
Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

An Open Control System for Manipulator Robots

Diego Caberlon Santini, diegos@ece.ufrgs.br
Walter Fetter Lages, w.fetter@ieee.org
Universidade Federal do Rio Grande do Sul
Departamento de Engenharia Elétrica
Av. Osvaldo Aranha, 103-90035-190 Porto Alegre, RS, Brasil

Abstract. In recent years, the demand for increased capability and flexibility has lead to an increase in the need for
controllers based on open architectures. The Open Robot Control Software (OROCOS) project was born as an effort to
match this demand. It is a general-purpose, open-source, modular framework for robot and machine control. In this
paper, we present an implementation of a robot controller using OROCOS. The system environment is the Linux operating
system with the RTAI real-time patch. The controller is based on a distributed architecture where each processing node is
associated to a joint of the robot. Hence, the system could beextended to other robots. The CANbus is used for real-time
data transfer such as sensor measurements and actuator commands. In OROCOS, each joint is mapped to a component
and can use all the features of the framework. This reduces the cost and work because it allows the reuse of elements
of an existing system. The paper present results of a controller implementation which illustrates the benefits of open
architecture systems.

Keywords: Open architecture, OROCOS, robotics, real-time control, manipulator

1. Introduction

The market of manipulator robots is dominated by closed architecture systems. A closed system is hard to modify,
and therefore total cost of ownership can be very high. This type of system may be desirable when the application is
well defined and is not expected to change over time (Ford 1994). However, properties like, flexibility, reconfigurability,
modularity and reusability have been demanded by industries and this has lead to a growing use of controllers based on
open architectures.

A open architecture approach allows for integration of new hardware or software components. Hence, the system
can be continually improved to follow the constant moving needs of modern industry. Another great benefit of open
controllers is the use of "Common of-the-shelf" (COTS) components (Miller 1993), which reduces the development time
and cost.

The Open Robot Control Software (OROCOS) project was born asan effort to create an open architecture robot control
system. It is a general-purpose, open-source, and modular framework for robot and machine control (Bruyninckx 2001).
The present work describes the use of OROCOS to build an open control system for a manipulator robot. The paper
describes the hardware developed to interface with the robot and the new OROCOS components created to integrate the
whole system.

This papers is organized as follows: Section 2 presents the robot where the control architecture was implemented.
Section 3 gives details about the hardware of the architecture. Section 4 introduces the OROCOS project, some back-
ground on how to build a component and some of the built-in components available in OROCOS. Section 5 describes
the new components created to integrate the hardware with OROCOS. Section 6 shows the system interconnection and
experimental results from a trajectory-tracking experiment. Conclusion and future works are described in Section 7.

2. The Janus Robot

The Janus robot, shown in figure 1, is used in this paper. It is an anthropomorphic two-armed robot, with eight degrees
of freedom in each arm, and a stereo vision system. The visionsystem shown in figure 2 consists of two links connected
in series by two revolute joints. Two cameras are attached tothe far-end of the chain. Each joint is driven by DC motors
and contains an incremental quadrature encoder and a reference index inductive switch.

3. The Proposed Control Architecture

The control architecture proposed in this paper is based on distributed processing nodes, called AIC, for each joint of
the robot. Each AIC drives a DC motor through a PWM converter and interfaces with an incremental quadrature encoder,
an index inductive switch and an electromagnetic brake.

A CANbus is used for real-time data transfer such as sensor measurements and actuator commands, between each AIC
and a host PC. CANbus is an open protocol (Xuemei and Liangzhong 2007) that has gained widespread popularity not
only in the automotive industry but also in the industrial automation arena. CAN has also proven that it fits very well into
the suite of field-buses or sensor/actuator buses because ofits low price, multiple suppliers, highly robust performance

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 1. Janus robot.

and already widespread acceptance. Priority arbitration,error detection and re-transmission are all handled by the CAN
controller hardware. Thus, the network may have a mechanismto ensure that the data transmission and reception is
uninterrupted.

A personal computer with an AMD Athlon 64 4000+ processor and1GB of RAM, running on Linux-2.6.22 with the
RTAI-3.6 real-time patch is used as host. The controller based on the OROCOS framework executes in the host PC. A
scheme of the connection between the host PC and the AICs nodes is shown in figure 3. More details about the hardware
and software can be found in (Santini and Lages 2008).

4. OROCOS

The OROCOS project is a general-purpose and open robot control software package and follows the Open Source
development model that has been proven to work for many othersoftware packages (Bruyninckx 2001). The OROCOS
rely on a ”divide and conquer“ approach and, as such, it relies on 4 supporting C++ libraries, as show in figure 4 :

The Orocos Real-Time Toolkit (RTT): provides the infrastructure and the functionalities to build robotics applications
in C++, with emphasis in real-time, on-line interactive andcomponent based applications (The OROCOS project
2009).

The Orocos Components Library (OCL): provides some components models for general purpose.

The Orocos Kinematics and Dynamics Library (KDL): allows for the calculation of kinematic chains in real-time.

The Orocos Bayesian Filtering Library (BFL): an independent framework for inference in Dynamic BayesianNet-
works.

In this paper, the RTT and OCL libraries are used in their version 1.8.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 2. Vision system of the Janus robot.

In
te

rr
up

t

M
ot

or

E
nc

od
er

B
ra

ke

AIC

In
te

rr
up

t

M
ot

or

E
nc

od
er

B
ra

ke

AIC

In
te

rr
up

t

M
ot

or

E
nc

od
er

B
ra

ke

AIC

In
te

rr
up

t

M
ot

or

E
nc

od
er

B
ra

ke

AIC

In
te

rr
up

t

M
ot

or

E
nc

od
er

B
ra

ke

AIC

Host PC

...

CAN Bus

Figure 3. Distributed control system. Figure 4. OROCOS libraries.

4.1 Real-Time Toolkit

The RTT is a middleware between the applications componentsand the operating system. It manages the communi-
cation, the execution flow and the configuration of components, as show in figure 5. In RTT, the interface of a component
consists of attributes, properties, commands, methods, events and data flow ports. The interface is shown in details in
figure 6. This library serves as a base to build an applicationupon.

A component model is a description of the component. It defines the interface, behavior, and implementation of the
component. It is built using primitives from RTT. A component is a modular and replaceable part of the system that
encapsulates the implementation and exposes its interfaces. Components are instantiated from component models.

Figure 5. OROCOS as middleware(Soetens 2009).

Attributes and properties are used to configure the component when it is instantiated from a component model, al-
though only properties can be written to and updated from a configuration file in XML format. In this way, it is possible to
store persistent states, i.e., values that are important tokeep between program executions, like the final joint position can
be the next initial position. Reading and writing properties and attributes is done in real-time but is not thread-safe.Hence
if a component reads a value while another component is updating such a value exactly at the same time, this could cause

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 6. Interface of a component(Soetens 2009).

a mutal exclusion problem, resulting in an unknown value on reading. Because of this, reading and writing properties
from for a running component are limited to the task own activity (Soetens 2009).

A command is a function that is executed asynchronously withrespect to the caller, running in the thread of the
command owner. Multiple commands, for the same component, are queued by RTT. Contrarywise, methods are intended
to be called synchronously by the caller, and execute like a function in the thread of the caller. Calling methods is done in
real-time but is not thread-safe and should, for a running component, be guarded with a Mutex if it’s functionality requires
so (Soetens 2009).

An event is a signal that is emitted to subscribers of that signal of the component. This allows for a reaction of other
components to a change in the system. One or more functions can be called when an event is triggered, and they can be
executed asynchronously or synchronously. Publishing andreacting to an event is done in real-time (Soetens 2009).

The data flow ports are the way to exchange information between components. A data flow can be read-only, write-
only or read-write, through buffered or unbuffered ports. Aread-only port can only be read in its component and cannot be
write. Reading and writing data ports is always done in real-time and is thread-safe (Soetens 2009). The table 1 resumes
the real-time characteristics for component interface.

Table 1. Real-time characteristics for component interface.

Interface Real-time Thread-safe Synchronous
Event yes n/a yes/no

Attributes/Properties yes no yes
Commands yes n/a no
Methods yes no yes

Data Ports yes yes yes

One component can only access the other component’s interface when it is connected as a ”peer“. This connection can
be uni-directional or bi-directional and allows the reaction of events, the sending of commands and the call of methods
from another component. However, the data flow ports should be connected to each other in a explicit way and do not
need to be connected as ”peer“. This is useful to build an interface for AIC component as described in section 5.

4.2 The OROCOS Components Library

The OCL is a set of components models contributed by users to the OROCOS project. This section explains the compo-
nents that are used in this work:TaskBrowser, DeploymentComponent, ReportingComponentandnAxesControllerPos.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

TaskBrowser
DeploymentComponent
ReportingComponent
nAxesControllerPos

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

4.2.1 Taskbrowser
TheTaskBrowser is a component model for user interaction with other components. WhenTaskBrowsercomponent

is connected to another component, it dynamically creates data ports and connects them to the other component. In this
way, it can read/write in data ports, send commands to and call methods from the other component.

4.2.2 DeploymentComponent
TheDeploymentComponent is a component model for loading and configuring other components through an XML

file or an OROCOS script. In general when an OROCOS application is created and two components are instantiated fromDeploymentComponentandTaskBrowsermodels. Then, theTaskBrowser component uses the XML file to command
theDeploymentComponent component to do the system configuration. TheDeploymentComponent component does
the basic tasks: creates the components of the system; makesthe interconnection between the components; configures the
properties of the components from a specific XML file for everycomponent; starts the components.

4.2.3 ReportingComponent
The ReportingComponent is a component model for monitoring and capturing data flow (from data-flow ports)

between OROCOS components. The data can be logged into a file,or can be printed in a console. The configuration of
what is logged and how data is captured is performed by a XML file. TheReportingComponent can be inserted into the
system by theDeploymentComponent component just like any other component.

4.2.4 nAxesGeneratorPos
This component generates paths between the current positions and new desired positions for multiple axes. It uses KDL

to compute the time interpolations. The paths of all axes aresynchronized, meaning that all axes movements are scaled in
time to the longest axis-motion. The interpolation uses a trapezoidal velocity profile using a maximum acceleration anda
maximum velocity, which are configured in a XML file as properties of this component, together with the number of axis.

This component has amoveTo(ve
tor positions, double time) command, which generates a new motion-
profile starting from the current position to the desired position with a minimum time. Besides, aresetPosition()
method resets the desired position to the current measured position and the desired velocity to zero, stopping the robot
motion.

ThenAxesGeneratorPos has two write-only data ports where the desired velocity andposition are received and one
read-only data port where the measured position is made available.

5. Components Models for Interface Janus to OROCOS

This section presents the components models that were buildto interface the Janus to OROCOS: AIC, Controller and
Bridge.

5.1 AIC Component Model

The AIC component model is an abstraction of the AIC hardware, show as block diagram in figure 7, details in (Santini
and Lages 2008), thus represents every device in AIC card. Besides, it has to be able to represent any joint in the robot,
independent of its details. For this, the AIC component model was created to grant flexibility and has a set of properties
that enable the configuration of the component for each jointof the robot. These properties are:

UARTPWM CAN

dsPIC30F4012

RS232 PCA82

Motor DB9 CANBUS

H bridge

Brake

Open Collector

Brake

Voltage Divider

Encoder

Encoder Index

Index

Figure 7. AIC block diagram.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

TaskBrowser
TaskBrowser
DeploymentComponent
DeploymentComponent
TaskBrowser
TaskBrowser
DeploymentComponent
DeploymentComponent
ReportingComponent
ReportingComponent
DeploymentComponent
nAxesGeneratorPos

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

JointNumber: The identification of the joint in the robot. Every AIC card has an ID number. This number identify the
joint.

Brake: Informs weather the joint has a brake. Some joints of Janus have an electromagnetic brake to hold the robot
position while it is in powered-off state. If the value of hisproperty is true, the AIC component releases the brake
on its initialization and applies on its finalization.

MotorSign: If true, inverts the sign of the voltage that is applied in thejoint. This is useful because it is desirable that
the motor turn in accordance with right hand rule and the Denavit Hartenberg Rules and the hardware is not always
wired following this convention.

EncoderSign: If true, inverts the sign of readings of the encoder. Similarto MotorSign.

GearRatio: The gear ratio between the motor and the robot axis. This is necessary because the encoder measures the
displacement of motor axis and the gear ratio is different for every joint.

InitialPosition: Initial position of the joint. Incremental quadrature encoder does not hold the absolute position and when
the AIC component is initialized, it assumes that the joint will be in this position. This can be extended to store the
last position of joint in the finalization of AIC component.

Each joint of Janus has an incremental encoder. This allows the measurement of the displacement of each joint and
the position by integrating the displacement along the time. These data are writen into two write-only data ports. Some
joints have an index inductive switch to detect the physicallimit for the joint. This data is writen in a write-only data
port. Furthermore, a write-only data port is used to make thevoltage value that is applied to the motor available to other
components. Note that all other components should only readthis port.

The action of AIC component is made through the methods interface. The methods interface is used because it is
synchronous with the caller, unlike the commands interface, and this is appropriate for a PID control strategy. The
methods correspond to functions performed by the devices embedded in AIC card, likeMotorSet(double voltage) to
actuate the motor andEn
oderRead(void) to update the position, displacement and index data ports.

5.2 PID Component Model

The PID component model is a implementation of a IndependentPID controller in joint space, including control signal
saturation. Each joint of the robot is treated as a single joint servomechanism. It is well-known that this control method
is not the most effective for high performance manipulators, but it is widely used in industrial applications (Fu, Gonzales
and Lee 1987) due to its simple implementation.

The PID controller involves three separate gains, shown in Equation (1): the proportionalKp, the integralKi and
derivativeKd. Theū is the saturation, which means the maximum admissible valueof the input. The error valuee(t) is
the difference between the desired value and the measured output.











u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kdė(t) , |u(t)| ≤ ū

u(t) = ū , u(t) > ū

u(t) = −ū , u(t) < −ū

(1)

The discrete form of PID algorithm is as show in Equation (2) (Hemerly 1996). This Equation has a better response
that the direct discretization on Equation (1) to systems with saturation constraints.











u[k] = u[k − 1] + kp(e[k] − e[k − 1]) + kie[k] + kd(e[k] − 2e[k − 1] + e[k − 2]) , |u[k]| ≤ ū

u[k] = ū , u[k] > ū

u[k] = −ū , u[k] < −ū

(2)

The PID component implements the Equation (2) without loss of generality by including all its parameters as properties
of PID controller. This way, every joint can have its own control law using the same component model. This grants more
extendibility for the whole system. Another property is defined to tie the controller to an specific AIC.

In order to exchange data between the AIC and PID components,the PID must to have the data ports similar to those
existing in AIC, but with a read-only permission. Besides, aread-only data port is used to receive the desired position
from nAxesGeneratorPos.

The PID component creates a periodic thread that receive thedesired position from nAxesGeneratorPos and the mea-
sured position from AIC. Then, it calculates the output value using Equation (2). The voltage is applied to the motor
through the methods in AIC.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

5.3 Bridge Component Model

In order to write the measured positions tonAxesGeneratorPos is necessary to put the AIC position in a vector
format. The bridge component models has the purpose of convert data formats between robot-oriented built-in OROCOS
components and the joint-oriented custom components such as PID and AIC. It has two read-only data ports of double
to read the AICs positions and one write-only data port to write the vector with this positions. When a AIC component
writes on its position data port, a interrupt occurs immediately and the vector of measured positions is updated too.

6. Experimental Results

The experimental system, shown in Figure 8, is used to control the vision system of the Janus robot. The system
configuration is done with theDeploymentComponentcomponent (Deployer) via a script and XML files. For each joint,
an AIC component is created with its respective properties.Then the PID components are created and connected to their
correspondent AIC, which grants them access to AIC’s methods. Furthermore, thenAxesGeneratorPos component,ReportingComponent component (Reporter), the bridge component are inserted into the system.

index <bool>
positon <double>
displacement <double>
voltage<double>

Data Ports

Methods
EncoderRead(void)
MotorSer(double)

AIC Component

index <bool>
positon <double>
displacement <double>
voltage<double>

Data Ports

Methods
EncoderRead(void)
MotorSer(double)

AIC Component

displacement <double>

Law
Control

positon <double>
desired positon <vector>

Data Ports

PID Component

AIC Methods

displacement <double>

Law
Control

positon <double>
desired positon <vector>

Data Ports

PID Component

AIC Methods

measured position <vector>

Data Ports

Bridge Component

position1 <double>
position2 <double>

Data Ports

Methods

Commands

moveTo(pos,time)

resetPosition()

desired positon <vector>
measured position <vector>

nAxesGeneratorPos
��
��
��
��

��
��
��
��

����
����
����
����
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
���
���
���
���

�
�
�

�
�
�

Janus

TASKBROWSER FILEUSER REPORTER

Figure 8. System.

All the data ports connections are done through a configuration file in XML format. TheReporter is connected to
AICs to receive all the AICs status. It will be responsible for store this informations in log files. TheTaskBroswer
component is used as user interface, it can be connected and used to send commands tonAxesGeneratorPoscomponent
by the user. When a command is send, thenAxesGeneratorPos component will write new desired positions, that will
be the reference for PIDs components.

The performance of the system is evaluated by a trajectory-tracking experiment. From the initial position, a new
position is commanded to the joints of the robot, and the generated trajectory and the measured trajectory are compared
in figures 9 and 10.

The performance of system is evaluated through the following criterions: integral absolute error criterion (IAE),
integral time absolute error (ITAE), integral squared error (ISE) and integral time squared error (ITSE). The results are

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

nAxesGeneratorPos
DeploymentComponent
Deployer
nAxesGeneratorPos
ReportingComponent
Reporter
Reporter
TaskBroswer
nAxesGeneratorPos
nAxesGeneratorPos

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

shown in table 2. In all cases, the results of the criterions is very small if compared to the excursion of every joint.

Table 2. System performance.

Criterion Joint 1 Joint 2
IAE 0.0213 2.3584× 10−5

ITAE 0.0271 0.0149
ISE 0.0012 5.5622× 10−10

ITSE 0.0014 4.8340× 10−4

Figure 9. Trajectory-tracking of joint 1.

The generated and the measured trajectories are very close in both joints and this demonstrates that the performance
of the system is satisfactory.

7. Conclusions and Future Work

An open architecture controller for the Janus robot was presented in this paper. By using the OROCOS and the
component-based paradigm, it was possible to achieve:

• a reduced project time, due to the reuse of components, like reporter, avoiding the need to build these features. The
RTT layer allows for working in real-time and to dealing withcommunications among threads without knowing all
the the details of the implementation.

• an easily extension to other manipulator robots due to the facility of add more AIC components to control more
joints.

The system was designed as a base for more complex work. In future developments, other approaches for control, like
strategies using the dynamic model of the robot, will be implemented.

8. REFERENCES

Bruyninckx, H.: 2001, Open robot control software: the orocos project,Proceedings of the 2001 IEEE International
Conference on Robotics and Automation, Vol. 3, Piscataway, NJ, USA: IEEE Press, Seoul, Coréia, pp.2523–2528.

Ford, W.: 1994, What is an open architecture robot controller?,Proceedings of the 1994 IEEE International Symposium
on Intelligent Control, Piscataway, NJ, USA: IEEE Press, Columbus, USA, pp. 27–32.

Fu, K. S., Gonzales, R. C. and Lee, C. S. G.: 1987,Robotics Control, Sensing, Vision and Intelligence, Industrial Engi-
neering Series, McGraw-Hill, New York.

Hemerly, E. M.: 1996,Controle por Computador de Sistemas Dinâmicos, Edgard-Blücher.
Miller, D.: 1993, Standards and guidelines for intelligentrobotic architectures,Proceedings of AIM Space Programs and

Technologies Conference and Exhibit.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 10. Trajectory-tracking of joint 2.

Santini, D. C. and Lages, W. F.: 2008, A distributed robot control architecture using RTAI,Proccedings of the Tenth
Real-Time Linux Workshop, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Mexico, pp. 1–5.
Available at<http://www.osadl.org/fileadmin/events/rtlws-2008/p19.pdf>.

Soetens, P.: 2009, The orocos component builder’s manual,Technical report, Flanders’ Mechatronics Technology Centre.
Available at<http://www.oro
os.org/stable/do
umentation/rtt/
urrent/do
-xml/oro
os-
omponents-manual.pdf>

The OROCOS project: 2009. <http://www.oro
os.org/> [Online; accessed 27-Abr-2009].
Xuemei, L. and Liangzhong, J.: 2007, Study on control systemarchitecture of modular robot,IEEE International Con-

ference on Robotics and Biomimetics, Piscataway, NJ, USA: IEEE Press, Sanya, China, pp. 508–512.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

<http://www.osadl.org/fileadmin/events/rtlws-2008/p19.pdf>
<http://www.orocos.org/stable/documentation/rtt/current/doc-xml/orocos-components-manual.pdf>
http://www.orocos.org/

	Introduction
	The Janus Robot
	The Proposed Control Architecture
	OROCOS
	Real-Time Toolkit
	The OROCOS Components Library
	Taskbrowser
	DeploymentComponent
	ReportingComponent
	nAxesGeneratorPos

	Components Models for Interface Janus to OROCOS
	AIC Component Model
	PID Component Model
	Bridge Component Model

	Experimental Results
	Conclusions and Future Work
	REFERENCES

