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Abstract. Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the
identification of mathematical models typically nonlinear systems is vital in many fields of engineering. A variety of
system identification techniques are applied to the modeling of processes dynamics. Recently, the identification of
nonlinear systems by artificial neural networks has been successfully applied in many applications. In this paper, an
original approach based on radial basis function neural network (RBF-NN) with a training method based on particle
swarm optimization (PSO) is proposed as an alternative solution. RBF-NN is considered as a good candidate for the
prediction problems due to its rapid learning capacity and, therefore, has been applied successfully to nonlinear time
series modeling and nonlinear identification. On the other hand, PSO was inspired by the choreography of a bird flock
and can be seen as a distributed behavior algorithm that performs multidimensional search. The RBF-NN modél is
trained and validated based on the experimental data of a nonlinear process. Finally, smulation results from the
performance analysis of RBF-NN are presented and discussed.

Keywords: nonlinear identification, radial basis function neural networks, nonlinear processes, particle swarm
optimization.

1. INTRODUCTION

The mathematical description of dynamic systemsoisa simple task in which basic principles mayulsed. For
complex systems, modeling using basic laws to deter the dynamic behavior of a system is not alwayssible. An
interesting alternative to solve such problems wdod an experimental for systems identificatioomédel based in an
input-output system must be found, seeking a miaietween them (Coelho and Guerra, 2002).

In real life, most systems are nonlinear and tte afslinear models is limited, because they camaptesent the
system dynamics, such as its hysteresis, amplidefendency, bifurcations or chaos (lvankhnenko,1L9This
characteristics describes a nonlinear system andécessary the development of techniques thdehsuch behavior.
A particular area of nonlinear system identificatis the chaotic modeling. Several researches lampeoached
problem in classification, analysis, comprehensiod control chaotic systems (Alligoetial., 1996; lohet al., 2001).

Nonlinear systems identification is normally a wifiit task. When the system is dissipative, to dtgvea model
through experimental data became a challenge diie tature. The use of neural networks to nonlingantification
problems has attracted some attention in recentsy@eural networks are originally inspired by bt neural
networks’ functionality that may learn complex ftinoal relations through a limited number of traigidata. Neural
networks may serve as black-box models of nonlimealtivariable dynamic systems and may be traingdguinput-
output data, observed from the system (Mcloenal., 1998; Narendra and Parthasarathy, 1990). Thel ususal
network consists of multiple simple processing elata called neurons, interconnections among thehtreweights
attributed to the interconnections. The relevafdrimation of such methodology is stored in the &g Haykin, 2000;
Pei and He, 1999; Huang and Loh, 2001; Lian and 2000).

The main objective of this paper is to presentatmuzation approach for nonlinear identificatiosing radial basis
function neural network (RBF-NN) of heating systefine RBF-NN uses the-means clustering algorithm, and is
optimized by pseudo-inverse and particle swarmnaigétion (PSO).

The reminder of the paper is organized as folldwsection 2, the heating system process is predgeht section 3,
the one-step-ahead prediction for system identiicawith RBF-NN with a training method based onQP$
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discussed. The simulation results are presenteddtion 4. The conclusions and future works areudsed in section
5.

2. HEATING SYSTEM PROCESS

The identification case study evaluated in thisguap a heating process. The system is an expetriwignsingle-
input-single-output heating system. The input dsi@e300 Watt Halogen lamp, suspended several irat@ge a thin
steel plate. The output is a thermocouple measuretagen from the back of the plate. The samplimgrival is 2
seconds and number of samples is 801. Figures 2 dhabtrated the input drive voltage and the atitigmperature in
Celsius degrees of this case study. The databa&skwess theDalSy: Database for the Identification of Systems (De
Moor, 2009).
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Figure 2. Output temperature in Celsius degrees
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3. SYSTEM IDENTIFICATION AND RBF-NN WITH A TRAINING METHOD BASED ON PSO

The processes identification is a procedure totiffea model of an unknown process, for intentiaisforecast
and/or understanding of the dynamic behavior of ghecess. A model describes reality in some way, system
identification is the theory of how mathematical dats for dynamical systems are constructed forneiesl data.
Typically, a parameterized set of models, a motteicture, is hypothesized and data is used to tedbest model
within this set according to some criterion. Theich of model structure is guided by prior knowledyy assumptions
about the system which generated the data. Whimn pitior knowledge is available it is common tce s black-box
model. A black-box model is a standard flexibleisture and it can be used to approximate a largetyaof different
systems (Sjoberg, 1995). Neural network models Ipaween to be successful non-linear black-box metteictures in
many applications (Hong and Chen, 2009; Huang amnd2DO08; Liet al., 2009; Pappalet al., 2009).

3.1. Fundamentals of RBF-NN

The neural networks consist in elements of proogdsighly interconnected called neurons. Each nebes inputs
and one output. The output of each neuron is détedras a nonlinear function of weighed sum ofitipaits, however
more complex mathematical operations could be dedu The neurons are interconnected through weigltich are
adjusted during the period of training.

Among the excellent characteristics of the neuedlvorks there are: parallel processing, learniisgpeiative and
distributed memory. These characteristics are iadpin the biological neural networks (Bortman adddjem, 2009).
Accordingly, RBF-NN is widely used in identificatioof nonlinear systems. The key problems of RBF-&i the
following: determining centers and widths of radissic function, the number of hidden nodes, wsididgtween
hidden layer and output layer and the parametetsdolfien layer are optimized locally, not globalghenet al., 2007;
Hong and Chen, 2009).

There are several representations for nonlinedesysodeling. In this application we have choser-RBN. RN-
RBF design can be seen as a curve adjustment praffilection approximation problem) in a high dimiemslity
space. The radial basis function (or activatiorcfiom) used in RBF-NN is Gaussian type as illustilan Eq. (1). The
estimated output is shown in Eq. (2). Fig. 1 sholes general structure of RBF-NN (Chenal., 2007; Huang and
Wang, 2007) given by

-
f(x)=e ° (1)

wherey; is the input vector; is the activation function center (Gaussian), @rd the standard deviation.
R nc
y(t) = _lemkm (2)
1=

wherenc is the clusters quantity (neurong), are the weights, arlg, is the hidden layer output.

The clustering method used in this applicationtbg RBF-NN for classification problems is fuzzymeans
algorithm (FCM), which was developed by Dunn (19@8) improved by Bezdek (1981). This algorithmregfiently
used for standards recognition and is based onmmizgiof the objective function:

N C
=22l -
i=1 j=1 '1s m< oo (3)
where U is the degree of the seq in the groupj , X is the element of the measured dat&:,j is the center of the
group |, the parameteim is a weight that determines the degree to whiatigpanembers of a cluster affect the
clustering result anxﬂ.” is the norm between measured data and the c@feupdate ouij and C is given by:
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3.2. Particle Swarm Optimization Algorithm

The PSO is responsible for optimizing the centdrmined byc-means and also optimizing the Gaussian spreads.
PSO has a population with random positions, eadhede particles has a velocity, and the partitflgs around the
search space. The particles store their best posititheir memorygbest) and also the fitness in this point (Chetral .,
2007; Huang and Wang, 2007).

The bestpbest of all swarm is denominated as the best globaltipas(gbest) (Gudise and Venayagamoorthy,
2003). The basic concept of PSO is to acceleratecies towardpbest andgbest, weighted by an acceleration factor at
each time step. Mathematically, a particle folldhsse equations:

VL =W IV}, +¢; [Fand; E(PId - XY )+ ¢, (fand, E(Pgd - xi‘d) (6)
t+1 _ it t+1
Xig~ = Xjg *Vig [t @)

where At =1, t represents the actual iteration @md represents the next iteratidfy and Xy represents the particles
velocity and positionrand; andrand, are random number generated with uniform distidlouin range [0,1], used to
maintain the population diversity. Equation (6used to update each particle’s speed, for it calmr the speed in last
iteration, multiplied by an inertial weight (Lit al., 2006).

The second factor is composed by a cognition plagt,basis is the difference between the actuatipowof the
particle and the best position it has achievedisiohy (pbest). The last factor is composed by a social compriba
calculus basis is the particle actual position Hredbest position achieved by any particle in tgorithm execution
(gbest). The Equation (7) represents the update posifanparticle, according with its previous positamd its actual
speed, considering =1. One of the main reasons for the PSO attractiveisethe need to adjust few parameters gie
al., 2002).

Constantsc; and ¢, are positive denominated cognition and social comepts, respectively. These are the
acceleration constants, varying the speed of thiiclmatowardpbest andgbest, according to past experience. Constants
¢, andc;, are not critical factors to algorithm convergendewever, a fine tuning of such values may causaster
convergence. Values of andc, are assumed as 2.0, according to Gaing (1994) eMenyrecent literature informs that
the choice may be even better if the cognition matar is higher than a social parameter, insiddithiés ¢, +c, < 4

(Parsopoulos and Vrahatis, 2002).

The use ofW, called inertial weight is proposed by Shi and fBbet (1998). This parameter is responsible for a
dynamic adjustment of the particle speed, so,ré&ponsible for balancing the research performedhbyalgorithm
between a local and a global one, making posshae the algorithm converges in a smaller numbeitesétions. A
higher value of inertial weight makes possible@bgl search, on the other side, a small value tdieealgorithm into a
local search.

Through a dynamical adjustment of the inertial ghei it's possible to dynamically adjust the seacelpability.
Once the PSO search process is nonlinear and cenifpie hard, if not impossible, to mathematicaitydel the search
capability to dynamically adjust the inertial weigho, a fixed or a linearly decaying inertial watignay be adopted.
Other alternatives for dynamical adjustmeniare the adoption of co-evolution, meta-optimizatid fuzzy systems
(Xiao and Wang, 2006; Zhat al., 2009).

Application of a high value of inertial weight #ie start and decaying until a small value throtigh PSO
execution causes the algorithm to own global seainehnacteristics at the start and local searchacheristics in the end
of the execution. The value W decaying from a maximum value of 0.9 towards aimimm value of 0.4 through the
execution is a good call. When adopting linearlgajéng inertial weights, normally Eq. (8) is adahtéor W update,
wheret,, is the maximum number of iterations arid the actual iteration (Shi and Eberhart, 2002)re

W, —W_
W :Wmax - ma: Tt (8)

max

The linear optimization method to make the parensebf RBF-NN linear, in this application, is theepdo-
inverse. The update of each weight for training RB¥ using this derivation of least mean squaragadized by Eq.
(9) given by
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w, = (k) K ytt) (9)

wherey(t) is the desired output.
The performance criteria evaluated for the dynasggtem to be identified is the multiple correlaticoefficient,

R?, between real outpy(t) and the estimated outpg(t) , is realized by Eq. (10).

S5 1)°
R?=1-1=L , (10)
2(0- y)?

wheren is the number of measured samples of the proagpsito In this context, when the value Bt is equal to 1.0,
indicates an exact fit of the model to the processasured data. The value Bf between 0.9 and 1.0 is considered
enough for practical applications, in control systg(Schaiblest al., 1997).

4. SIMULATION RESULTS

In Table 1, the identification results of heatsygtem using a RBF-NN usirmgmeans for clustering and optimized
by pseudo-inverse and PSO with concepts of oneadtepd prediction are presented. In the estimati@se (training
of RBF-NN) 400 samples were used, and in the vatidgphase 401 different samples were used.

For the results, were performed 10 simulation& different numbers of delayed inputdu, delayed outputd\ly)
and centers. Table 1 contains 5 simulations usiimgqual to 2Ny equal to 1 and the number of centers was simulated
with 2, 3, 4, 5 and 6. Table 1 presents 5 simutatiosingNu equal to 2Ny equal to 1 and the number of centers was
simulated with 2, 3, 4, 5 and 6. Table 2 also dostaé simulations, but changing tNy to 2. The results obtained for
these simulations are tiRé_est andR? val (estimation and validation phases).

On the Table 1, the best result was found in sathrh 4, and the Fig. 3 illustrated the real antihested output
graphic of the heating system. And on Table 2 kthst result was found in simulation 9, and the Eiglustrated the
real and estimated output graphic. Every simulati@s included at least one delayed output to thE-RBI, therefore
improving the results. The reason for this improeamis that the RBF-NN obtains more information wththe
nonlinear dynamic, improving one-step-ahead idiatiifon. But special care must be taken, becausniie number
of Nu andNy increases, the complexity of the model increases t

Table 1. Results with different numbers of centesisig RBF-NN with a training method based on P$puis of RBF-
NN are two delayed inputs and one delayed output)

simutation| || "ceers | R-e5 | Feval
1 2| 1 2 0.8599 0.7106
2 2| 1 3 0.9999 0.9997
3 2| 1 4 0.9999 0.9998
4 2| 1 5 0.9999 0.9998
5 2| 1 6 0.9999 0.9997

Table 2. Gaussian centers of the best simulatiomu(ation 4).

centerg; of
Cluster u(t-2) u(t-1) | y(t-1)

1 1.0000 0.9991 0.970
0.4439 0.4436 0.616
0.4441 0.444Q 0.488
0.9998 0.9988 0.805
0.4450 0.4429 0.866

bW IN
O W W o1 J
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Ouput data of heating system
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Figure 3. Output data of heating system with esthand real output (simulation 4)

Table 3. Results with different numbers of centeisg RBF-NN with a training method based on P$puis of RBF-
NN are two delayed inputs and one delayed output)

simutation| | Y| Mogere | Rest | Reval
6 2] 2 2 0.8976 0.8162
7 2| 2 3 0.9998 0.9996
8 2] 2 4 0.9998 0.9992
9 2| 2 5 0.9999 0.9996
10 2| 2 6 0.9999 0.9468

Table 4. Gaussian centers of the best simulatiomu(ation 9).

Cluster Ceﬂzterzq) of | ut1) y(t-2) y(t-1)
1 10000 | 09997 | 09716]  0.9722
2 0.4473 | 04449 | 08661 08519
3 0.4448 | 04446 | 06159 06137
4 09998 | 09987 | 08125| 08187
5 0.4446 | 04445 | 04882| 04873
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Figure 4. Output data of heating system with esthand real output (simulation 9)

5. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a methodology including RBE-MM clustering algorithne-means and optimization by
PSO. The tested case study was a heating systech Wad a drive voltage as its input, and the teatpeg as output.
For obtaining the results all the methods were rilesd and put under context.

The preliminary presented results show that RBFdsdN be a powerful tool to predict temporal sesied to study
complex and nonlinear behavior. It's possible talize that the use of PSO in optimizing the centgnserated by-
means has considerably increased the results and thestobss of RBF-NN.

The c-means algorithm is sensitive to the earlier choices & thuster, demanding a proper initialization toadrt
correct results. Using an algorithm to make thds®aes can solve the problem, initializing with trenters close to the
final centers, making sure that the number of itens will be reduced.

Finally, the obtained results were consideredstatiory, showing that the present methodology acirieve the
identification of the analyzed nonlinear systemeTiesults could be observed on graphics and tahblbsre the
multiple correlation coefficient was presented stireation and validation phase. Therefore, the oedlogy proved
that it can be applied to other type of systemshss chaotic system or even multivariable systems.
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