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Abstract. In an attempt to accurately model nonlinear systea wide variety of techniques have been dewelsoeh
as the Volterra series, Wiener models, Hammersteidels, and others. Such approaches have had dimitecess in
industry, due primarily to their complexity. Redgnartificial neural networks have generated calesable interest as
alternative nonlinear modeling tool. B-spline nelureetwork (BSNN), a type of basis function neuratwork, is
trained by gradient-based methods, which may fab local minimum during the learning procedure. dwercome
the problems encountered by the conventional learmethods, differential evolution (DEY an evolutionary
computation methodology/ can provide a stochastic search to adjust the mboints of a BSNN is proposed. The
potentialities of DE are its simple structure, easg, convergence property, quality of solution estzlistness. In this
paper, we propose a DE approach to train a BSNNe mhmerical results presented here indicate that B is
effective in building a good BSNN model for nordin@entification of an experimental nonlinear yo-ynotion
control system.
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1. INTRODUCTION

Artificial neural networks (or neural networks) anéginally inspired by biologic neural networksirfctionality that
may learn complex functional relations throughnaited number of training data. Artificial neuraltwerks may serve
as black-box models of nonlinear multivariable dyia systems and may be trained using process nexhslata
(Mcloone et al, 1998; Narendra and Parthasarathy, 1990). Thal useural network consists of multiple simple
processing elements, called neurons, interconmextionong them and the weights attributed to theréohnections.
The relevant information of such methodology isetion the weights.

In recent years, researchers (kiual, 1998; Sarimveist al, 2003; Kukojl and Levi, 2004) have proposed dedar
spectrum of methodologies for identification andnliear forecasting based upon neural networks dal dvith
nonlinear dynamic systems.

A relevant approach is to find the best approxioratiith respect to certain class of basis functiforsneural
networks representation. In this case, there amyrpassible choices of basis functions, such amlrddsis function,
associate memory networks, wavelets, and B-splihe. main advantage of the B-spline functions owbewradial
functions e.g., the Bezier curve, is the local oarf the curve shape, as the curve only changdse vicinity of a few
control points that have been changed (NewmannSamdull, 1979). A B-spline neural network (BSNN)nssts of
the piecewise polynomials with a set of local bdsigctions to model an unknown function for whicliite set of
input-output samples are available. The performaridbe identification depends on an optimizatidgoathm for the
training procedure of the BSNN in order to avoig anssible local minima and also of the BSNN comfagion.

In this context, the development of training meth@hd improvements for BSNN is an emergent researeh.
Several metaheuristics have been developed intrgears to improve the performance and set up éinenpeters of the
BSSN design and also fuzzy systems approaches gt omizuka, 1995; Logghe and Wang, 1997; Stacnenét
al., 1996; Saranli and Baykal, 1998; Ruano and Azey&899; Zhang and Knoll, 1999; Yai al, 2001; Reay, 2003).

Recently, as an alternative to the conventionahamattical approaches based on gradient informéGbanet al.,
1998), modern bio-inspired optimization techniqgesh as evolutionary algorithms (Waegal, 2002; Coelho and
Krohling, 2006) paradigms have received much atianby many researchers due to their ability talfan almost
global optimal solution.

During the past decade, a novel evolutionary allgorj Differential Evolution (DE), has been proposaad
attracted increasing attention (Storn and Pric8512997). Unlike the simple genetic algorithms e binary coding
for representation, candidate solutions in DE amrasented as individuals based on floating-poimhbers. DE is
firstly initialized with a population of random swions. At each generation, the target populatoopdrturbed with a
mutant factor, and the crossover operator is th#roduced to combine the mutated population witd target
population so as to generate a trial populatiorenTime selection operator is applied to comparebijective values of
both competing populations, namely, target and pagulations. The better individuals of the twapptations become



members of the population for the next generatiinis process is repeated until a predefined stgppipndition
occurs. Due to its simple concept, easy implememtatnd quick convergence, DE has been successipfilied to a
variety of unconstrained continuous optimizatioalpems (Huangt al, 2007).

In this paper, a DE approach to train a BSNN isppsed. Numerical results for identification of thenlinear
dynamics of an experimental yo-yo motion systemnstie feasibility and effectiveness of the propoapgroach.

The remainder of this paper is organized as folldwssection 2, the fundamentals of BSNN are prieskrwhile
section 3 explains the concepts of DE optimizatizethod. Section 4 presents the simulation resattgdentification
of experimental nonlinear yo-yo motion control gyst Lastly, section 5 outlines our conclusion artdre research.

2. B-SPLINE NEURAL NETWORK

BSNN is introduced as a class of one-hidden-lagedforward neural networks composed of B-splinections.
Each basis function is composedgpolynomial segments. There exists a simple andest&cursive relationship for
evaluating the membership of a B-spline basis fanaif orderk,
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where N({' (¥ is defined as thgth univariate basis function of ordgrand /‘j thej-th knot andl; is thej-th interval.

The output of neural network is given by
R p i
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wherex, and 0, are the inputs and output of network, respectivejyis the weight attached to tfih basis function
and Né([ﬂ is given by the recursive form (2). The indgx is associative with the region of local

supportA¢j-q) < X< A(jy, where the indeg indicates the order of the basis functions.

The quality of approximation depends on the placgmaf knots of B-spline functions. The objective of
optimization of BSNNs by DE is determination of tkieots of each B-spline basis functions. In paléicuhe number
of basis functions was determined by trials in thask.

3. DIFFERENTIAL EVOLUTION APPROACH FOR BSNN TRAINING

Unlike other evolutionary algorithms, different&folution (DE) does not make use of some probghdigtribution
function in order to introduce variations into tpepulation. Instead, DE uses the differences betwa@domly
selected vectors (individuals) as the source afleanvariations for a third vector (individual), eefed to as the target
vector. Trial solutions are generated by addingghigid difference vectors to the target vector. Pinécess is referred
to as the mutation operator where the target vestorutated. A recombination (or crossover) operetdhen applied
to produce an offspring which is only acceptedt ifmiproves on the fithess of the parent individ(@hlmanet al,
2006).



The variant implemented here of DE was the faid/1/bin. The pseudo code of DE used in the present study i
given in Fig. 1 (Angira and Babu, 2006).

Let P a population of siz8IP, X thej-th individual of dimensiom in populationP
Input of parameters setup

DimensionD;

Bounds of optimization variables (potentidusions),x: lower (x) andupper(x),i = 1,...,D
Population sizé\P = 4;

Mutation factorf,,

Crossover rat€R;

Stopping criterion of maximum number of generatians,

Generation countéeE 1;

Step 1 Initialize the populatio® = { X}, X%, X, ..., X"} using uniformly
distributed random numbeasid in range [0,1] as
For each individupll P
x)(t) = lower (%) + rand, [ upper(x) - lower (x)}, i =1,...,D
End For each

Step 2 Evaluate the fitness valfig j = 1,...,NP, of each individual in populatio®.

Step 3 While the stopping criterioty,,,is not satisfied do
For Al < NP
Randomly selegt ry, rz3 0 (1,...,NP), j£riZr,#r;3
Randomly seldgtq O (1,...,D)
For All< D
X (1) =X () +fn X x™ (1) -x"(t) } if (randonf0,1) <CR oOF i = iang
@) =x/(t) otherwise

End For All
IFf (x (1) < F () Thenx!(t) =x (1); f (1) = (x (V)
End For All
Update the generation coyntert + 1;
End While

Figure 1. Pseudo code of DE.

4. DESCRIPTION OF THE EXPERIMENTAL APPARATUSAND IDENTIFICATION RESULTS
4.1. Description of the Yo-Yo Motion Control System

Yo-yo playing is considered a representative exampi open-loop unstable control problems that imeol
intermittent dynamic environments. Stable controy@-yo playing relies on a proper phase relatigmsietween the
controller’'s action and the motion of the yo-ym(and Zacksenhouse, 2003).

The development of automatic control systems tffatiently control a yo-yo represents a significatiallenge for
the development of electromechanical designs (Hastoi and Toshiro, 1996; Zlajpah and Nemec, 2008 6f the



main difficulties is the lack of sensors to obtélie motion measure of the toys. Another difficuiltythe lack of
mathematical models of this measurement device, tyhéch justifies the use of the BSNNs to identifye dynamic
behavior of a yo-yo motion in a real system.

The control system prototype employed in this wasks a yo-yo, and a Direct Current (DC) motor femiotion
presents nonlinearity and complex behavior. A bldigdgram of the described system and a photograftecsystem
are presented in Fig. 2 (Herrazal, 2006).

......

(a) yo-yo motion system ' (b) sensor module
Fig. 2. Photograph of yo-yo motion system and ésicks.

The components of this prototype are divided irdfiveare and hardware modules, where (Coelho andeker

2007):

® Control module (softwarekonsists of the implementation of control tecluais, such as PID (proportional-integral-
derivative) control, fuzzy logic control, and PIr@portional-Integral) adaptive controllers integitinto a
computer with communication with the yo-yo systesing an 1/O interface;

@ Sensor module (hardware / firmwarebhe sensors employed include the digital eledtrozircuits (power
amplification), A/D and D/A converters, and the micontroller running firmware;

® Actuator module (hardware / firmwaredonsists of DC motors integrated to tBensor moduleslectronic circuits
and micro controller running firmware;

@ Sensor sub-modulenade up of 16 infrared LEDs (Light-Emitting Di&eable to inform the position of the yo-yo.

The prototype modules are composed of hardwardiandiare and are connected to the same printeditiboard,
called the control board. The control board corstéivo hardware modules and communicates with apatg€omputer
through the RS-232 1/O interface. All the composamted for the yo-yo system are off the shelf itéoriseep the cost
minimal.

4.2. Smulation Results of Nonlinear |dentification using BSNN and DE optimization

The mathematical model employed in this work tor@epnt the yo-yo motion system is a NARX (Nonlinear
AutoRegressive with eXogenous inputs). In this cse NARX model with series-parallel conceptiomused for one-
step-ahead prediction of the BSNN system.

A computer with a data acquisition board for getiagathe control signal (identification in closeabp using a
proportional controller design) and position valokethe yo-yo was used to obtain system measuremémtthe
identification procedure based on the BSNN modeQ &amples of input (tension applied to the DC matad output



(position of yo-yo) were collected with a time sdimg of 40ms (see Fig. 3). The tension value cqoesls to the
maximum value configuration of the driver in PWMu{ge Width Modulation) control of a DC motor.
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samples
Fig. 3. Yo-yo motion system input and output data
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Experiments for the estimation phase (training phad$ the mathematical model of the yo-yo motiostsgn are
carried out using samples 1 to 150. For the vatidaphase, the BSNN model uses the input and owdiguials of
samples 151 to 290. The system identification byNRSmodel based on DE optimization is appropriatea if
performance index is in permissible values for tiser’s needs. In this case, the fitness functanniaximization
proposes using DE and is given by the harmonic n@famultiple correlation indices of estimation (trimg) and

validation phases. The fitness function (to be mézed) is calculated using the expressiorﬂﬁ'gt given by:

150 . g2
, El[ y(®) - y(0)]
Rest=1-e5 S (4)
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where Rgst is the multiple correlation index of the estimatiphasey(t) is the output of the real systefg(t) is the
output estimated by the BSNN, aryd is the mean value of the system’s output. Forveidelation phase (verification

of generalization capability) of optimized BSSNeimployed theFﬂfa| index give by

290 s
> [y - y(®]
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where Rfal is the multiple correlation index of the validatiphase. When the value®=1.0 (estimation or validation

phases), it indicates an overfitting phenomenena.model error exists. R? value between 0.9 and 1.0 is considered
sufficient for applications in designs of identifton and model-based controller.

All the computational programs were run on a 3.2zG¢ntium IV processor with 3 MB of RAM. In eaclsea
study, 50 independent runs were made for eacheobptimization methods involving 50 different iaitirial solutions
for each optimization method. The setup of clasfi¢aapproaches used was the following:

e DE(1): classical DE using a constant mutation fagteen byf,, = 0.4 and a crossover rate@R= 0.8;



» DE(2): DE using a linear reduction ff with initial and final values of 0.8 and 0.3, restively;
» DE(3): DE using a linear increasingfgfwith initial and final values of 0.3 and 0.8, resfively.
» DE(4): DE usingf,, generated randomly with uniform distribution imge [0.4; 1.0];

In these case studies, the population slBewas 20 and the stopping criteritn, was 50 generations for the DE
approaches. The three chosen vectors of BSNN's wpte [u(t-1); y(t-2); y(t-1) ]. The space searches for knots of
each B-spline basis functions are [-1.0; 1.0]. $ation tests using 5 knots in each input of BSNNewvealized.

Table 1 presents the simulation results (best ofef@eriments with 50 generations for each run) D& in
optimization of BSNN using 5 knots. As indicatedTiable 1, the results of the optimized BSNN pregeatision and
provide an appropriate experimental mathematicalehfor the yo-yo motion system.

Table 1. Results obtained in estimation and vabdgbhases by the maximization Eléstusing DE approaches

(it is adopted the solution vector with beR@st after the accomplishment of 50 runs)

Optimization 2
Method Rest
DE type maximum mean minimum  standarnd
deviation

DE(1) 0.9503 | 0.9442 0.8237 0.0213
DE(2) 0.9524 0.9412 0.8237 0.0237
DE(3) 0.9525 0.9429 0.8237 0.0214
DE(4) 0.9515 0.9413 0.8237 0.022¢

For the case study of the BSNN optimization, thera consistent performance pattern across tegpobaches
with similar results in terms oRgst. The DE(1) presents the best mean of fitness ifumas shown in Table 1.

However, the DE(3) approach presents better resutedation to the maximum fitness than the cleedsDE(1), DE(2)
and DE(4). The best results shown in Figure 3 meprethe BSNN (using DE(3)) with 5 knots for eaeltwork input.
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Fig. 4. Best result oﬂgst using BSNN with 5 knots for each input and optiatian based on DE(3) (see Table 1).

5. CONCLUSION AND FUTURE RESEARCH

Many researches combining neural networks have Hegaloped to improve the efficiency of nonlinegstem
identification. Traditionally, neural networks arained by using gradient-based methods, which fatkynto a local
minimum during the learning process. Unfortunatslych techniques also suffer from difficulties, Is@cs, the choice
of starting guess and convergence.

DE is an evolutionary algorithm that uses a ratireedy and less stochastic approach to probleningptiian do
the EAs. DE combines simple arithmetical operatoith the classical operators of recombination, riotaand
selection to evolve from a randomly generated isgpopulation to a final solution. In this work EDoptimization
method to adjust the control points of a BSNN wamppsed.

The preliminary experimental results indicate thia¢ DE approaches presented very nice performairces
identification of an experimental nonlinear yo-yotion control system.

The future work of this study includes a compamttudy between the DEC approaches and conventi@irihg
methods like Levenberg-Marquardt, gradient desd€adiman filter, and quasi-Newton in BSNN training.
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