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Abstract. With the evolution of computational technology, the implementation of predictive control techniques in systems
with fast dynamic became viable. In this formulation, the control action is obtained on line by the minimization of a
constrained quadratic performance index within a receding horizon. The main advantage of these techniques is the
possibility to deal with input/output constraints explicitly. The standard model predictive control (MPC) scheme does not
consider model uncertainties, which can be caused by modeling simplifications or system faults. Among the formulations
proposed to address this problem, linear matrix inequalities (LMI) techniques have become very popular. This work
employs an LMI-based robust MPC approach for regulation of a magnetic levitation system with gain uncertainty. In order
to achieve offset-free regulation, the plant model was augmented with an additional state associated to the accumulated
error. However, such modification, which amounts to including integral control action, can cause windup problems that
substantially increase the settling time. To circumvent this inconvenience, an anti-windup scheme was proposed. For this
purpose, the error integrator is reset when the plant state approaches the boundaries of the feasible region. A modification
was also introduced to allow the inclusion of an overshoot constraint in the MPC formulation. This is not possible in the
basic LMI technique, which only handles symmetric output constraints. The proposed approach was evaluated by using
a simulation model of a magnetic levitation system. The results show that the use of a robust MPC formulation may
be indeed necessary to prevent constraint violations in the presence of uncertainties such as gain mismatch between the
design model and the plant. Moreover, it was notice that the proposed anti-windup scheme is capable reducing the settling
time without introducing steady-state errors.
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1. INTRODUCTION

Magnetic levitation technology has found increased applicability in various industrial and scientific sectors. The main
motivation for use of this technology has been the advantages of magnetic actuators, such as their non-contact actuation
(Rocha et al., 2008) and possibility of handling large loads. Applications can be found, for example in high-speed
transportation (Holmer, 2003), self-bearing blood pumps (Masuzawa et al., 2003) and micro robots (Khamesse et al.,
2002).

In the control of such systems, it is necessary to consider the plant operation constraints, for instance the controller
must avoid collision between the attraction system and the suspended object, while the gap must be the smallest possible
to obtain a good electromechanical conversion.

The application of predictive control strategies allows the explicit treatment of physical and operational constraints
(Maciejowski, 2002) (Rossiter, 2003), which makes it an attractive solution for the magnetic levitation control problems.
Indeed, such approach was used in Miura (2003) for the didactic magnetic levitation system control shown in Fig. 1.
This work was complemented by Fama et al. (2005), whose paper included integral control action and a noise sensitivity
analysis, by Afonso and Galvão (2007), with the handling of non-feasibility problem, and more recently, by Matos, Galvão
and Yoneyama (2008) who dealt with uncertainties caused by gain mismatches between the design model and the actual
plant.

In the present work, an LMI-based robust MPC approach is employed for regulation of a magnetic levitation system
under uncertainty in gain. The design model is augmented with an additional state associated to the accumulated error
to achieve offset-free regulation. An anti-windup mechanism is proposed to circumvent the increase in settling time
caused by the integral control action. A scheme is also proposed to allow the inclusion of an overshoot constraint in the
LMI-based MPC formulation. Simulation results show that the use of the proposed robust MPC formulation can succeed
preventing constraint violations in the presence of gain mismatches between the nominal model and the actual plant. The
LMI-based approach was found to be favorably comparable with a finite-horizon robust formulation.

2. DESCRIPTION AND MODELING OF THE PROCESS

The plant used in this work is the magnetic levitation system produced by FeedbackTM. It consists of an electromagnet,
a current driver, a photo-emitter, a photo-receiver and a control system, as shown in Fig. 2 (Fama et al., 2005). The photo-
sensor is designed to provide an output signal y that is linearly related to the distance h, as y = γh + y0, where the gain
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Figure 1. FeedbackTMmagnetic levitation system.

Figure 2. Control loop schematic. f denotes the attraction force related to i and h.

γ > 0 and the offset y0 are constants. Similarly, the electromagnet current i is given by i = ru + i0, with r > 0 and
i0 > 0, constants. There are physical constraints to the control actions, so that u ∈ [−3V, 5V ] and |u̇| ≤ 50V/s. The
system state equations, with the state x = [y, dy/dt], linearized using the equilibrium point x̄ = [ȳ, 0], are given by (Fama
et al., 2005) and by (Matos, Galvão and Yoneyama, 2008):

˙̃x =
[

0 1
η 0

]
x̃+

[
0
−β

]
ũ = Ax̃+Bũ (1)

where the tilde notation indicate small variations around the point of equilibrium and

η =
2γg

(ȳ − y0)
(2)

β =
2rγ3

(ȳ − y0)

√
Kg

m
(3)

where g is the acceleration of gravity, m denotes the mass of the sphere and K is the electromechanic conversion gain.

The constant values previously cited were taken from Fama et al. (2005), with: m = 2.12 × 10−2kg, g = 9.8m/s2,
y0 = −7.47V , γ = 328V/m, i0 = 0.514A, r = 0.166A/V and K = 1.2× 10−4Nm2/A2.

3. CONTROL STRATEGY

3.1 Finite-horizon robust model predictive control

In the finite-horizon predictive control scheme using the state feedback strategy, the future outputs up to a certain
receding horizon N are predicted at each sampling time k using the process mathematical model, under a given sequence
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of future control. The optimal future control sequence is obtained by minimizing a cost function over a control horizon
M subject to constraints on the input control range and system output range. Other constraints are also possible, such
as state range (Kothare, Balakrishnan and Morari, 1996). However, only the first step of the optimal control sequence is
applied, and this process is repeated at each new sample time, in order to take into account the new feedback information.

Consider a time-invariant linear system model of the form:

x(k + 1) = Ax(k) +Bu(k) (4)

y(k) = Cx(k) (5)

where for each k, x(k) ∈ <n, y(k) ∈ <, u(k) ∈ < and A, B and C are matrices of appropriate dimensions.

Given a sequence of inputs u, Maciejowski (2002) shows that the predicted outputs are given by

Ŷ = HÛ +QFx(k) (6)

in which

Ŷ =


ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k +N |k)

 , Û =


û(k|k)

û(k + 1|k)
...

û(k +M − 1|k)

 (7)

H =


CB 0 . . . 0
CAB CB . . . 0

...
. . . . . .

...
CAN−1B · · · CAN−M−1B

∑N
n=M CAN−nB

 (8)

QF =


CA
CA2

...
CAN

 (9)

In order to obtain an offset-free regulation, an additional statew (Matos, Galvão and Yoneyama, 2008) can be included:

w(k + 1) = w(k)− y(k) (10)

Then, the augmented model Eq. (4) + (5) + (10) can be written in the form

ξ(k + 1) = Aξξ(k) +Bξu(k) (11)

y(k) = Cξξ(k) (12)

with

ξ(k) =
[
x(k)
w(k)

]
, Aξ =

[
A 0
−C 1

]
, Bξ =

[
B
0

]
, Cξ =

[
C 0

]
(13)

and the predicted values of w in Ŵ can be obtained by the equation

Ŵ = HwÛ +Qwξ(k) (14)

where

Ŵ =


ŵ(k)

ŵ(k + 1)
...

ˆ̂w(k +N − 1)

 , Qw =


CwAξ
CwA

2
ξ

...
CwA

N
ξ

 (15)

Hw =


CwBξ 0 . . . 0
CwAξBξ CwBξ . . . 0

...
. . . . . .

...
CwA

N−1
ξ Bξ · · · CwA

N−M−1
ξ Bξ

∑N
n=M CwA

N−n
ξ Bξ

 (16)

The cost function is given by

J(Û) = Ŷ T Ŷ + µŴT Ŵ + ρÛT Û = (HÛ + F )T (HÛ + F ) + µ(HwÛ + F ′w)T (HwÛ + F ′w) (17)
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with ρ and µ are design parameters,

F = QFx(k) (18)

F ′w = QW ξ(k) (19)

and N the prediction horizon and M the degrees of freedom of the control action u. Moreover, let
û(k + λ− 1|k) = û(k +M − 1|k) for M < λ ≤ N .

The output and input range constraints must be considered in the cost function minimization. The gain K is assumed
to belong to the interval [ε1Knom, ε2Knom]. Matos, Galvão and Yoneyama (2008) presents an analysis about the influence
of the conversion gain. It is shown that reductions of K can cause violations in output constraints. Therefore, this study
considers only the particular case of ε1 = ε and ε2 = 1:

εH
H
−εH
−H
IM
−IM

 Û ≤


ΓNymax − F
ΓNymax − F
F − ΓNymin
F − ΓNymin

ΓMumax
−ΓMumin

 (20)

where ΓN and ΓM are a (N × 1) and (M × 1) matrix of unit elements, respectively.

It is worth noting that the integral control action may cause an increase in settling time. This problem is due to the
minimization of the ŴT Ŵ cost function term, which is a sum of errors values during the prediction horizon (an error
integrator). Therefore, if the integrator state w is not null when the output variable reaches the origin (in a regulation
problem) the controller will keep the error different from zero, with an appropriate sign in order to minimize ŴT Ŵ . In
order to reduce this undesirable effect an anti-windup scheme is devised. It consists of reseting the error integrator when
the system state approaches, for the first time, the boundaries of the feasible region.

3.2 LMI-based robust predictive control strategy

The analysis that follows is based on Maciejowski (2002). Consider a time-invariant linear system described by Eq.
(4) and (5).

Assumed that the matrices A and B belong to a convex polytope Ω with L "corners" (Ai, Bi) (i = 1, 2, ..., L). Then,
(A,B) =

∑L
i=1 λi(Ai, Bi) and

∑L
i=1 λi = 1. Let:

J̄(Û∞) =
∞∑
j=0

{‖x̂(k + j|k)‖2Q1 + ‖û(k + j|k)‖2R} (21)

where Û∞ = {û(k|k), û(k + 1|k), û(k + 2|k), . . .}, Q1 > 0 and R > 0 are symmetric weighting matrices.

The robust control problem can be formulated as

min
Û∞

max
[A,B]εΩ

J̄(Û∞) (22)

It is possible to shown that this problem is equivalent to the LMI-based robust control problem represented by

min
γ,Q,Σ

γ s.t. (23)

[
Q x(k|k)

x(k|k)T 1

]
≥ 0 (24)


Q 0 0 AiQ+BiΣ
0 γI 0 Q

1/2
1 Q

0 0 γI R1/2Σ
QATi + ΣTBTi QQ

T/2
1 ΣTRT/2 Q

 ≥ 0 for every i = 1, . . . , L (25)

If this convex problem has a solution γ,Q,Σ, then let Kk = ΣQ−1 and the control optimal sequence is given by
û(k + j)|k) = Kkx̂(k + j)|k).
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By further adding LMIs, input and output constraints can be taken into account. Maciejowski (2002) and Kothare,
Balakrishnan and Morari (1996) presents the details and the feasibility of the result problem. Range constraints for input
and output signals are satisfied if it is possible to find a solution for the convex problem (Eq. (4) and (5)) with the
additional LMIs:[

X ρΣ
ρΣT Q

]
≥ 0 with X ≤ u2

max (26)

[
Q ρ [AjQ+BjΣ]T CT

ρC [AjQ+BjΣ] y2
max

]
≥ 0 for j = 1, . . . , L (27)

where ymax and umax are symmetric constraints about the output and input variable, respectively.

Asymmetric constraints are incorporated into the robust formulation as in Rodrigues and Odloak (2000) paper:

X ≤ u2
min (28)

X ≤ u2
max (29)

This formulation corresponds to the application of the most severe constraint at each sampling time.
Again, it is possible to include integral control action by adding a w(k) state (Eq. (10)) and the proposed anti-windup

scheme.
The inclusion of an overshoot constraint in the LMI-based formulation requires the treatment of different constraints

in different operation points. The approach used for the asymmetrical control constraint is not applicable because if, for
example, the maximum overshoot ymax is lower than the initial condition constraint ymin, then the ymax will be applied
and problem will not be feasible. The solution to this problem is divided in three stages, according to the present output
y(k) and for the hypothesis of ymin < 0 and ymax > 0. This analysis considers |ymin| > |ymax|, but the symmetrical
case is analogue. The proposed strategy uses the following rule:

If y(k) > ymin then

If |y(k)| < |ymax| then a moving pseudo-reference r(k) can be defined as the middle point between the current
output value and ymax, i.e. r(k) = (y(k) + ymax)/2. The output constraint is defined symmetrical with the value
of the distance between r(k) and ymax (see Fig. 3).

Else the symmetric constraint is defined as ymax.

Else the symmetric constraint is defined as ymin.

Figure 3. Moving pseudo-reference strategy.

The asymmetric constraint problem was defined in terms of local symmetric constraints.

4. Methodology

The predictive controller for the maglev plant was designed using the sampling time T = 5ms, as in Fama et al. (2005)
and Afonso and Galvão (2007). The initial condition is x(0) = [−0.2, 0] and the system constraints are: umin = −3V ,

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.147-155
Copyright © 2010 by ABCM



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

umax = 5V , ymin = −0.02V and ymax = 0.01V . The model matrices resulting after linearization and discretization
are:

A =
[

1.0108 0.0050
4.3185 1.0108

]
, B =

[
−0.0142
−5.6779

]
, C =

[
1 0

]
(30)

The finite-horizon formulation was employed with: N = 20, M = 4, ρ = 1 and µ = 0.05. In both cases, the output
is considered to be in the vicinity of the boundary of the feasible region if approaches a distance 10% of the range. When
infeasibility occurs, the control action is set to zero, which is corresponding to the equilibrium control value in the non-
linear case. The simulations are made using the discrete model and the only mismach between the design model and the
real plant are caused by the gain uncertainty. In this case, all states are considered available. All simulations are carried
out using MatLab 6.5 software.

5. RESULTS AND DISCUSSIONS

For the nominal case, Fig. 4 shows the output variable in the both formulation, finite-horizon and lmi-based, firstly
without anti-windup scheme (a) and then with the proposed scheme (b). It is possible to verify that the settling-time
decreases significantly.

Figure 4. Comparison of two presented solutions:(a) without anti-windup scheme. (b) with anti-windup scheme.

As mentioned in Matos, Galvão and Yoneyama (2008) paper, reductions in the value of the process gain may cause
violations of the system output constraints. For the same initial condition, x(0), comparisons were made between the
finite-horizon and the LMI-based robust predictive control solutions. Initially, the behavior for a 0.90 nominal gain
was analyzed, with the two formulations without taking into account the robustness (with ε = 1 and Ω = [(A,B)]).
In this case, both solutions have not been able to satisfy the constraint representing the maximum system output value
ymax = 0.01 (see Fig. 5).

The comparison using the robust versions (ε = 0.90 and Ω = [(A,B), (A, 0.90B)]) it was found that the two solution
respect the output constraints (Fig. 6).

Finally, an uncertainty of Kreal = 0.85Knominal was imposed. Again, for the case without robust treatment, the two
solutions violated the upper y constraint as shown in Fig. 7.

To ε ≤ 0.88, the Finite-horizon formulation presents infeasibility of the optimizing problem beyond constraints vio-
lations. On the other hand, the LMI-based robust approach was able to obtain a solution without constraints violations up
to ε = 0.26.

6. CONCLUSIONS

The case study presented in this work indicates that robust formulations of MPC may be of paramount importance
in plants such in magnetic levitations systems. The advantage of the LMI-based formulation over the finite-horizon
problem became evident when the uncertainty range is trivial. An anti-windup scheme was conceived to circumvent the
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Figure 5. (a) Comparison of the presented solutions: Kreal = 0.90Knominal without robust treatment. (b) Constraint
violation detail.

inconvenience of the increase in setting time caused by the integral control action inclusion. The introduced modification
allowed the inclusion of an overshoot constraint in the LMI-based MPC formulation. It is noted that LMI formulations
have high computational processing time so that it is interesting to study methods to mitigate it. Wan and Kothare (2003)
paper presents an off-line approach faster than on-line LMI-based MPC technique, which determines an sequence of
control laws corresponding to a sequence of asymptotically stable invariant ellipsoids.
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10, pp.557-572.
Rossiter, J. A., 2003, "Model-based predictive control - A practical approach", CRC Press, USA.
Wan, Z., Kothare, M. V., 2003, "An efficient off-line formulation of robust model predictive control using linear matrix

inequalities", Automatica, Vol. 39, pp.837-846.

9. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.147-155
Copyright © 2010 by ABCM



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 7. (a) Comparison of the presented solutions: Kreal = 0.85Knominal without robust treatment. (b) Constraint
violation detail.

Figure 8. LMI-based solution: (a) Kreal = 0.85Knominal with robust treatment. (b) Detail of the system output in the
vicinity of the constraint.
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