
ABCM Symposium Series in Mechatronics - Vol. 3 - pp.726-735
Copyright © 2008 by ABCM

AN ENVIRONMENT FOR ROBOT SOCCER GAME SIMULATION USING
RECONFIGURABLE ARCHITECTURES BASED ON A FPGA-PCI BOARD

Ênio Prates Vasconcelos Filho, enioprates@yahoo.com.br
University of Brasilia, Campus University Darcy Ribeiro, Dep. ENM, Brasilia/ DF, Brazil

Gabriel Falcão, gabriel.falcao@gmail.com
University of Brasilia, Campus University Darcy Ribeiro, Dep. ENM, Brasilia/ DF, Brazil

Carlos Humberto Llanos, llanos@unb.br
University of Brasilia, Campus University Darcy Ribeiro, Dep. ENM, Brasilia/ DF, Brazil

Abstract. This paper describes the implementation of a platform for simulating the robot soccer game based on the use of
reconfigurable architectures. In this case, a FPGA-PCI board was used (based on Stratix II device, from Altera) in which the
strategy of the game for approaching issues (namely, the player approaching the ball) is developed. A game simulator environment
was also developed using the OpenGL–Graphics Library, which runs in the PC. A communication protocol was defined and
implemented in order to support the communication between the FPGA embedded system and the software application. The FPGA
embedded system consists of a NIOS embedded processor, in which was implemented a controller system, a memory block, a clock
synthesizer (PLL), a timer and a PCI-bus driver. The communication between the simulator and the FPGA-PCI board is achieved
by the PCI bus, in which case a communication protocol was defined. The communication among the different FPGA-embedded-
hardware blocks was accomplished by means of the Avalon-Bus. The NIOS processor executes several functions for robot soccer
game strategy implementation, which were written in C language. These functions are responsible for executing several
mathematics operations in order to define the different situations of the game in real time. As far as the authors know, there are no
systems in the literature with the similar characteristics (involving reconfigurable architectures, a FPGA-PCI board and a complex
embedded system for solving the strategy planning subject for the robot soccer game problem).

Keywords: Robot Soccer Game, FPGA, PCI-bus, Embedded Processors.

1. INTRODUCTION

This paper describes a new architectural approach for the robot soccer game strategy implementation in which

specific roles namely attacker, defender and goal-keeper were defined. This approach involves a specific architecture
based on a Soccer Game Simulator (SGS), running on a PC (developed on OpenGL–Graphics Library and C language),
a strategy module (which was developed using a Stratix II FPGA for PCI bus) and a communication protocol for
achieving the communication between the simulator and the FPGA-PCI board.

Robot soccer game problem have been popular into the academic environment given that it provides a good
platform for multi-agent domain research, dealing with issues such as cooperation by distributed control, effective and
fault tolerant communication, real time image processing, real time robotics path planning and obstacle avoidance.
Basically, there are three main topics in robot soccer games: (a) the mechanism design of robots, (b) the visual
recognition and (c) the study of team strategy planning.

The treatment of computational complex problems has been traditionally carried out with the use of parallel
computing. In this model, the computational elements are processors of high performance, however following the von
Neumann model. One alternative technique is the use of Field Programmable Gate Arrays (FPGAs), which allow
describing the algorithms directly in the hardware, using the intrinsic parallelism of these devices. Given that an
execution of an algorithm in hardware does not depend of the execution of a set of instructions (as in the von Neumann
model) the produced calculations only depends of the critical paths of the implemented circuit. An important point
inside of the FPGAs design is the possibility to include embedded complex elements such as processors, Digital Signals
Processor (DSPs), hardware for communication, buses, among others. This approach allows the complex solution
implementations in an only integrated circuit (System on Chip - SoC).

Another important element inside of the FPGA approach, for high performance solutions implementation, is the use
of FPGA based boards for PCI bus. Given the high data exchange rate in this bus, this make possible the
implementation of hardware accelerators (for instance, implementing reconfigurable co-processors for specific
applications), which allow to improve the performance of the overall computer system. Basically, the PCI protocol
defines a structure of master/slave. The master device only can initiate a transaction by means of a solicitation to the
arbitrator (the processor that controls PCI bus). The PCI bus is currently seen as the standard of linking multiples
peripherals on a PC and it allows transparent upgrade from 32 to 64 bits and working with both 33 and 66 MHz.

In this paper the FPGA is used for the strategy problem solution (namely the speed and the approximation control of
the players), the kicking ball strategy and the kinematics aspects of the ball/robots. In this work the players of the
adversary team were not taken into account, given that the main aim of this proposal is only the implementation in
hardware of the approaching techniques (namely, the player approaching the ball). The strategy module was
implemented through an embedded processor, the NIOS from Altera (NIOS II Hardware Tutorial, 2007), an embedded

RAM module and using the Avalon bus (Altera, 2006a) for connecting all the architectural elements of the system. The
treatment of the problems is adapted for different player roles such as attacker, defender and goal-keeper. These role
behaviors are defined and described by several Finite State Machines (FSMs), which define the proper algorithm for
each role and game situation. In this approach the Soccer Game Simulator (SGS) is capable to represent the current
state of the ball and the robots, apart from the field shape in real time. Additionally, the SGS sends to the Strategy
Module (that was implemented in the FPGA-PCI board) the information about the current game status. The overall
strategy module implements a reconfigurable and flexible co-processor for the soccer game, which can be adapted for
implementing other strategy techniques.

In order to connect the SGS and the strategy module a communication protocol was defined, which implements a
special communication strategy, avoiding communication conflicts. The novelty of this approach is that the strategy
tasks of the system were implemented on a FPGA for PCI bus (PCI Development Kit, 2007), achieving a reconfigurable
system, which is capable to be easily adapted for new algorithms (using the same architecture). Moreover, this approach
also includes a robot soccer game simulator that should be useful to test different game strategies. On the other hand,
the use of a dedicated hardware to calculate the robot player strategy opens a wide variety of new possibilities to the
robot soccer problem. This approach allows both to change the performance parameters in a flexible way and a faster
decision process.

In section 2 the several related works in robot soccer game are discussed. In section 3 the overall architecture of the
system is described. Section 4 presents the basic concepts of the proposed architecture system embedded in the FPGA.
Section 4 discuses the defined command set for the control system. Section 5 describes the virtual environment for
simulating the vehicle motion. Section 6 describes the communication approach. Section 7 describes the project of the
robot soccer game simulator and before our conclusions section 8 describes our results.

2. RELATED WORKS

There are several approaches for soccer game strategy problem, which involve the use of artificial intelligent
techniques, such as Artificial Neural Networks (ANNs), Fuzzy Logic, among others. An important point is that most of
these approaches define several player roles such as attacker, defender and goal-keeper (Hugel et al., 2000). In this case
is very important to solve typical problems such as optimizing the trajectory between the robot and the ball, the player
speed control, the strategy for kicking the ball, the strategy variation depending of the ball and player positions on the
soccer field, among others. In the work of Ming-Yuan et al. (2005) a special robot strategy is proposed, depending on
the current position of the robot, the ball and the opponents. For instance, at a given time the robot might be closer to
the goal or to the ball, in this situation the robot have to adjust its position.

In the work of Bruce, J. et al. (2003) are defined both tactics and strategies. The tactics are related to high-level
individual robot skills, such as shooting, passing, blocking, etc. The strategies are formulated as plays, where a play is a
sequence of tactics assigned to each robot. The robot’s speed is regulated by a PID controller system in order to
maintain the speed to a defined target.

The use of fuzzy control in robot soccer games has been intensively researched in the field of robot navigation for
steering and obstacle avoidance. These techniques have also been applied to the robot soccer for implementing
individual robot behaviors and actions, in particular for shooting and obstacle avoidance. In the work of Vadakkepat et
al. (2004) a fuzzy approach is used to implement individual behavior, to coordinate the various behaviors, to select roles
for each robot, speed control, among others. The work of Köse et al. (2003) proposes an assign strategy to the robot
based on the marked-driven method. To that, different cost functions (score cost functions) are evaluated. In this case
the robot with the smallest attacker score cost will be the primary attacker. The most important task is scoring the goal
(making the ball enter into the opponent’s goal). On the other hand, opponent goals should be avoided. This defines
three main roles: attacker, defender and the goal-keeper (Aranibar, 2005). The main roles can be all represented by a
Finite State Machines (FSM). In the work of Chen et al (2005) is proposed a robot soccer game approach based on
Action Select Mechanism (ASM) implementation. This approach uses Artificial Immune Network (AIN), which is used
to carry out the gaming strategy.

An important conclusion about the study of these works is the importance of defining the roles, the strategies and the
suitable models for representing the different agents (for example, using FSMs). Our approach defines the same robot’s
roles (agents) as proposed in the works of Kose et al (2003) and Hugel et al (2000). Otherwise, our work follows the
strategy definitions as suggested in the work of Kose et al (2003). Additionally, a motion plan technique was proposed
in order to approach the ball position as proposed in the work of Tsung-Ying et al (2004). An important point that can
be observed in these works is that there are not references in order to optimize the implemented techniques by using a
dedicated hardware. In this case the FPGAs can be used as dedicated and flexible coprocessors, suitable for improving
the performance of the techniques by implementing strategies directly in hardware (instead of the software
implementation) for the robot soccer game problem.

3. SYSTEM GENERAL DESCRIPTIONS
Figure 1 depicts the overall system that was implemented. The SGS graphically represents the game status in real

time to the user. Additionally, it gathers the data that will be sent to the strategy module (implemented in the FPGA).
These data are sent through the PCI bus by using a defined communication protocol. These data will be treated by the
embedded microprocessor NIOS, which was synthesized into the FPGA.

Figure 1. The implemented system

The NIOS produces the appropriated commands for moving the robots in the simulator (SGS), taking into account
the implemented strategies. The exchange of information inside of the FPGA chip will be carried through the Avalon
bus, which connects the PCI-Controller module, the RAM memory block and the NIOS processor. In order to
accomplish the communication between the strategy module and the SGS a set of primitives (written in C language)
were created using Windriver software (WinDriver, 2007).

4. THE FPGA EMBEDDED HARDWARE IMPLEMENTATION

To accomplish the calculation in the strategy module and to explore potential of the current development system the
following elements were embedded in the FPGA (see Fig. 2):

a) A NIOS processor: it is used to control the overall calculation system. The processor receives the state data
from the SGS and sends the commands to the robots. The NIOS implements the game strategy, which was
written in C language.

b) The memory block with 128 Kb: it is an FPGA embedded memory and is used to store both data and
instructions that are read by the NIOS. It is also used as stack and heap for data. Additionally, a memory block
is reserved to be used in the PCI communication protocol.

c) The PLL module (Phase Looked Loop): It generates the appropriated clock signals to be used by the
embedded processor (50 MHz). The PLL divides the external clock to be used by the peripherals and the
NIOS.

d) The JTAG Driver : The JTAG is responsible for carrying out the communication between NIOS II and the
software environment system allowing the use a console for debugging tasks.

e) The Timer: it has the function to provide the time base for the transactions with the JTAG module.
f) PCI Driver (Altera Intellectual property) : it allows the implementation (in a friendly way) of the

communication between PCI bus and the logic embedded in the FPGA-PCI board.
g) SysId module: It implements an identifier number, based on the board hardware configuration, making an

identification of the project.

Figure 2. The system architecture to be embedded in the FPGA

All the embedded peripherals are connected to NIOS II and to the PCI controller by means of the Avalon Switch Fabric
tool (NIOS II Hardware Tutorial, 2007 and Quartus II, 2007).

5. THE EMBEDDED SOFTWARE
The main objective in a soccer game is the goal and the same point of view is used in the robot soccer. To do that,

the player must obtain the knowledge about several factors such as position of the goal, the angle between the ball and
the goal center, the current ball status and player’s positions with relation to the field, among others.

The software implementation is based on the model with three robots (Köse et al, 2004), implementing roles namely
goal-keeper, defender and attacker. The goal keeper agent is observed as a player that stays near his own goal line. In
this case his only task is to prevent the goal. However, the defender and the attacker are players who change their
functions by means of the current best positioning and depending of the necessities. The defender is defined as one who
has greater possibility of intercepting the ball. He has to go between the opponent and the ball/goal trying to block them
(this role is not described in this paper). On the other hand, the attacker agent task is related to the highest possibility to
shoot the ball to the adversary goal and/or to make the goal. Figure 3 shows the control routines for calculating and
analyzing the current position and the robots trajectories generation. The software was implemented in C and C++
language. These routines are executed by the NIOS processor and they are explained above.

Figure 3. The embedded software in the NIOS

• Read-buffer module: this block reads data from a special memory block area. This memory area is used by

the SGS to write the status information about the game. The module reads these data and stores them on
vectors to be used by the strategy generator.

• Write-buffer module : this block writes data to a special memory block area. This memory area is used by the
strategy controller to puts the new robot position and speed in the memory, which will be read by the SGS.

• Attacker and goalkeeper modules: these modules implement the roles of the players.
• Storing-vector module: this module implements the mathematical functions that are used to store the robot

data such as robot’s orientation and speed.
• Rays module: This module implements the mathematical functions that allow the calculation of distances

between points and vectors.
• Matrix module : This module implements some matrix operations.

The different modules were developed inside the NIOS II IDE tool. There were included some libraries in the

project in order to calculate matrices, vectors, rays and angles from positions and specific points. These libraries were
also used in the SGS design.

During the project development, two strategies were created to determine the trajectory of the attacker agent. The
first one calculates his positioning taking into account some divisions in the field and the angle between the robot and
the center of the ball. This strategy was called as Reference Lines Algorithm (RLA) and it divides the field using some
lines, which are used as references to the robot positioning. The second algorithm determines a straight line between the
goal center and the center of the ball. From this line, the processor calculates where the attacker should intercept the ball
in order to take it into the adversary goal. This second algorithm showed itself more efficient than the first one (see
section 8). This method was called as Line Ball/Goal Algorithm (LBGA).

Only one strategy was developed for the goal keeper agent. It is important to observe that the behavior of the goal
keeper is mostly preventive, calculating the future ball’s position for intercepting it before the ball crosses the goal line.
On the other hand, the attacker has to approach the ball only from its current position.

5.1. Trajectory Calculation from the Attacker using the reference lines (the RLA algorithm)

The game field was divided in zones under the X axis (see Fig. 4.a). This divisions were defines in the line-vector:
{-200, -160, -80, -40, 0, 40, 80, 120, 160, 200}. The RLA algorithm determines the position from the ball with regard to
the next line and creates a trajectory that allows the attacker to put the ball into the goal. The steps of the algorithm are
the following:

1) The controller determines if the X position from the center of the attacker agent has a coordinate smaller than
the ball (if the attacker is behind the ball).

2) If the attacker is in front of the ball he goes back for achieving a better position.
3) It is calculated a line between the center of the goal and the center of the ball.
4) The controller begins to approach the ball, calculating in real time the current distance between the ball and the

attacker agent. If this distance is bigger then a threshold, the attacker agent continues his approximation to the
ball (adjusting his angle).

5) When the distance between the attacker and the ball is smaller than the threshold his objective becomes to
approach the ball with an angle that permits to kick the ball to the goal.

6) When the angle is found the attacker agent kicks the ball to goal.

(a) (b)
Figure 4. (a) The simulated field and the reference lines (b) The elements of the attacker agent algorithm

5.2. Trajectory Calculation from the Attacker – Line Ball/Goal (the LBGA algorithm)

The second developed algorithm (LBGA) works with the relationship between the ball and the goal.

1) The controller determines if the X position from the center of the attacker agent has a coordinate smaller than

the ball (if the attacker is behind the ball).
2) If the attacker is in front of the ball he goes back for achieving a better position.
3) It is calculated a line between the center of the goal and the center of the ball (the ball-line, see Fig. 4.b).
4) It is defined a circle (the ball-circle, see Fig. 4.b) around the ball whose radio is defined by a threshold.
5) It is calculated a line (the player-line, see Fig 4.b) between the player and the intersection of the ball-line and

the ball-circle (the intersection-point).
6) It is calculated the angle in which the robot must approach the intersection-point as well as the distance

between robot and the intersection-point (in real time). This data defines the attacker-trajectory.
7) The robot should be in the intersection point whenever the distance between the attacker and the ball-circle is

smaller than the threshold. If the interception-point was not accomplished it is defined the best possible angle
to the robot.

8) The ball is kicked.

Figure 5 shows a Finite State Machine (FSM) of the attacker agent. The transitions mean events in the attacker
agent process and are the following:
� E1: the X position of the robot is bigger than the X position of the ball: X_RobotPosition > X_BallPosition.
� E2: the X position of the robot is smaller than the X position of the ball: X_RobotPosition < X_BallPosition.
� E3: the kick angle of the ball is smaller that the pre-defined limit.
� E4: the distance between the robot and the ball is smaller than the threshold.

Figure 5. The FSM of the attacker – LBGA algorithm

Figure 6 shows the zones in which the attacker-agent is more efficient (in blue color). The more difficult positions
are shown in red-color. That happens because the ball’s position produces a point out of the field and they are difficult
to be intercepted, in accordance with the algorithm (for instance near the side lines or the corners).

Figure 6. The critical region from goal score

6. THE COMMUNICATION PROTOCOL

A protocol was developed in order to implement the communication between the PC and the FPGA Board. The
protocol uses the RAM memory block for storing the data coming from the SGS. The NIOS read this status information
and writes the proper commands in a specific memory address. Thus, the protocol will send the commands to the
simulator environment at an appropriate time. The reading and writing process were carried out without any conflicts.
Special memory addresses were created inside of the memory to implement the suitable writing/reading permissions. A
given memory word represents the TX_ACK_NIOS tag and another one is used for representing the RX_ACK_NIOS
one. Similarly, the TX_ACK_SIMULATOR and RX_ACK_SIMULATOR tags are memory mapped as well. Two
programs were written for implementing the communication protocol between the FPGA and the SGS. Figure 7 shows
the FSM representing the implemented protocol in the NIOS processor. A similar program was implemented in the
simulator (SGS program).

READ
BUFFER

PREPARE
TO

WRITE

WRITE
BUFFER

PREPARE
TO

READ

NIOS II
Communication
Protocol

RX_ACK_NIOS = 1

RX_ACK_NIOS = 0

TX_ACK_NIOS = 0

TX_ACK_NIOS = 1

RESET
TX_ACK_SGS

(RX_ACK_NIOS)

SET
RX_ACK_SGS

(TX_ACK_NIOS)

Figure 7. The FSM of the NIOS protocol

The NIOS II protocol begins the process by reading the read-buffer (see Fig. 7). Therefore, the robot and the ball
positions are known (the read-buffer state). Then the algorithm resets the TX_ACK_SGS tag; this is similar to the
RX_ACK_NIOS tag (the reset state). This means that the embedded software has finished the lecture process and that
the SGS can now write again in this memory position. Then the protocol goes to the prepare-to-write state. In this state,
the machine verifies if the TX_ACK_NIOS tag is equal to ‘0’. This represents the fact that the SGS has already read the
last data and that the embedded software is now able to write in memory. If the TX_ACK_NIOS is equals to ‘1’, the
FSM continues waiting until the last data is consumed by the SGS. Then the FSM writes in memory the new robot’s
positions and speed. Afterwards, the FSM set the RX_ACK_SGS tag to ‘1’ (the TX_ACK_NIOS tag is set as well),
indicating that the new data is ready to be read by the SGS (the set-RX-ACK-SGS state). Finally, the NIOS II software
goes to the prepare-to-read state. This state verifies if the SGS has already written the current position of the robots and
the ball (this state is similar to prepare-to-write state). If the RX_ACK_NIOS tag is equals to ‘0’ the FSM waits until
the information is ready. If the RX_ACK_NIOS tag is equals to ‘1’ the protocols restart the process of the data reading.

7. THE SGS PROJECT

In order to implement the SGS the DEVC++ free software was chosen (Bloodsheed Software, 2007). Given that the
simulator demands multiple operations with images, the OpenGL-Graphics Library (OpenGl Documents, 2007) was

included (this library was developed in C/C++). The simulator must represent the physical effects of the collisions
between ball/robot, robot/wall and wall/ball. Moreover, the SGS must answer to the commands coming through the
PCI bus (in a fast way). A treatment of the collisions was developed as well as the conditions of the restrictions for the
ball’s movements and of the robot in real time. The structure of the software of the simulator is shown in Fig. 8 and the
module descriptions are the following:

Figure 8. The simulator structure

• Vectors, rays and matrices modules have the same functions as was described in section 5.
• Buffer Read module: it communicates with the PCI bus, reading from the memory the future position of the

robot and its speed.
• Direction Module: the SGS determines the current direction of the robot.
• Collision Detection Module: the SGS determines whether in current movement some collision will occur.
• Image Module: the Open-GL is used to print in the monitor the field, the robot and the ball pictures.
• Write Buffer Module: the SGS calculates the new positions of the components, based on its interactions during

the last movement and writes it in the memory, using the PCI bus.
• Directives from PCI Bus Module: this block is based on the PCI driver, which was generated by the WinDriver

software (WinDriver, 2007). This driver provides the basic functions to write and read through the PCI bus and
how these functions can be used.

7.2 – Collisions Treatment in the SGS

The generation of the movement of the robots inside of the simulator was developed through several vector
operations, which represent the speed and the angle variations (the current and previous ball/robots positions are also
represented by vectors). The robot movement representations (such as acceleration and the increase of the
displacement) were achieved in a realistic way. Additionally, the calculation of collision between the robots and the ball
with the walls were obtained.

7.2.1 – The algorithm for detection the robot × walls collisions

This algorithm has the following steps:
• The angle and the robot speed are obtained.
• The new position of the four vertices of the robot is calculated.
• If none of the vertices collides with any of the walls, the movement is allowed and the algorithm restarts.
• Otherwise, the movement is not allowed and the robot is motionless for that action.

Notice that these calculations only are true because the field comprises only four walls with angles of 90º between
them. Therefore, the robot always collides with some of its vertices. Examples of collision between the robot and the
walls are showed in Fig. 9.a and Fig. 9.b.

Figure 9. (a) The robot × wall collision (b) The ball reaction after collision

(a)

(b)

7.2.2. The algorithm for detection the ball × walls collisions

This algorithm has the following steps:
• The angle and the ball speed are calculated.
• It is calculated if the direction of the ball is parallel to the wall. In this case there will not have collision and the

algorithm restarts.
• In the case of the ball’s direction produces an interception with the wall, the algorithm calculates how many

time will spend until the collision happens.
• After the collision, the reaction in the ball is defined using the motion equations. In this case the reflection

angle is the same of the angle of incidence in relation to the normal line in the surface (see Fig. 9.b).
This calculation is carried out for the walls in an individual way. Therefore, 12 calculations of intersection between

balls and walls are done. In the case that the ball has more than one possibility of collision, the time is the definitive
factor. That is, the SGS is capable to determinate with what wall the ball will first collide.

7.2.3. Algorithm for detection the Ball × Robot collisions

The SGS assumes that the ball have a quart of the weight of the robot. In this case the movement equation from the

ball speed after a collision with a robot is given by eq. 1 (notice that BTC means before the collision).

BallSpeed = BallSpeed_BTC × 0.25 + RobotSpeed×1 – (BallSpeed - RobotSpeed)/(1.25) (1)

The algorithm is the following:

• The angle and the speed of the ball and the robot are defined.
• The angle between ball and robot and the collision point are calculated. A normal line to this side is calculated

for defining the reaction of the ball.
• The relative speed vector between the ball and the robot are defined.
• It is verified if the final position of the ball will have an intersection with the robot. The collision will not

happen if there is not an intersection. In this case the algorithm restarts.
• If an intersection exists, the time in which the collision will happen is calculated.
• It is verified if the next collision is with a robot or with some of the walls.
• In the case of a collision with a robot, the equations of movement conservation are used, having as reference

the angles of the collision and in which point of the robot the collision will occur.

8. RESULTS

In this section some results of this approach are described.
8.1. The hardware results

Table 1 shows the results for the main modules of the synthesized system using the FPGA Altera device
EP1S25F1020C5 and the Quartus II tool.

Table 1. The use of the main FPGA resources elements

System Elements Logic Cells Memory Bits DSP Elements
DSP 36x36

bits

System (except top-level) 3960 1129344 8 1

Clock 0 104 0 0 0

Clock 1 203 0 0 0

NIOS II 1858 66944 8 1

JTAG Module 162 1024 0 0

PCI Compiler 1202 12800 0 0

PLL 24 0 0 0

On-Chip Memory 2 1048576 0 0

SysId 2 0 0 0

Timer 130 0 0 0

Important to point out the presence of microcontroller NIOS II embedded in the FPGA, resulting in a high

consumption of logical components. Moreover, the NIOS II implementation includes a block of memory of 128Kb, in

which only 54Kb are effectively used by the embedded software. Figure 10 shows the block generated by the SOPC
Builder tool (from Altera), used in Quartus II with all the connections.

Figure 10. The implemented block inside the FPGA

8.2. The Trajectory Calculation

The calculation of the efficient trajectory for a robot on the table was developed using the NIOS processor. This has
the capacity to become a goalkeeper agent or an attacker agent. This occurred in function of the current development of
the simulator. Anyway, the current result shows the viability for using the capacities of calculation of the FPGA for the
trajectory planning.

20

52

100

83
100

100
100

82

20

50

68 74

0
10
20
30
40
50
60
70
80
90

100

G
o
al
s
S
co

re
d

160 80 0 -80 -160 Total
Field Position - Y axe

RLA x LBGA - Efficiency in function of the
initial position of the robot in the field

RLA
LBGA

Figure 11: comparing the RLA and LBGA algorithms

8.3. The Speed Data Treatment
The comparison between the two attacker algorithms can be observed in Fig. 11. This figure shows that (for the

same initial position in Y axis) the LBGA is more efficient than the RLA, in function of the scored goals. This can be
observed in the last column, where the LBGA shows a general efficiency of 74% against 68% of RLA algorithm.
Anyway, in some specific situations in the field, the RLA is better than LBGA. This is in the case of the positions -160
and +160 (both in Y axis).

With regards to the timing for writing/reading data to/from the embedded memory, it was observed that for each

reading treatment and writing processes of the NIOS 6 iterations of the simulator are executed (on average). Given
that the clock of PC processor is about 3,00GHz, it can be observed as a good result. Even taking into account that the
best cameras of the market send about 30 frames for second, the result is still more interesting. This is because of the
speed of the simulator was measured in 40 frames per second on average. This is a good indication that our control
system will work correctly in a real robot soccer game.

9. CONCLUSIONS

This paper described the implementation of an environment for the robot soccer game problem. In this approach the
strategy control was implemented in a reconfigurable architecture based on a FPGA-PCI board. In this case, several
devices such as microprocessor, memory board, timers, among other were embedded in the FPGA. This fact defines a
System on Chip (SoC) implementation of our controller design approach. Additionally, a soccer game simulator was

implemented, which was written using free software tools. A protocol was defined for allowing the communication
between the simulator (SGS) and the FPGA embedded system.

Several synthesis results were discussed in section 8. The embedded microprocessor spent about 20% of the FPGA
resources. The performance of the strategy control can be improved by implementing the critical function directly in
hardware.

A comparative study was accomplished about comparing the two algorithms for the attacker agent. This shows the
capability of the system to implement several strategies. The implemented architectures are very promissory given the
transference rate of the PCI bus, which is very suitable for implementing reconfigurable co-processors.
 Another important result of this approach was that the communication between the different hardware components
with the PCI bus was satisfactorily accomplished. As far as the authors know, there are no systems in the literature with
the similar characteristics (involving reconfigurable architectures, FPGA-PCI board and the complex embedded system
for solving the strategy planning subject for the robot soccer game problem).

 The use of FPGA as accelerator devices in supercomputer is currently more and more studied. In this case is very
important to connect the FPGA board using high performance buses such as PCI and PCI-Express ones. In Fergusom
(2007) is discussed the implementation of the most efficient supercomputer (nowadays), which uses several FPGAs as
accelerator hardware devices. This fact shows the importance of the FPGA devices for high performance computation
issues.

10. REFERENCES

Aranibar, B. D., 2005, “Estratégias baseadas em aprendizado para coordenação de uma frota de robôs em tarefas

cooperativas”. Master work document. Departamento de Eng. de Automação e Computação. Universidade Federal do
Rio Grande do Norte, Brasil.

Bloodsheed Software, 2007. Avaliable at http://www.bloodshed.net/dev/. Accessed in 2007.
Bruce, J., Bowling, M., Browning, B., and Veloso, M, 2005, “Multi-robot Team Response to a Multi-robot

Opponent Team”. In IEEE International Conference on Robotics anda Automation. Proceedings. ICRA ’03, volume 2,
Taipei, Taiwan, pp. 2281-2286.

Chen., C. Li., C., Hsu, W. Wang, Y., (2005), “Design an Action Select Mechanism of Soccer Robots System Using
Artificial Inmune Network”. Proceeding of the IEEE International Conference on Mechatronics, pp. 445 -450.

Fergusom, T., 2007. Avaliable at <http://news.zdnet.co.uk/hardware/0,1000000091,39286409,00.htm>. Accessed in
2007.

Hugel, V. Bonnin, P., Blazevic, P., 2000, “Reactive and Adaptative Control Architecture Designed of Sony Legged
Robots League in RoboCup 1999”. Proceedings of the 2000 IEEE/RSJ. International Conference on Inteligent Robots
and System, pp. 1032- 1037.

Köse, H., Tatlidede, U., Mericli, C., Kaplan, K., Akin, H. L., 2004, “Q-Learning based Market-Driven Multi-Agent
Collaboration in Robot Soccer”. Turkish Symposium On Artificial Intelligence and Neural Networks, pp. 219-228.

Ming-Yuan. S., Juing-Shian C., Tien-Lung, Y., Ke-Hao, C., Sheng-Pao, C., 2005, “System Desing and Strategy
Integration for five-on-five Robot Soccer Competition”. Proceeding of the 2005 IEEE International Conference on
Mechatronics. July, pp. 461 - 466.

Nios II Hardware Tutorial, 2007, San Jose, Ca: Altera. Available at <http:// www.altera.com/>. Accessed in 2007.
Quartus II, 2007, “Version 6.0 Handbook”, San Jose, Ca: Altera. Available at <http:// www.altera.com/>. Accessed

in 2007.
PCI Development Kit, 2007. Stratix Edition, Getting Started User Guide, San Jose, Ca: Available at <http://

www.altera.com/>. Accessed in 2007.
Tsung-Ying, T., Chiu-Hao, L., Yyin-Tien, W., 2004, “Term Formation Control for Soccer Robot Systems”.

Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, pp. 1121- 1125.
Vadakkepat, P., Miin, O., Peng, X., Lee T. H., 2004, “Fuzzy Behavior-Based Control of Mobile Robots”. In IEEE

Transactions on Fuzzy Systems, Vol. 12, No. 4, pp. 559- 564.
OpenGl Documents, 2007. Available at <http:// www.opengl.org./>. Accessed in 2007.
WinDriver, 2007. PCI/ISA/CARDBUS v8.02 User’s Guide. Avaliable at <http://www.jungo.com>. Accessed in

2007.
11. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

