ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

An Open Control System for Manipulator Robots

Diego Caberlon Santini, diegos@ece.ufrgs.br

Walter Fetter Lages, w.fetter @ieee.org

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Av. Osvaldo Aranha, 103-90035-190 Porto Alegre, RS, Brasil

Abstract. In recent years, the demand for increased capability andbilléy has lead to an increase in the need for
controllers based on open architectures. The Open Robotr@doftware (OROCOS) project was born as an effort to
match this demand. It is a general-purpose, open-sourcelutao framework for robot and machine control. In this
paper, we present an implementation of a robot controlléng©ROCOS. The system environment is the Linux operating
system with the RTAI real-time patch. The controller is bdas®a distributed architecture where each processing nede i
associated to a joint of the robot. Hence, the system coukktEnded to other robots. The CANbus is used for real-time
data transfer such as sensor measurements and actuator andsnin OROCOS, each joint is mapped to a component
and can use all the features of the framework. This reducesdst and work because it allows the reuse of elements
of an existing system. The paper present results of a céetiohplementation which illustrates the benefits of open
architecture systems.

Keywords. Open architecture, OROCOS, robotics, real-time contr@nipulator
1. Introduction

The market of manipulator robots is dominated by closeditacture systems. A closed system is hard to modify,
and therefore total cost of ownership can be very high. Typs of system may be desirable when the application is
well defined and is not expected to change over time (Ford)L3%awever, properties like, flexibility, reconfigurabylit
modularity and reusability have been demanded by indssamel this has lead to a growing use of controllers based on
open architectures.

A open architecture approach allows for integration of newdivare or software components. Hence, the system
can be continually improved to follow the constant movingade of modern industry. Another great benefit of open
controllers is the use of "Common of-the-shelf" (COTS) comgnts (Miller 1993), which reduces the development time
and cost.

The Open Robot Control Software (OROCOS) project was boama&dfort to create an open architecture robot control
system. It is a general-purpose, open-source, and modataefvork for robot and machine control (Bruyninckx 2001).
The present work describes the use of OROCOS to build an opainot system for a manipulator robot. The paper
describes the hardware developed to interface with thet b the new OROCOS components created to integrate the
whole system.

This papers is organized as follows: Section 2 presentsabet where the control architecture was implemented.
Section 3 gives details about the hardware of the architect8ection 4 introduces the OROCOS project, some back-
ground on how to build a component and some of the built-in maments available in OROCOS. Section 5 describes
the new components created to integrate the hardware with@S. Section 6 shows the system interconnection and
experimental results from a trajectory-tracking expenim€onclusion and future works are described in Section 7.

2. The Janus Robot

The Janus robot, shown in figuie 1, is used in this paper. it @dhropomorphic two-armed robot, with eight degrees
of freedom in each arm, and a stereo vision system. The vigistem shown in figufd 2 consists of two links connected
in series by two revolute joints. Two cameras are attachéletdar-end of the chain. Each joint is driven by DC motors
and contains an incremental quadrature encoder and ameéeiredex inductive switch.

3. The Proposed Control Architecture

The control architecture proposed in this paper is basedstrilbdited processing nodes, called AIC, for each joint of
the robot. Each AIC drives a DC motor through a PWM conventeriaterfaces with an incremental quadrature encoder,
an index inductive switch and an electromagnetic brake.

A CANbus is used for real-time data transfer such as sensasunements and actuator commands, between each AIC
and a host PC. CANbus is an open protocol (Xuemei and LiangzR2607) that has gained widespread popularity not
only in the automotive industry but also in the industrigicamation arena. CAN has also proven that it fits very well into
the suite of field-buses or sensor/actuator buses becalitsel@fs price, multiple suppliers, highly robust perforntan

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Figure 1. Janus robot.

and already widespread acceptance. Priority arbitraimoy detection and re-transmission are all handled by #s C
controller hardware. Thus, the network may have a mechatosemsure that the data transmission and reception is

uninterrupted.

A personal computer with an AMD Athlon 64 4000+ processor &6 of RAM, running on Linux-2.6.22 with the
RTAI-3.6 real-time patch is used as host. The controlleetdam the OROCOS framework executes in the host PC. A
scheme of the connection between the host PC and the AICs iosleown in figurgl3. More details about the hardware
and software can be found in (Santini and Lages 2008).

4. OROCOS

The OROCOS project is a general-purpose and open robototauatitware package and follows the Open Source
development model that has been proven to work for many atiftware packages (Bruyninckx 2001). The OROCOS
rely on a "divide and conquer* approach and, as such, itselie4 supporting C++ libraries, as show in figkire 4 :

The OrocosReal-Time Toolkit (RTT): provides the infrastructure and the functionalities tddubbotics applications
in C++, with emphasis in real-time, on-line interactive ammainponent based applicationthe OROCOS project

20009).
The Orocos ComponentsLibrary (OCL): provides some components models for general purpose.
The OrocosKinematicsand DynamicsLibrary (KDL): allows for the calculation of kinematic chains in real-time

The OrocosBayesian Filtering Library (BFL): an independent framework for inference in Dynamic Bayediat
works.

In this paper, the RTT and OCL libraries are used in theirioers.8.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Figure 2. Vision system of the Janus robot.

Motor
[Encoder |
{Interrupt]
(Brake |

Motor
[Encoder |

D
(Brake |

Motor
{Encoder |
{interrupt |
(Brake |

Motor
[Encoder |

D

(Brake |

Motor
{Encoder |

D
(Brake |

RealTime
Toolkit

AIC AIC AIC AIC | ... | AIC Ccmpfgnenfs
r
Control
CAN Bus

Kinematics Bayesian
Dynamics Filtering
Host PC Library Library

Figure 3. Distributed control system. Figure 4. OROCOS libraries.

4.1 Real-Time Toolkit

The RTT is a middleware between the applications comporseritthe operating system. It manages the communi-
cation, the execution flow and the configuration of composieast show in figudg 5. In RTT, the interface of a component
consists of attributes, properties, commands, methoasyte\and data flow ports. The interface is shown in details in
figure[@. This library serves as a base to build an applicatfmm.

A component model is a description of the component. It defthe interface, behavior, and implementation of the
component. It is built using primitives from RTT. A componés a modular and replaceable part of the system that
encapsulates the implementation and exposes its intstrf@@nponents are instantiated from component models.

components configuration

middleware

Figure 5. OROCOS as middleware(Soetens 2009).

Attributes and properties are used to configure the compgameen it is instantiated from a component model, al-
though only properties can be written to and updated fromméigaration file in XML format. In this way, it is possible to
store persistent states, i.e., values that are importdwdp between program executions, like the final joint pasitian
be the next initial position. Reading and writing propestiad attributes is done in real-time but is not thread-$4éace
if a component reads a value while another component is imgpstich a value exactly at the same time, this could cause

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

Public Implementation
... e l [
i « React Events emit : :
< State Machines,
: ﬁ | Programs,
i : BW Functions,
| Execution I Attributes, [€— Commands
RF::‘:W | P Properties
: - l | TExecutes
State Machines, l
Programs and . Send Queued
Functions I .) Commands 4)-
running in : |
Pear map ko
Task Contexts | Call ' > P
' Methods
—_— = | C++ Class Methods
i : ~ Read/Write |
i Data | Data-Flow |g Read-Write { R-W)
i i Flow Ports
Eessssssssssssassssnmssannnannnnnnn s — v — A TaS.k cont&xt
A Task's
Peers

Erowsing getPeers(),
& Managing : | addPeert],

Figure 6. Interface of a component(Soetens 2009).

a mutal exclusion problem, resulting in an unknown value eading. Because of this, reading and writing properties
from for a running component are limited to the task own aigti{Soetens 2009).

A command is a function that is executed asynchronously vé#ipect to the caller, running in the thread of the
command owner. Multiple commands, for the same componengueued by RTT. Contrarywise, methods are intended
to be called synchronously by the caller, and execute likenatfon in the thread of the caller. Calling methods is done i
real-time but is not thread-safe and should, for a runnimgganent, be guarded with a Mutex if it’s functionality rexps
so (Soetens 2009).

An event is a signal that is emitted to subscribers of thataligf the component. This allows for a reaction of other
components to a change in the system. One or more functionsecaalled when an event is triggered, and they can be
executed asynchronously or synchronously. Publishing@acting to an event is done in real-time (Soetens 2009).

The data flow ports are the way to exchange information betweenponents. A data flow can be read-only, write-
only or read-write, through buffered or unbuffered portseAd-only port can only be read in its component and cannot be
write. Reading and writing data ports is always done in teaé and is thread-safe (Soetens 2009). The f@ble 1 resumes
the real-time characteristics for component interface.

Table 1. Real-time characteristics for component intexfac

Interface Real-time| Thread-safe Synchronous
Event yes n/a yes/no
Attributes/Properties yes no yes
Commands yes n/a no
Methods yes no yes
Data Ports yes yes yes

One component can only access the other component’s icéarfiaen it is connected as a "peer”. This connection can
be uni-directional or bi-directional and allows the reantdf events, the sending of commands and the call of methods
from another component. However, the data flow ports shoelddmnected to each other in a explicit way and do not
need to be connected as "peer*. This is useful to build amfaxte for AIC component as described in section 5.

4.2 The OROCOS ComponentsLibrary

The OCL is a set of components models contributed by usehet@ROCOS project. This section explains the compo-
nents that are used in this wolkaskBrowser, DeploymentComponent, ReportingComponent andnAxesControllerPos.

TaskBrowser
DeploymentComponent
ReportingComponent
nAxesControllerPos

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

4.2.1 Taskbrowser

TheTaskBrowserlis a component model for user interaction with other comptsméVheriraskBrowser/component
is connected to another component, it dynamically creadés ports and connects them to the other component. In this
way, it can read/write in data ports, send commands to ahdedhods from the other component.

4.2.2 DeploymentComponent

TheDeploymentComponent] is a component model for loading and configuring other coreptsthrough an XML
file or an OROCOS script. In general when an OROCOS applicéioreated and two components are instantiated from
DeploymentComponent andTaskBrowser models. Then, th€askBrowserlcomponent uses the XML file to command
theDeploymentComponent component to do the system configuration. D@ LoymentComponent component does
the basic tasks: creates the components of the system; tiekieserconnection between the components; configures the
properties of the components from a specific XML file for eveoynponent; starts the components.

4.2.3 ReportingComponent

TheReportingComponent is a component model for monitoring and capturing data flown{f data-flow ports)
between OROCOS components. The data can be logged into arfdan be printed in a console. The configuration of
what is logged and how data is captured is performed by a XML TiheReportingComponent can be inserted into the
system by thidepLoymentComponent component just like any other component.

4.2.4 nAxesGeneratorPos

This component generates paths between the current pussitial new desired positions for multiple axes. It uses KDL
to compute the time interpolations. The paths of all axeswnehronized, meaning that all axes movements are scaled in
time to the longest axis-motion. The interpolation usespdroidal velocity profile using a maximum accelerationand
maximum velocity, which are configured in a XML file as profestof this component, together with the number of axis.

This component has moveTo (vector positions, double time) command, which generates a new motion-
profile starting from the current position to the desiredifms with a minimum time. Besides, BesetPosition()
method resets the desired position to the current measwstgn and the desired velocity to zero, stopping the robot
motion.

ThenAxesGeneratorPos has two write-only data ports where the desired velocity@ogition are received and one
read-only data port where the measured position is madt&ahbiai

5. Components Modelsfor Interface Janusto OROCOS

This section presents the components models that weretbuitterface the Janus to OROCOS: AIC, Controller and
Bridge.

5.1 AIC Component Model

The AIC component model is an abstraction of the AIC hardystrew as block diagram in figut® 7, details in (Santini
and Lages 2008), thus represents every device in AIC carsidBg it has to be able to represent any joint in the robot,
independent of its details. For this, the AIC component nha@es created to grant flexibility and has a set of properties
that enable the configuration of the component for each @ittte robot. These properties are:

dsPI C30F4012
PWM ‘ Encode* Brake ‘ Index ‘ UART ‘ CAN
E@ ‘Open Collector‘Voltage Divider | RS232 ‘ PCAS82 ‘

Motor Encoder Brake Index DB9 CANBUS
Figure 7. AIC block diagram.

TaskBrowser
TaskBrowser
DeploymentComponent
DeploymentComponent
TaskBrowser
TaskBrowser
DeploymentComponent
DeploymentComponent
ReportingComponent
ReportingComponent
DeploymentComponent
nAxesGeneratorPos

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

JointNumber: The identification of the joint in the robot. Every AIC cardshan ID number. This number identify the
joint.
Brake: Informs weather the joint has a brake. Some joints of Janus ha electromagnetic brake to hold the robot

position while it is in powered-off state. If the value of usoperty is true, the AIC component releases the brake
on its initialization and applies on its finalization.

Motor Sign: If true, inverts the sign of the voltage that is applied in jhiat. This is useful because it is desirable that
the motor turn in accordance with right hand rule and the Dightartenberg Rules and the hardware is not always
wired following this convention.

Encoder Sign: If true, inverts the sign of readings of the encoder. Sintida¥otorSign.

GearRatio: The gear ratio between the motor and the robot axis. Thisdessary because the encoder measures the
displacement of motor axis and the gear ratio is differenef@ry joint.

InitialPosition: Initial position of the joint. Incremental quadrature edeodoes not hold the absolute position and when
the AIC component is initialized, it assumes that the joiilt e in this position. This can be extended to store the
last position of joint in the finalization of AIC component.

Each joint of Janus has an incremental encoder. This alloevsneasurement of the displacement of each joint and
the position by integrating the displacement along the tifffeese data are writen into two write-only data ports. Some
joints have an index inductive switch to detect the phydicait for the joint. This data is writen in a write-only data
port. Furthermore, a write-only data port is used to makestiage value that is applied to the motor available to other
components. Note that all other components should onlytigagbort.

The action of AIC component is made through the methodsfater The methods interface is used because it is
synchronous with the caller, unlike the commands intetfarel this is appropriate for a PID control strategy. The
methods correspond to functions performed by the devicéedded in AIC card, likélotorSet (double voltage) to
actuate the motor arithcoderRead (void) to update the position, displacement and index data ports.

5.2 PID Component M odel

The PID component model is a implementation of a Indeperf@@ntontroller in joint space, including control signal
saturation. Each joint of the robot is treated as a singlg ggérvomechanism. It is well-known that this control metho
is not the most effective for high performance manipulatbus it is widely used in industrial applications (Fu, Goleza
and Lee 1987) due to its simple implementation.

The PID controller involves three separate gains, showngmalEion [1): the proportiondk’,, the integralK; and
derivative ;. Thew is the saturation, which means the maximum admissible \@fltiee input. The error value(t) is
the difference between the desired value and the measutedtou

a 1)

The discrete form of PID algorithm is as show in Equatidn 2&rherly 1996). This Equation has a better response
that the direct discretization on Equati@h (1) to systenth waturation constraints.

ulk] = ulk — 1] + kp(e[k] — e[k — 1]) + kie[k] + ka(e[k] — 2e[k — 1] + e[k — 2]) ,|u[k]| <u
k] u (2)
k] =—u ,ulk

Il

I~}
=

ol

ul

ul

The PID componentimplements the Equatldn (2) without Iég®aerality by including all its parameters as properties
of PID controller. This way, every joint can have its own gohtaw using the same component model. This grants more
extendibility for the whole system. Another property is defi to tie the controller to an specific AIC.

In order to exchange data between the AIC and PID comporteet®|D must to have the data ports similar to those
existing in AIC, but with a read-only permission. Besidesead-only data port is used to receive the desired position
from nAxesGeneratorPos.

The PID component creates a periodic thread that receivédsieed position from nAxesGeneratorPos and the mea-
sured position from AIC. Then, it calculates the output ealising Equation{2). The voltage is applied to the motor
through the methods in AIC.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

5.3 Bridge Component Model

In order to write the measured positionsnfxesGeneratorPos is necessary to put the AIC position in a vector
format. The bridge component models has the purpose of cosea formats between robot-oriented built-in OROCOS
components and the joint-oriented custom components ssiehaand AIC. It has two read-only data ports of double
to read the AICs positions and one write-only data port tdemtie vector with this positions. When a AIC component
writes on its position data port, a interrupt occurs immeadjgand the vector of measured positions is updated too.

6. Experimental Results

The experimental system, shown in Figlife 8, is used to cbiiteovision system of the Janus robot. The system
configuration is done with thigep loymentComponent componenteployer) via a script and XML files. For each joint,
an AIC component is created with its respective properfiéen the PID components are created and connected to their
correspondent AIC, which grants them access to AlIC’s methdédirthermore, theAxesGeneratorPos component,
ReportingComponent] componentReporter), the bridge component are inserted into the system.

Figure 8. System.

All the data ports connections are done through a configandilie in XML format. TheReporter]is connected to
AICs to receive all the AICs status. It will be responsible &ore this informations in log files. TlEaskBroswerl
componentis used as user interface, it can be connectedsaddaisend commandsiaxesGeneratorPos component
by the user. When a command is send,iidgesGeneratorPos component will write new desired positions, that will
be the reference for PIDs components.

The performance of the system is evaluated by a trajectagking experiment. From the initial position, a new
position is commanded to the joints of the robot, and the ge@ad trajectory and the measured trajectory are compared
in figured® and0.

The performance of system is evaluated through the follgvariterions: integral absolute error criterion (IAE),
integral time absolute error (ITAE), integral squared eft8E) and integral time squared error (ITSE). The resulés a

nAxesGeneratorPos
DeploymentComponent
Deployer
nAxesGeneratorPos
ReportingComponent
Reporter
Reporter
TaskBroswer
nAxesGeneratorPos
nAxesGeneratorPos

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

shown in tabl€R. In all cases, the results of the criterisn@iy small if compared to the excursion of every joint.

Table 2. System performance.

Criterion | Joint 1 Joint 2
IAE 0.0213 | 2.3584 x 10~°
ITAE 0.0271 0.0149

ISE 0.0012 | 5.5622 x 1010
ITSE 0.0014 | 4.8340 x 10~ 4

4 T T
Measured Position
Desired Position -~

25 -

Position {rad)
n
T

05 -

Time (s)

Figure 9. Trajectory-tracking of joint 1.

The generated and the measured trajectories are very oltsghi joints and this demonstrates that the performance
of the system is satisfactory.

7. Conclusions and Future Work

An open architecture controller for the Janus robot wasemresl in this paper. By using the OROCOS and the
component-based paradigm, it was possible to achieve:

e areduced project time, due to the reuse of components dit@rter, avoiding the need to build these features. The
RTT layer allows for working in real-time and to dealing witbmmunications among threads without knowing all
the the details of the implementation.

e an easily extension to other manipulator robots due to tbidéitfaof add more AIC components to control more
joints.

The system was designed as a base for more complex work ulrefdévelopments, other approaches for control, like
strategies using the dynamic model of the robot, will be enpénted.

8. REFERENCES

Bruyninckx, H.: 2001, Open robot control software: the @®@roject,Proceedings of the 2001 IEEE International
Conference on Robotics and Automatival. 3, Piscataway, NJ, USA: IEEE Press, Seoul, Coréia2pp3—2528.

Ford, W.: 1994, What is an open architecture robot contrg|lroceedings of the 1994 IEEE International Symposium
on Intelligent Control Piscataway, NJ, USA: IEEE Press, Columbus, USA, pp. 27-32.

Fu, K. S., Gonzales, R. C. and Lee, C. S. G.: 1®adhotics Control, Sensing, Vision and Intelligeneelustrial Engi-
neering Series, McGraw-Hill, New York.

Hemerly, E. M.: 1996Controle por Computador de Sistemas Dinamjdedgard-Blicher.

Miller, D.: 1993, Standards and guidelines for intelligesthotic architecture$lroceedings of AIM Space Programs and
Technologies Conference and Exhibit

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.490-498
Copyright © 2010 by ABCM

35

T
Maasured Position
Desired Position

Position {rad)

Time (s)

Figure 10. Trajectory-tracking of joint 2.

Santini, D. C. and Lages, W. F.: 2008, A distributed robottowrarchitecture using RTAIProccedings of the Tenth
Real-Time Linux Worksheentro Universitario del Norte, Universidad de Guada#j&olotlan, Mexico, pp. 1-5.
Available al<http://www.osadl.org/fileadmin/events/rtlws-2008/p19.pdf>.
Soetens, P.: 2009, The orocos component builder's maneinical reportFlanders’ Mechatronics Technology Centre.
Available ai<http://www.orocos.org/stable/documentation/rtt/current/doc-xml/orocos-components-manual . p
The OROCOS projec2009. <http://www.orocos.org/> [Online; accessed 27-Abr-2009].
Xuemei, L. and Liangzhong, J.: 2007, Study on control systechitecture of modular robotEEE International Con-
ference on Robotics and BiomimetiBsscataway, NJ, USA: IEEE Press, Sanya, China, pp. 508-512

<http://www.osadl.org/fileadmin/events/rtlws-2008/p19.pdf>
<http://www.orocos.org/stable/documentation/rtt/current/doc-xml/orocos-components-manual.pdf>
http://www.orocos.org/

	Introduction
	The Janus Robot
	The Proposed Control Architecture
	OROCOS
	Real-Time Toolkit
	The OROCOS Components Library
	Taskbrowser
	DeploymentComponent
	ReportingComponent
	nAxesGeneratorPos

	Components Models for Interface Janus to OROCOS
	AIC Component Model
	PID Component Model
	Bridge Component Model

	Experimental Results
	Conclusions and Future Work
	REFERENCES

