) it does not change the 
mobility of the real kinematic chain, in other words, it is an Assur group (Artobolevski, 1977). 

From the property c) the virtual chain proposed by Campos et al.(2005) is in fact an Assur group, i.e. a kinematic 
subchain with null mobility that when connected to another kinematic chain preserves mobility.  To represent the 
movements in the Cartesian system the 3P3R chain is used.  

The 3P3R virtual chain is composed of three orthogonal prismatic joints (in the x, y, and z directions), and a 
spherical wrist, composed of three rotative joints (in the x, y, and z directions). Fig. 2 shows the 3P3R Assur virtual 
chain with the virtual links Ci labeled. 
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Figure 2. 3P3R Assur virtual chain. 
 

Other Assur virtual chains can be fonded in Artobolevski (1977) and Davidson (2004). 
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2.4. The direct graph notation 
 

Consider a kinematic pair composed of two links Ei and Ei+1. This kinematic pair has the relative velocity defined 
for a screw R$j (joint j) in relation to a reference frame R. The joint j represents the relative movement of the link Ei with 
respect to the link Ei+1. This relation can be represented as a graph, as shown Fig. 3(a).  

Where vertices represent links and arcs represent joints. The relative movement is also indicated by the arcs 
directions. For instance in Fig. 3(a), the link Ei+1 moves with respect to link Ei via the joint j.    

 
 

 
 
 
 
 
 

(a) (b) 
 

Figure 3. (a) relative movement of link Ei with respect to link Ei+1 represented graphically;  
(b) relation between joint j and the circuits a and b. 

 
Now consider the following example, where the joint j is part of two closed chains. For each closed chain the circuit 

direction is defined (Campos, 2005). Fig. 3(b) shows an example. 
In a direct mechanism graph, if the joint has the same direction as the circuit, the twist associated with the joint has a 

positive sign in the circuit equation (Eq. (13)), and, if the joint has the opposite direction to the circuit, the sign will be 
negative.  

In the example the twist R$j, associated with the joint j, will have a positive sign in the circuit a equation and a 
negative sign in the circuit b equation.  
 
2.5. Integration algorithm using Assur virtual chains 
 

Simas (2008) presents a new integration algorithm integrate the differential kinematics equation to obtain the joint 
positions. The algorithm proposed has two steps. The first step is to introduce a virtual chain to represent the closure 
error. 

The constraint equation of this closed-loop chain results in:  
 

0=++ eesspp qNqNqN &&&  (9) 

 

where Np and Ns are the primary and secondary network matrices obtained by integration, pq&  and sq&  are the primary 

and secondary magnitude vectors, respectively, Ne is the error network matrix, and eq&  is the error magnitude vector. 

The second step is isolate the secondary magnitude vector to replace Eq. (9) by 
 

eeesppss qKNNqNNq
11 −−

+−= &&  (10) 

 
where the gain matrix Ke is chosen to be positive definite and qe is the position error vector. 

Applying the Euler integration method in Eq. (10) we obtain: 
 

tqtNtNtqtq pkpksksks ∆−= −−

−

−
&)()()()( 11

1
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−
)()( 11
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The proposed method is stable and allows the execution of several iterations until an admissible error is within the 

admissible tolerance (Simas, 2008). To uses this proposed method its necessary obtain the position error vector, that 
will be treated in the next subsection. 
 
2.6. Position error vector 

 
The screw displacement of a link in a kinematic chain can be expressed by a homogeneous matrix, and the resultant 

screw displacement in a link j can be calculated using the successive screw displacement method by premultiplying the 
homogeneous matrices corresponding to the preceding joint motions, i.e. 
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As in a closed loop chain, the first and the last links are the same, and the orientation and position of a link with 

respect to itself are given by a homogeneous matrix equal to the fourth-order identity matrix. In a closed-loop chain 
with np primary joints and ns secondary joints Eq.(12) the closed-loop equation results in: 
 

[ ] [ ] IAA
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== 11

 (13) 

 
where [Ap]i, i = 1…np are the homogeneous matrices corresponding to the primary joints, and [As]i, i = 1…ns are the 
homogeneous matrices corresponding to the secondary joints.  

We represent the closure error with a homogeneous matrix E, and the closed-loop equation becomes 
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The closure error is calculated by 
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where pe=[ pex pey pez ]

T is the position error vector and Re is the rotation matrix error. The matrix Re corresponds to 
errors measured in rex, rey and rez virtual rotative joints considering their structural conception. 

The “position” error (which is a posture error involving position and orientation) is given by the position error 
vector qe=[ rex rey rez pex pey pez ]

T. 
 
3. DIFFERENTIAL KINEMATICS MODELS 
 
3.1. Eclipse and Eclipse-II kinematic structures 

  
Eclipse (Fig. 4design consists of three PPRS serial subchains (P, R, and S here denote prismatic, revolute, and 

spherical joints respectively), with the first P joint denoting sliding motion along the circular guideway. The mechanism 
has six kinematic degrees of freedom; with the actuated joints are the prismatic joints (Park, 2001). The three kinematic 
subchains are connected to a triangular moving plate through S joints. 

 
Figure 4.  Eclipse kinematic conception. 

 
In Fig. 4, each subchain is indicated by the letters a, b and c;  pcj, pvj, rj and sj are the circular prismatic joint, vertical 

prismatic joint, rotative joint and spherical joint of subchain j=a,b,c respectively. 
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The Eclipse-II consists of three PPRS serial subchains that move independently on a fixed circular guide. The 
Eclipse-II has six degrees of freedom and six actuated joints. These joints are the three prismatic joints along the 
horizontal circular guide, two prismatic joint on the vertical columns, and another prismatic joint on the vertical circular 
column. All six actuated joints can be found in Fig. 5, and are indicated by arrows. The connecting links are attached to 
the circular and vertical columns, respectively, through revolute joints. The other ends of these links are mounted to the 
moving platform via three spherical joints. Mounting one circular column and two linear columns on the circular guide 
results in the Eclipse II having a large orientation workspace. The Fig. 5 presents the Eclipse-II. 

 
Figure 5. Eclipse-II kinematics structure. 

 
In Fig. 6, the subchains b and c have the same structure compares with subchains b and c from Eclipse. The 

difference is in subchain a which the second prismatic joint is mounted in a circular guide, similar to their first joint 
prismatic. This second joint will be indicated by pha identifier.  

 
3.2. Modelling the differential kinematics  
  

It was detected that the graph and Davies equation to the models of robots have the same structure. The difference is 
only in the definition of the screw of the prismatic joint of the second circular guide on the Eclipse-II. So, in following 
is presented the graph and the Davies that serves to both Eclipse and Eclipse-II.  

To define the differential and positions equation, were added an Assur virtual chain to conduct the moving plate, and 
for each subchain an error virtual chain, each one with six degrees of freedom. The Fig. 6 shows the graph.   
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Figure 6. Eclipse and Eclipse-II graph 
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where Lij indicates the link i on subchain j ; pcj is the prismatic circular joint of the subchain j; pvj is the prismatic 
vertical joint of the subchain j;  rj is the revolute joint of the subchain j and rxj, ryj, rzj are the rotative joint that represent 
the expansion of the movements from spherical joint of the subchain j. 

In agree with the graph and joint disposition, the Np and Ns matrixes could be obtained. To Eclipse the results are 
present in Eq. (16)  
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where [ ]zjyjxjrjvjcjj $$$$$$M ˆˆˆˆˆˆ= , is the set of unitary screws of the Eclipse subchain j, respectively to joints pcj, 

pvj, rj, rxj, ryj and rzj; [ ]rzjryrxpzpypxtj $$$$$$M ˆˆˆˆˆˆ= is the set of unitary screws of the virtual chain responsible by 

the trajectory generation of each Eclipse subchain; and the vectors ψj and ψtj are the velocities magnitudes from each i 
Eclipse subchain and from each j trajectory virtual chain, respectively. 

Must be explained that the five firstly screws from trajectory Assur virtual chains, are the same for the Eclipse 
subchains a, b and c. The sixthly screw, that represents the relative movement of the z-axis from 3P3R trajectory Assur 
virtual chain, is different to each Eclipse subchain. Depends on the shape of the end-effector plate, the z-axis must be 
summed of an angle, or a phase. The model here developed considers the end-effector plate an equilateral triangle and 
so the z-axis for each Eclipse subchain has summed phases 0o, 120o and -120o respectively for subchain a, b and c. For 

this reason the model just the screw rzj$̂  has indicated the indices j.  

To Eclipse-II has the graph structure presented on Fig. 6, with the difference on second joint of the subchain a. is 
substituted for the pha joint (for more details see Fig. 5). Consequently the circuit equation has the structure as shown in 

Eq(16), with the difference in Ma submatrix where the screw 
va$̂  is substituted for the 

ha$̂ . 

 
4. SINGULARITY ANALYSIS  

 
The complexity of the kinematic chain of the Eclipse and Eclipse-II are discussed by Kim, (1998) and Kim (2001) 

respectively. The singularities discusses about singularities are based on a geometric analysis and numerical 
approaches. The model presented on previous section allows to determinate the singularity condition for the forward 
and inverse kinematics.  
 

4.1 Inverse singularity analysis  

 
Observing the matrix structure presented on Eq (16), it can be seen that the secondary matrix are constituted of a set 

of submatrix disposed along of the principal diagonal. So, the inverse kinematic singularities can be evaluated 
calculating the determinant of submatrix Mj, that have the same structure for each subchain. The equation (17) shows 
this determinant. 

 

)sin()cos())cos(()( rjyjrjgj qqqrrrMD +−=  (17) 

 
where qrj is the position angle of the joint rj; r is the length of the link connected on vertical prismatic joint pvj and 
connected to the plate by the spherical sj joint and rg is the distance from the base to circular guide.  

From the Eq (16) presented can be observed that the singularity conditions occur for the following conditions: 
 

• qrj=0 rad; 

• qyj=π/2 rad; 

• r cos(qrj)=rg. 
 
This condition is similar to each subchain j for the Eclipse and for the subchain b and c for the Eclipe-II. Further 

analysis is performed for the subchain a of the Eclipse-II robot.  
Calculating the determinant of the submatrix of the Eclipse-II subchain a, has the following result: 
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where La is the displacement of the joint pha. 
According to the determinant Eq (17) the subchain a has the following singularities: 
 

• qra=0 rad; 

• qya=π/2 rad; 

• 













=














+

g

a
g

g

a
ra

r

L
r

r

L
qr coscos  

 
4.1 Direct singularity analysis  
 

Once again noting the result shown in Eq(16) can be seen that the primary matrix is constituted of submatrixes 
arranged on your main diagonal. So, the direct kinematic singularities can be evaluated calculating the determinant of 
submatrix Mti, that have the same structure for each subchain. The equation (19) shows this determinant. 
 

)cos()( ryti qMD −=  (19) 

 
where qdy is the desired displacement of the rotative ry joint of the virtual 3P3R trajectory generator chain.  

By this way, the singularity occurs when qdy =π/2.This result is applicable for both Eclipse and Eclipse-II. 
The results obtained here can solve both the direct as the inverse kinematics, using for both the numerical algorithm 

presented in Eq. (15). In the next section numerical simulations are presented to desired trajectory for the robots Eclipse 
and  Eclipse-II. 

 
5. EXPERIMANTAL SIMULATION  

 
To perform the numerical results the following dimension was adopted: 

• rg=20 cm 

• r=20 cm 

• Equilateral triangular plate with side = 310 cm 

 
The trajectory was programmed with 100 points, and is constituted of an ellipse in the XY plane together with a 

variation in Z axis and a constant orientation on X axis and Z axis direction according to the Eq (20).  
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The trajectory is shown in the Fig. 8. 
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Figure 8. Programmed position trajectory to Eclipse and Eclipse-II 

 
The next figure has shown a sample of a sequence of eight positions to Eclipse. 
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Figure 9. Sequence of eight positions of the robot Eclipse following the planned trajectory 
 

It should be noted that the end-effector movement is performed by the displacement of the vertical prismatic joints 
and its vertical support columns over the circular guide 

Figure 10 presents the profiles of prismatic joints position from the circular guide ring and from the vertical 
columns. 
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(a)    (b) 

Figure 10. Prismatic joint position: (a) circular guide prismatic joint (b) vertical prismatic joint 
 

Applying the same trajectory for the robot Eclipse-II it has a sample of the sequence of eight positions for the 
kinematic chain shown in Fig. 11. 
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Figure 11. Sequence of eight positions of the robot Eclipse-II following the planned trajectory 
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Similar to robot Eclipse, the movement of the end-effector is performed by displacement of the three vertical 
prismatic joints (including a prismatic joint with circular guide), and its respective columns movements in relation with 
the circular guide in the base. Figure 12 presents the profiles of prismatic joints position from the circular guide ring and 
from the vertical columns to Eclipse-II. 
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(a)                                                (b) 

Figure 12. Prismatic joint position to Eclipse-II: (a) circular prismatic joint  
(b) vertical prismatic joint including the circular prismatic joint pha 

 
3. CONCLUSION 

 
In this paper was presented an alternative kinematic differential model for the parallel robots Eclipse and Eclipse-II. 

The model discussed was based on Assur virtual chains and its obtaining was shown in a systematic way. 
Complementary the uses of an integration method, where closure error are controlled, allowed the compute of position 
joints and so, the references for the robots actuators.  

The results allow an implementation of an algorithm to generation of trajectory treating the inverse and forward 
singularity condition.  

The proposed model has the perspective, in the future, to apply on other complex robots, like Adept® Quattro, and 
PKM® Tricept.  

 
4. REFERENCES 

 
Altuzarra, O., Pinto, C., Avilés, R. and Hernández, A., 2004, “A Practical procedure to analyze singular configurations 

in closed kinematic chains”, IEEE Trans. on Robotics, Vol 20, No 6. 
Artobolevski, I.I., 1977 “Théorie des Mécanismes et des Machines”, Mir Publishers, Moscow. 
Campos, A.,Guenther R. and Martins D., 2005, “Differential kinematics of serial manipulators using virtual chains,” J. 

Brazilian Soc. Mechanical Sciences & Engineering, Vol 27, No 4, pp. 345-356 . 
Davidson, J. K. and K.H. Hunt, 2004, “Robots and screw theory: applications of kinematics and statics to robotic”, 

Oxford University Press Inc, New York. 
Gosselin, C. and Angeles, J., 1990, “Singularity Analysis of Closed-Loop Kinematic Chains”, IEEE Trans. on Robotics 

and Automation, Vol 6, No 3, pp-281-290. 
Gregorio, R. , 2005, “Forward problem singularities in parallel manipulators which generate SX–YS–ZS structures”, 

Mechanism and Machine Theory, Vol 40, No. 5, pp. 600–612. 
Kim, J. and Park, F.C., 1998, “Eclipse: A new parallel mechanism prototype”, Position Paper in Proc First European 

American Forum on Parallel Kinematic Machines, Milan, Italy. 
Kim, J., Hwang, J. C., Ki, J. S., Iurascu, C. C., Park, F. C. and Cho, Y. M., 2002, “Eclipse II: A New Parallel Mechanism 

Enabling Continuous 360-Degree Spinning Plus Three-Axis Translational Motions”, IEEE Trans. on Robotics and 
Automation , Vol. 18, No 3, pp. 367-373. 

Liu, G., Lou, Y. and Li, Z., 2003, “Singularities of Parallel Manipulators: A Geometric Treatment” , IEEE Trans. on  
Robotics and Automation, Vol 19, Issue 4, pp-579-597. 

Simas, H., 2008, “Planejamento de trajetórias e evitamento de colisão em tarefas de manipuladores redundantes 
operando em ambientes confinados”. PhD thesis, Universidade Federal de Santa Catarina. 

Wang, Y., 2006, “An Incremental Method for Forward Kinematics of Parallel Manipulators”, Proc. of the IEEE 
International Conference on Robotics, Automation and Mechantronics, Bangkok, Thailand, pp. 243-247. 

 
5. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the printed material included in this paper. 

t t 

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.719-728
Copyright © 2010 by ABCM


