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Abstract. Many control problems involve simultaneous optation of multiple performance measures that aterof
noncommensurable and competing with each otherdifioaally, classical optimization algorithms basexh
nonlinear programming or optimal control theory applied to obtain the solution of such problemagdiifferent
scalar approaches. The presence of multiple ohjestin a problem usually gives rise to a set ofnegit solutions,
largely known as Pareto-optimal solutions. In thintext, the Non-dominated Sorting Genetic AlgarittNSGA-I11)
has been successfully applied to solving many ofjétctive problems. This paper presents the degighthe tuning
of two PID (Proportional-Integral-Derivative) cordglers through NSGA-Il. Simulation numerical resulof
multivariable PID control and convergence of theG¥Sll is presented and discussed with applicatiorairobotic
manipulator of two-degree-of-freedom. The propasetimization method based on NSGA-II offers arct¥ie way to
implement simple but robust solutions providingoadreference tracking performance in closed loop.
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1. INTRODUCTION

The presence of multiple objectives in an optim@aproblem, in principle, gives rise to a set pfimal solutions
(known as Pareto-optimal solutions), instead dhgls optimal solution. In the absence of any fartimformation, one
of these Pareto-optimal solutions cannot be salzbtbetter than the other. This demands a uséndas many Pareto-
optimal solutions as possible (Debal, 2000).

The Pareto optimal solutions to a multiobjectivaimjzation problem often distribute very regulaity both the
decision space and the objective space. A probexharises however is how to normalize, priorige®l weight the
contributions of the various objectives in arriviaga suitable measure. Also these objectives mgnaict or conflict
with each other, increasing one can reduce otimetsrh and this can happen in nonlinear ways. Mbshe classical
Operational Research methods of obtaining solutmnspproaching the Pareto front (including the troriterion
decision-making methods) focus on the first staigeoking the objectives, i.e. trying to reduce tlesign space to a
more easily managed mathematical form (since magt problems are far too complex to enumerate aathate all
the possible combinations in any reasonable titdbale, 2002).

Most optimization problems in control systems (@dino and Ferreira, 1995; Li and Wang, 2000; Liad &p
2002; Zzambrano and Camacho, 2002) involve the damition of more than one objective function, whinthturn can
require a significant computational time to be eatéd. In this context, deterministic techniques difficult to apply
to obtain the set of Pareto optimal solutions ofiynanultiobjective optimization problems, so stodimmethods have
been widely used and applied. Among them, the Gisgautionary algorithms and other nature-inspiadgbrithms for
solving multiobjective optimization problems hagrsficantly grown in the last years, giving raisea wide variety of
algorithms (Osyczka, 1985; Fonseca and Fleming51@®ello, 1999; Van Veldhuizen and Lamont, 2000ei® et
al., 2002; Deb, 2001).

In recent years, in particular, genetic algorithi@#s) have been investigated by many authors (Getlal, 2002;
Deb, 2001). The GA is based on the concepts ofalagalection and reproduction. GA does not guamtd obtain the
optimal solution, but it provides appropriate swmos to a wide range of optimization problems whicther
deterministic methods find difficult. However, GAogsesses advantages that it does not require adiegr



information and inherent parallelism in searchihg tesign space, thus making it a robust adapfptenzation
technique.

For multi-objective optimization methods, some nficdiion to simple GA is necessary. Multi-Objecti@enetic
Algorithm (MOGA) (Fonseca and Fleming, 1993), VecEvaluated Genetic Algorithm (VEGA) (Schaffer, 598
Niched Pareto Genetic Algorithm (NPGA) (Haghal, 1994) and Non-Dominated Sorting Genetic AlgantfNSGA)
(Srinivas and Deb, 1994) are examples of GA basdtl-objective solution methods.

The NSGA proposed by Srinivas and Deb (1994) has saccessfully applied to solving many probletns,mhain
criticisms of this approach has been its high caapanal complexity of nondominated sorting, ladketitism, and
need for specifying a tunable parameter calledispgzarameter. Recently, Dedi al (2002) reported an improved
version of NSGA, which they called NSGA-II, to adds all the above issues.

The purpose of this work is to extend this methodglfor solution of a multiobjective control probieunder the
framework of NSGA-II approach. The efficiency oktproposed method is illustrated by solving thengrof a PID
(Proportional-Integral-Derivative) multivariable rooller applied to a robotic manipulator of twogtee-of-freedom.
In the present work, two objective optimizationsrevearried out to obtain the PID’s design paranset8imulation
results show that the proposed NSGA-II algorithm exolve good control profiles which result in acceptable
compromise between two (and possibly conflictinigjeatives of tracking of position and velocity &ajories.

The remainder of this paper is organized as follolussection 2, the fundamentals of robotic marapad are
presented, while section 3 explains the conceptsdfiobjective optimization and the NSGA-II methd8ection 4
presents the setup of NSGA-II and the simulaticults. Lastly, section 5 outlines the conclusiod future research.

2. DESCRIPTION OF ROBOTIC MANIPULATOR OF TWO-DEGREE OF FREEDOM (2-DOF)

Equations that characterize the robot dynamic eypeesented by a set of coupling differential equnsti and, there
are terms such as: varying inertia, centrifugal @odiolis torque, load and gravity terms. The moeatnof the end-
effector in a particular trajectory with constraggeed requires a complex set of torque functiortsetapplied to the
actuators in the link of the robotic manipulatoexy the description of the robot mathematical nhiglpresented.

The manipulator model usually considers the remtesien of the robotic manipulator dynamic refinks (in our
casen=2) governed by the following equation:

M(0)8+C(6,0)+G(6) =T (1)

whereM(8)00™" is the positive definite matrix of the syste@(,8, 8 )UO™ is the vector that represents the effects
of centrifugal and Coriolis torque&( 8)J0™ is the vector of the gravitational torque effeci1™" is the vector of

the torque of the links, and], &, and @ are angular position, velocity and acceleratiorthef links. The dynamic
model of robotic manipulator utilized for evaluatiof the controllers is presented in Figure 1.

Figure 1. Geometry of robotic manipulator of 2-BO

The dynamic equations are given by (Craig, 1996):
1y =MpIZ(6, +8,) + M1l oCo(26) +8, )+ (my +mp)I 6 - Mol 2965 — 2yl 29,6165 + Myl 9Gi2 +(my +Mp)lagg (2)

Ty = MolqloCob) + Myl p$,67 +myligery + Myl 5(6) +6,) (3)



wheres=sin(8), s=sin(&), c,=cos @), c=cos@), andc,,=cos@+&) and the subscript 1 and 2 denote the parameters o
the links 1 and 2, respectively. Parameters udlimeall simulations were: links lengths 1=0.8 m and,=0.4 m, links
masses —m=m=0.1 kg, and gravity accelerati@¥9.81 m/$ (Mital and Chin, 1995). The sampling periodTis10
msec and the simulation period is 2 s8&200 samples). The imposed constraint in torguend 7 are [-1000; 1000]

Nm. Signalsé . and 8., are desired values of the angular position anatitglof the robotic links, respectively. The pimsit
and velocity error vectors are defined by

gt) = 6,1 -0.(t), FL2 (4)

v(t) = 6, -0u(t), FL2 ®)

In this paper, the form of the multivariable PIDntol is calculated by
(1) = Kn&(t) + Ku(®) + K, d(s)ds  j=1,2 )

whereK,,;, K,; andK;; are the positive diagonal matrices relative to gthsition proportional, velocity (differential of
position), and integral terms of error of the Pi@htol law, respectively. The discretization of atjon (6), provides a
discrete equation of the controller given by

Ag(t)=(K,,; + 0.5TK;) g(t) — (K,-0.5TK;)) g(t-1) + K, v(t) + K, v(t-1),  j=1,2 (7)

v =[6;0-&;t-D-8O+6 DI, =1.2 8

3. FUNDAMENTALSOF MULTIOBJECTIVE OPTIMIZATION AND NSGA-II APPROACH
3.1. Genetic Algorithms

Evolutionary algorithms include various methods,jolihare also called evolutionary computation meghdthese
include: genetic algorithms, evolution strategiewolutionary programming, differential evolution dargenetic
programming. The GA is a paradigm which is basedath gene recombination and the Darwinian “suivofathe
fittest” theory (Goldberg, 1989). A group of indilials in some environment have a higher probalditseproduce if
their fitness (their ability to thrive in this emenment) is high. Offspring are created via a awess operation (as in
gene recombination) and mutation (Podlena and Hes¥]t1998). There are three principal operatiores GA (Hong
et al, 2002):

(i) The crossovemperation generates offspring from two chosen iddials in the population, by exchanging some
bits in the two individuals. The offspring thus @ttt some characteristics from each parent;

(i) The mutationoperation generates offspring by randomly changimg or several bits in an individual. Offspring
may thus possess different characteristics fronir tharents. The mutation operator may be considéoetie an
important element for solving the premature congaog problem, since it serves to create randonrdiyen the
population;

(i) The selectionoperation chooses some offspring for survival adicgy to predefined rules. This keeps the
population size within a fixed constant and putsdjoffspring into the next generation with a higblmbility.

The pseudo-code of a GA is presented in Figure 2.

Determination of control parameters of GA
Begin
Initialize randomly a population of individuglsotential solutions) using uniform distribution
Evaluate the fitness of each individual
Generation countek,= 1;
While (not stopping-condition) do
Implement GA operators (selection, crosspand mutation) for generate new individuals
Evaluate the fithess of each new individua
Replace the old individuals with the nendividuals
End While
End Begin

Figure 2. Pseudo-code of a basic GA.



3.2. M ultiobjective Optimization

A single objective optimization algorithm will noatly be terminated upon obtaining an optimal solutiHowever,
for most realistic the multi-objective problemseith could be a number of optimal solutions. Suitgtdf one solution
depends on a number of factors including user’scehand problem environment, and hence findingethire set of
optimal solutions may be desired.

Mathematically, a general multiobjective optimipatiproblem contains a number of objectives to h@mized and
(optional) constraints to be satisfied. In thise;as multiobjective optimization problem consist®ptimizing a vector
of functions:

Opt (F(¥) = (fu(X), f2(3), ..., f(X))

subject to:g;i(x) < 0,i = 1,2,...,q,
h(*)=0,j=1,2,...,r, (@+r=m),

wherex=(xy, X, ..., %,)' O X is the solution vector or decision variabl&sjs the set of feasible solutions(x) is a
vector of objectivesf; : IR" - IR, i = 1, 2,..,k are the objective functions agg, h : IR" - IR,i=1,...0,j = 1,....r
are the constraint functions of the problem.

These functionsfy(X), fi(X),..., f(X), usually in conflict with each other, are a matla¢ical description of
performance criteria. The meaning of optimum is wetl defined in this context, so it is difficulb thave a vector of
decision variables that optimizes all the objediganultaneously. Therefore, the concepPafeto optimalityis used.

The concept of optimality in single objective ist mirectly applicable in multiobjective optimizatigoroblems. For
this reason a classification of the solutions isoduced in terms of Pareto optimality, accordingthie following
definitions (Zitzleret al, 2002). In terms of minimization of objective fiions:

Definition 1. Pareto optimal A solution vectox* [0 X is Pareto optimal solution iff
=Ox O X: fi(x) < fi(x*) Of(x) # f(x*); di ={1,2,...,k}. These solutions are also called true Paretctisols.

Definition 2. Pareto dominanceA solution vectorx® is said dominate another feasible solutién(denote this
relationshipxc® > ) iff
fi(x") < £,0) O0: fi(x") < £0A); Oi,j = {1,2,...,K}. If there are no solutions which dominate thenx" is non-dominated.

Definition 3. Pareto setA set of non-dominated feasible solutiows|{ O x: x> x*} is said to be a Pareto set.

Definition 4. Pareto front The set of vectors in the objective space thairaage of a Pareto set, i.e.
{F(O®)|-0Ox: x> x*}. A representation of the Pareto front for a tijective space is presented in Figure 3.

f2
4 e @

S,

o dominated solutions
® Pareto front solutions

Figure 3. The Pareto front of a set of solutiona lri-objective space.



3.3. Muultiobjective Optimization Using Evolutionary Algorithms

Evolutionary algorithms are becoming increasingjuable in solving realistic engineering probleMsst of these
problems deal with sufficiently complex issues thatically conflict with each other, thus requirimgultiobjective
analysis to assist in identifying compromise solosi.

In a typical multiobjective optimization problenhetre exists a family of equivalent solutions that superior to the
rest of the solutions and are considered equal frlmenperspective of simultaneous optimization ofitiple (and
possibly competing) objective functions. Such dohg& are called noninferior, nondominated or Paogiimal
solutions, and are such that no objective can lprdued without degrading at least one of the othensl, given the
constraints of the model, no solution exist beytimel true Pareto front. The goal of multiobjectivgogithms is to
locate the (whole) Pareto front.

Multiple-Objective Evolutionary Algorithms (MOEASEs the term employed in the evolutionary multiaiie
optimization field to refer to as a group of EArfwulated to deal with multiobjective optimizatioroptem. The goal of
MOEAs actually consists of two parts as mentione®éb (2001) and Coellet al (2002), namely that the solutions
found must be: (i) close to the Pareto optimal irand (ii) diverse.

This is also illustrated in Figure 4, where it isar how solutions near the Pareto optimal frorstfare sought
followed by a search for diversity along the frohhe first requirement can be obtained using theventional concept
of dominance and does not have a need for anyngjahi crowding measures. A good algorithm wouldstha able to
find a set of solutions as close to the Paretonggitifront as possible. However, the second req@rgrnan be more
difficult to obtain. In order to obtain a diversetsit must be specified what can be considered ast of diverse
solutions, but it must also be understood how damie has influenced the diversity of the solutions.
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Figure 4. The goal for MOEAs is to find a diverse af solutions near the Pareto optimal front logtfiounding the
front and then creating diversity along it.

3.3. NSGA-I1 Approach

NSGA-II differs from a simple genetic algorithm grih the way the selection operator works. Thecédficy of
NSGA-II lies in the way multiple objectives are vegd to a single fitness measure by the creatioofber of fronts,
sorted according to nondomination.

NSGA-II is a computationally efficient algorithm plementing the idea of a selection method basedlasses of
dominance of all the solutions. It incorporatestditist and a rule for adaptation assignment thkés into account both
the rank and the distance of each solution reggraiihers (sharing mechanism for solution diveratfamn).

Figure 5(a) shows what is meant by rank in a mipatidbn case. The value of adaptation is equalstoaibk. When
comparing two solutions belonging to the same ramkieme solutions prevail over not extreme onigsoth solutions
are not extreme, the one with the bigger crowdiisgadce (i.e. the perimeter of the cuboid calcddietween the two
nearest neighbors) wins (Figure 5(b)). This wayeme solutions and less crowded areas are encol(8géazaret
al., 2006).
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Figure 5. Concepts used by NSGA-II (Salazizal, 2006).

A NSGA-II for finding a well-distributed and welleniverged set of Pareto-optimal solutions is preskm this
work. The NSGA-II algorithm used in this work mag tated as:

(1) Generation = 0;

(2) Generate a uniformly distributed parent popafabf sizeP;

(3) Evaluate the individuals and sort the poputabased on the nondomination;

(4) Assign each solution a rank equal to its nonidation level (minimization of fithess is assumed);

(5) Use the usual binary tournament selection;

(6) Use the Simulated Binary Crossover operator aoignomial mutation (Deb and Agarwal, 1995) toatesan
offspring population of siz®;

(7) Combine the offspring and parent populatiofoton extended population of siz€;2

(8) Sort the extended population based on non-datiim;

(9) Fill new population of siz@ with the individuals from the sorting fronts stag from the best;

(10) Invoke the crowding-distance method to ensliversity if a front can only partially fill the mé generation. The
crowding-distance method maintains diversity inpl@ulation and prevents convergence in one daegcti

(11) Update the number of generatianst + 1;

(12) Repeat the steps (3) to (11) until a stoppititgrion is met.

4. SSIMULATION RESULTS

In this work, the objective of PIDs optimizationtts minimize the effect of the position and velgdit the links. In
realized simulations the robot dynamic is solvedithyorder Runge-Kutta method. In this case, th&NSl deals with
the controllers tuning in order to satisfy a cubiterpolation polynomial joint that represents thajectory to be
followed by the manipulator (Craig, 1996), and gilsy

Gajt) =ao +at +at’ +agt®,  j=1,2 9)

where the constraints are
Ourj () =g+ 280t + 3agt %,  j=1,2 (10)
g ar; ()= 28, + 6agty =12 (11)

where 8 4; is the instantaneous desired positiég,and 6, are the adopted values for position, velocity aoceleration
in initial time, respectively. In this conte&y; and 'de,j are the final desired values for the positidhyg=1 rad and

BO4,=2 rad int=2 s and]df,l=0.5 rad andd 4,=4 rad in final timef=4 s) and velocity fedf,1=9df,2=0 rad/s int=2 s and
t=4 s), respectively.



The search range of PID parameters is [0;350]HergainsK,,andK,,, and [0;50] for gain¥,., K., Ki;andKi..
The population of NSGA-II is 40 individuals (binargpresentation of genetic algorithm) and evolwigncycle has
stopping criterion stipulated in 200 generations.

The aim of the NSGA-II in the PID controller tuniig the minimization of twd objectives: (i) minimization of
positions errors of links 1 and 2, and (ii) miniation of variation of two control signals (torqueB) this case, the
objective functions$; andf,for minimization are given by:

tf tf
1= 2610 ~620] + 2[00 ~ 6 0] (12)
tf tf
f2= Z|n® - -1+ Tjra() - 12t -1 (13)

Figure 6 shows the Pareto front of simulation reasing NSGA-II, and the results indicate that approach is a
viable alternative. The NSGA-II algorithm was abdefind the Pareto frontith good distribution of the solutions, the
valuable characteristics in multiobjective optintiaa as shown in Figure 6.
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Figure 6. The Pareto front obtained by NSGA-II.

It can be seen that the design objective have batisfied as shown in Figure 6. However, from stggponses it
is difficult to determine the relative merits ofeonontroller against another over the entire pdmria

The results of bedt, bestf,, and best harmonic mean of objectifeandf, of PIDs tuning using NSGA-II are
presented in Table 1 and Figures 7, 8 and 9, régpbc

Table 1. Simulation results using NSGA-II.

results Kp,l Ki,1 Ky,1 Kp,z Ki,2 Ky,2 fl fz
bestf; 184.86| 49.26] 9.10 11683 16.20 0.11 15/54 16.42
bestf, 184.72| 49.41] 8.85 11.29 16.21 0.27 17/79 13.44
best harmonic mean| 184.16 49.68 8.4 1146 16.520 0.16.54| 13.97
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Figure 7. Response of robotic manipulator in cldseg with PID control (bedt).
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Figure 9. Response of robotic manipulator in cldseg with PID control (harmonic mean gandf,).

5. CONCLUSION AND FUTURE RESEARCH

The controllers used to control processes can kaveral structures. The choice of the structurerdenhes how
well the plant can be controlled. The plant pose®es guidelines and restrictions on the controlldre choice of
controller determines the best possible performaatéeved of a well-tuned controller.

PID controllers are used extensively in the industs an all-in-all controller, mostly because itais intuitive
control algorithm (Astrém and Hagglund, 1995).



The controller has three parts: the proportional {ggproportional to the error, the integral pamoves the steady-
state error and the derivative part reduces thesbweet. The weights of the controller’s actions adgisted with the P,
| and D gains.

In the optimization tuning method the tuning ofargmeterized controller such as a PID controlldraised on an
optimization criterion. Many optimization tuninggiiems involve simultaneous optimization of mukigderformance
measures that are often noncommensurable and cognpéth each other. Historically, optimization tetques have
dealt with multiple objectives by combining thenmtanone objective function composed of the weighsedn of
individual objectives, or by transforming one oltjee into a single response function while usinigess as constraints.

This paper presented the tuning of two PID corgrslthrough NSGA-II. The idea behind NSGA-II istthaanking
selection method is used to emphasize current moimdded points and sharing function method is useohaintain
diversity in the population. Simulation numericasults of multivariable PID control and convergentéhe NSGA-II
were discussed with application in a robotic malaifor of two-degree-of-freedom. The proposed optation method
based on NSGA-II offers an effective way to implensimple but robust solutions providing a goodtrefce tracking
performance in closed loop as shown in Figures% to

Perspectives for improving the input-output behawiod robustness of PID design should addressedinom other
paradigms of computational intelligence for treattra the coupling between variables in PID design.
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