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Abstract - This paper presents the applications of a neural network controller for a multivariable system of coupled tanks to 
evaluate the use of intelligent control techniques. We used a 4rd  order process, where the first three tanks have constant cross section 
of 60 cm2 and the fourth tank has a variable section, variyng between 60cm2 and 121.2cm2 . The maximum alowed level is 49.5cm. 
Tanks 1 and 3 have water input and output driven by electric pumps, tanks 2 and 4 have 2mm water outlets into a reservoir. 
Coupling valves between adjacent tanks (a 2mm groove with configurable height) determine the flow parameters of the process. 
Each tank has is equipped with a pressure level sensor. The contribution of this work consists mainly in the design procedure for 
intelligent controllers coping with very different configurations of the multivariable system. The controlled variable is the level of 
tank 4. A dynamic neural network was trained to learn the non linear system characteristics guaranteeing small steady error between 
the plant output and the reference and almost similar transitory behaviour. The development and implementation of the proposed 
controller was done using Matlab® and Simulik®. As some level processes are critical, in the sense that they should operate for 
months without flaws, it is mandatory to use industrial equipment, in our case a PLC (Programmable Logic Controller). The neural 
controller was implemented using the Simulik® NARMA-L2 block. The control and measurement signals were transfered through 
the PLC and a PC data server by an OPC interface (via serial interfaces. Neural network control results are presented and compared 
with a standard PID. Advantages and restrictions of the implemented NARMA-L2 are discussed. 
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1. INTRODUCTION  

 
Artificial Neural Networks are important tools for control of nonlinear plants given their characteristics of universal 

approximators and due the capacity to learn. Applications involving adaptive control through linearization of SISO 
systems (Chen & Khalil, 1995) and internal model control (Hunt & Sbarbaro, 1991) are some of the many uses of 
neural networks in process control. 

Nonlinear dynamic systems are of great interest in control engineering. Due to the complexity of such systems it is 
difficult to develop general control techniques. Some techniques are based on the cancellation of the non linearities 
(Slotine & Weiping, 1990). They present, however, as main limitation the need of "an accurate" model of the plant and 
the same must present steady inversible dynamics. 

Three main approaches are used to describe non linear systems: 1) Modeling, 2) Identification and 3) Training. 
Identification is a procedure that, in the simplest case, tries to tune a pre defined structure with measured signals of the 
process. It  is an optimization process that seeks the best parameter values that minimize the error between the process 
and the model. The disturbance signals of the process also can be identified. If the structure of the process is known, 
this is the best experimental approach. In the practice it is very difficult to correctly formulate the internal structure of a 
nonlinear process. 

Artificial Neural Network are non linear universal approximators. Nor the internal structure nor the parameter values  
are necessary in advance. If the training data is rich in information, the number of neurons is enough, and a proper 
training algorithm is available a reasonable good approximation is expected, at least for some domain extension. Good 
global solutions are rare for practical problems. 

When a wide range of operation is requested it is more difficult and often a single RNA can not cope with the entire 
operation range. In this article we consider the composition of a set of RNAs trained for complementary operation 
ranges. A soft transition must occur when a change of operation range takes place. 

In this paper we show practical results of a neural control NARMA-L2 for a 4th order non linear process - a 
connected set of four water tanks. The results using training algorithm Conjugate Gradient Backpropagation with 
Fletcher-Reeves Updates, number of layers and errors using this controller are presented and evaluated. 
 
2. THE 4th ORDER NON LINEAR LEVEL PROCESS 
 

The process investigated in this work is a multivariable system of interconnected tanks build for the evaluation of 
control techniques, figures 1 and 2. Three of these tanks possess dimensions of 49.5x10x6 cm and the fourth tank has a 
non uniform section. The transversal sections of tanks 1, 2 and 3 is 60 cm2. The width of tank 4 until 14.7 cm height, 
representing 29% of the liquid level, has the same value, 60 cm2. Then it gets linearly wider up to 20.2 cm (31.65° 
aperture angle) with a transversal area changing from 60 cm2 to 121.2 cm2. 
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Tank 1, has a water input, pumped from reservoir by means of a pump  u1, and also has a water output, qo1. A 
second pump u2 drives water from 1 to the reservoir. Tank 2, has a water output, qo2, passing through a puncture of 
2mm, situated in the bottom of this tank to the reservoir. Tank 3, has water input, that is pumped from the reservoir by 
means of pump u3, Tank 3 also has a water exit, qo3. Tank 3 has also the possibility to pump water out using pump u4. 
The contents of tank 4 reaches the reservoir through qo4, a puncture of 2mm, situated in the bottom of this tank. 

 

 
Figure 1. Schematic representation of the 4rd order liquid level process. 

 
Between the tanks a groove with approximately 2mm width and configurable height is used, that determines the 

interconnecting flow parameter. The pumps are driven by means of a power system commanded by a voltage between 0 
and 10 VCC. Each tank is endowed with a pressure level sensor, able to measurement with good precision inclusive the 
maximum water column of 49.5 cm. 
     The complete dynamic model of the interconnected tanks process at LAVSI is given by equations 1 (Melo, G.A.F 
and Bernardes, M. C., 2006): 
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The valve k12 allow water to flow between tank 1 and tank 2. In the same way k23 and k34 shape the flow between 

tanks 2 and 3,  and 3 and 4, respectively. The problem focused in this work is the height control of level 4 (h4). The 
outflows and the heights are thus defined as follows:  

 
qi1 and qi3 = inputs flows into tanks 1 and 3, [cm3/s];  
qo1 and qo3 = output flows from tanks 1 and 3, [cm3/s];  
q12, q23 and q34 = interconnected flows between tanks 1-2, 2-3 and 3-4, [cm3/s];  
qo2 and qo4 = output flows from tanks 2 and 4, through 2mm punctures [cm3/s];  
h1, h2, h3 and h4 = water column height in tanks 1, 2, 3 and 4, [cm].  
A it is the area of the transversal section of tanks  
k  is the valve parameter between tanks k12, k23, and k34 [cm2,5/s] 



 

 

 

Figure 2 - The 4rd order Liquid Level Process. 
 

 
3. PROGRAMMABLE LOGIC CONTROLLER (PLC) 
 

A Programmable Logic Controllers is an electronic 
equipment aimed to substitute burst systems and 
electromechanical devices and to interface Numerical 
Commands with operating machines. This equipment 
substitutes the electric diagram, the relays and its 
interconnections by programs  that simulate these 
components. The Supervisory Control aims the global 
control of a process, instead of partial, as the 
Programmable Controller. 

PLC’s control with precision and robustness 
mechanical, pneumatical, hydraulical and electrical 
processes. So they are the first choice when controlling 
industrial processes.  

In this work the PCL Ref. 1770 from Metal Leve 
(1987), shown in Figure 3, was used. In ladder logic the 
PLC executes control algorithm accordingly to the stored 
instructions in memory.  

The implementation of ladder logic control in CLP, 
they were based on "Controlador Programável" 
(Oliveira, Júlio César Peixoto, 1993). 

 

 
Figure 3. PLC Ref 1770 Metal Leve 

 
4.  NARMA-L2® (FEEDBACK LINEARIZATION) CONTROL 
 

The NARMA-L2 model was proposed by Narendra and Mukhopadhayay (1997). It can be used to model the plant 
previously cited, using two distinct neural networks. One net implements a controller and the another simulates a model 
of the plant. In this model the number delays is the discrete model order. The NARMA-L2 – use an non linear  
identification tool. The identified model is used in a neural network controller that transforms the not linear system into 
a linear system through the additive and multiplicative cancellation of non linearities. 

Diverse nonlinear approximative models have been developed. An excellent examination can be found in the works 
of Billings (1985a and 1985b). The standard model that is used to represent non linear general systems in the discrete 
time NARMA (Nonlinear Autoregressive-Moving Average) model. 



The Narma-L2 controller, trained off-line, is a rearrangement of the standard neural network using the plant model. 
The controller transforms the nonlinear dynamics of the system into linear dynamics canceling non linearities. Many 
stages must be followed to obtain a Narma-L2 controller. The first stage is to identify a neural net that represents the 
system dynamics. A NARMA model is represented by: 
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Where d ≤  2, using controlling model NARMA-L2, gets it form forms: 
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The performance of Narma-L2 controller depends essentially on the identification of the system with a neural 

network. A good model of a neural net for the system supplies good results in the desired points of operation. A 
NARMA-L2 controller is shown in figure 3, where TDL (Time Delay Lines) blocks are lines of fast delays that store 
preceding values of the input signal and the transfer functions are: sigmoidal and linear, respectively. 

NARMA-L2 is include in the MATLAB® Software and uses the theory of neural networks and parameter 
identification to carry out the identification and the control, as shown in figure 4. 
 

 

 
 
 
 

 
 
 
 

Figure 4. NARMA-L2 control 
 

The user interface has three panels: architecture of the net, training parameters and training. The identification is 
initiated using the training data that can be generated by a convenient tool (Generate training data) or imported from 
some archive (Import data). A topology for the net is defined (Network Architecture). The choice of the number of 
layers, delays and interval of sampling is made based in the nonlinear system to be controlled. In the identification stage 
it is necessary to choose the training parameters (Training parameters), which depends on the complexity of the studied 
system and in the computational capacity. After the three fields are defined, the training can be started. The quadratic 
average error of the data serves as stopping criterion for the training. At the end of the training, the following answers 
are supplied in graphical form the three types of data: quadratic average error, quadratic error, input signal, output 
signal of the plant and the output signal of the net. 

Finally, the obtained neural net is applied to the block of control NARMA-L2® (figure 4). In this tool the controller 
will be the proper neural net, or either, the proper net will be inserted in the mesh of the system. The training gets, 
approximatively, the inverse model of the non linear dynamic system. 
 



5. METHODOLOGY 
 

The plant was identified by the training data generated by the Generate Training Date tool NARMA-L2. Alfter this, 
we defined the topology of the net in Network Architeture, choosing the number of layers, delays and sampling interval. 

The complete joined network was applied the controller. To verify the response of the controller the configuration in 
figure 5 was used. This procedure was repeated for some configurations of the neural net, as training algorithm, number 
of layers and delays. During the tests it was verified that the output signal of the net follows the input signal adequately 
and, it satisfactorily reflects the behavior shown at the output of the plant. Observing, still, that the output signal of the 
plant and that of the net always reach the steady state for inputs of amplitude qi1 = 0 to 66 [ cm3/s ].  

All the simulations have been carried out in the SIMULINK® of MATLAB® software. 
As described, answers for some configurations of the interconnected water tanks had been obtained. For the 

presentation of the graphical results the model shown in Figure 6 was used. The following parameters were used: 
 

qi1 = 0 a 66 [cm3/s]; qi3 = 0 [cm3/s]; h4 =  0 a 46 [cm];  
k1=0, k2=5, k3=0 e k5=5 [cm2,5/s]; k12 = 12,  k23 =2.5, e k34 = 6 [cm2,5/s] 
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Figure 5. Diagram of blocks of the tanks 
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Figure 6 – Simulink model of the controlled process. 



In the figure 7 we show the NARMA-L2. SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k) 
Algorithm of training traincgf in model of the plant of four coupled to water reservoirs. 
The results for the algorithm of training Conjugate Gradient Backpropagation With Fletcher-Reeves Updates 

(traincgf), network architecture, training date and training epochs using this controller are presented. More information 
on the Fletcher-Reeves Update (traincgf) are gotten in the Neural Network Toolbox. 

The plant was identified by Plant Identification - NARMA-L2: Network Architecture: Size of hidden layer: 5, 
Delayed plant inputs: 4, Delayed Plant Outputs: 4, Sampling Interval(sec): 8. Training Data: Training Samples: 5000, 
Maximum Plant Input: 66, Minimum Plant Input: 0, Maximum Interval: 500, Minimum Interval Value: 50. Training 
Epochs: 5000. Training parameters: testing data, validation data, training data and Training with traincgf. In the Table 
nº 1, we show the answers for the used configuration in the connected water tanks. 
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Figure 7 – NARMA-L2 - SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k) 

Algorithm of training traincgf in model of the plant of four coupled to water reservoirs 
 

 
Table 1 - Answers for the used configuration in the connected water tanks 

Algorithm 
train 

Size 
hidden 

Delay 
In 

Delay 
out 

Error 
Goal 

Error 
Train 

Error 
Validation 

Error 
Testing 

        
traincgf 5 4 4 0.4877 -5 a +15 x 10-4 -5 a +15 x 10-4 -5 a +10 x 10-4 

        

 
In the Table nº 2, we show the Time of Reply in the experiments for Controller NARMA-L2, carried through in 

environment Matlab and Simulink, in the model plant. In this table we show: setpoint change, theoretical rise time, rise 
time, peak time and the overshoot for the algorithm Conjugate Gradient Backpropagation With Fletcher-Reeves 
Updates - traincgf, that got a samller error and one better excursion of the variable manipulated for the level process. 

 
 

Table 2 – Time of Reply in the experiments for Controller NARMA-L2- Model Plant 

NARMA_L2 
control 

Setpoint 
change (cm) 

Rise time 
Theoretical 

(%) 

Rise time 
 (seg) * 

Peak time 
(seg) Overshoot (%) 

RNA - CGF 2 cm 0 cm a 2,0 cm no no no 
RNA - CGF 4 cm 2,0 cm a 4,0 cm 176 312 38,6 
RNA - CGF 6 cm 4,0 cm a 6,0 cm 199 347 23,1 

* the continuity of the signal in the exchange of the SP was considered 
 
 



6. EXPERIMENTAL AND SIMULATION RESULTS 
 

So, as described, measurements for some configurations of the interconnected water tanks have been obtained. For 
the presentation, after properly trained the neural network is used to control the real plant, as shown in figure 8. The 
neural controller with NARMA-L2, used the following parameters: 

 
qi1 = 0 a 66 [cm3/s]; qi3 = 0 [cm3/s]; h4 =  0 a 46 [cm];  
k1=0, k2=5, k3=0 e k5=5 [cm2,5/s]; k12 = 12,  k23 =2.5, e k34 = 6 [cm2,5/s] 
 
The experimental data was recorded using a OPC server connection (refer to figure 9). The data was acquired from 

the level sensors located in the tanks. The data acquisition rate was half second. At present, two signals are recorded and 
transmitted to the MATLAB software in real time. The data transmission from the Allen Bradley PLC-5 is one way so 
that the 4rd order level process is not interrupted. The data acquisition process is initiated by executing the initializing 
code which includes specifying the signals to be recorded and the time for the data to be acquired. 
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Figure 8 –. Model of the controlled system implementation on a real plant 

 
The subsystems have been interconnected in Matlab and Simulink to create a simulation tool set that uses the OPC 

Toolbox. A variety of model input and output signals have been considered including the input electric pumps and 
output level sensor. 

DATA LOGGING SCHEME: As shown in figure 9, the system handles most of the data transfer from the 
Programmable Logic Controllers through a server data and the Matlab OPC Toolbox, connected to the PLC are logged 
through RS-232 communications. There is a configuration table which serves as an index for data retrieval. Other 
information is also stored in this table, for instance, description of the logged parameter, upper and lower limits, 
interface type, etc. The logged data is stored in a separate table. The computer retrieves the information on the data to  
PLC tag name, from the configuration table [LAVSI] in the server database. Then the logging process will be executed 
at the specified time interval. 

OPC Toolbox (Open Process Control) is a collection of functions that extend the capability of the MATLAB® 
numeric computing environment, and blocks that extend the Simulink® dynamic system simulation environment. Using 
OPC Toolbox, you can acquire live OPC data directly into MATLAB and Simulink, and write data directly to the OPC 
server from MATLAB and Simulink. 

In this work, controller NARMA-L2, through the computer (a) processes the neural network and sends the control 
signal u(k) for the PLC (b) which sets in motion the pump qo1 of tank 1 (c)  and carries through the reading of level of 4 
tank h4, through the server data collection and OPC Toolbox Read/Write (figure 9). 

 

       
 

(a) computer    (b) PLC    (c) tanks 
 

Figure 9 - Diagram of the communication system by Data Logging Scheme 



In the figure 10 we show the NARMA-L2 - SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k)  
Algorithm of training  traincgf  in real plant of four coupled to water reservoirs.  

In the Table nº 3, we show the Time of Reply in the experiments for Controller NARMA-L2, carried through in 
environment Matlab and Simulink, in the real plant of four coupled to water reservoirs. In this table we show: setpoint 
change, theoretical rise time, rise time, peak time and the overshoot for the algorithm Conjugate Gradient 
Backpropagation With Fletcher-Reeves Updates - traincgf, that it got a lesser error and one better excursion of the 
variable manipulated for the process of level of liquids of 4ª order. 

In the figure 11 we show the SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k) The PID 
Controller in real plant of four coupled to water reservoirs. The project of controller PID was carried through by manual 
tunning (trial and error) which had the difficulties in the operation band proposal. 

In the Table nº 2, we show the Time of Reply in the experiments for PID Controller, carried through in environment 
Matlab and Simulink, in the real plant of four coupled to water reservoirs. In this table we show: setpoint change, 
theoretical rise time, rise time, peak time and the overshoot for the algorithm PID Controller. 
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Figure 10 – NARMA-L2 - SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k) 

Algorithm of training  traincgf  in real plant of four coupled to water reservoirs 
 

Table 3 – Time of Reply in the experiments for Controller NARMA-L2 – Real Plant 

NARMA_L2 
control 

Setpoint 
change (cm) 

Rise time 
Theoretical 

(%) 

Rise time 
 (seg) * 

Peak time 
(seg) Overshoot (%)  

RNA - CGF 2 cm 0 cm a 2,0 cm 60 118 65 
RNA - CGF 4 cm 2,0 cm a 4,0 cm 60  294 27 
RNA - CGF 6 cm 4,0 cm a 6,0 cm 203 280 10 

* the continuity of the signal in the exchange of the SP was considered 
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Figure 11 – SP: setpoint, PV: process variable y(k) e MV: manipulated variable u(k) 
The PID Controller in real plant of four coupled to water reservoirs  



 

 
Table 4 – Time of Reply in the experiments for Controller NARMA-L2 – Real Plant 

NARMA_L2 
control 

Setpoint 
change (cm) 

Rise time 
Theoretical 

(%) 

Rise time 
 (seg)* 

Peak time 
(seg) Overshoot (%)  

RNA - CGF 2 cm 0 cm a 2,0 cm no no no 
RNA - CGF 4 cm 2,0 cm a 4,0 cm no no no 
RNA - CGF 6 cm 4,0 cm a 6,0 cm no no no 

* the continuity of the signal in the exchange of the SP was considered 
 
 
7. CONCLUSIONS 
 

We presented in this paper a NARMA-L2 controller, for the control of a 4rd order liquid level process, that was 
identified and controlled with SIMULINK®. We presented measured signals for the controllers, trained using 
Conjugate Gradient Backpropagation with Fletcher-Reeves Updates (model and real plant) and PID Controller (real 
plant).  

The main purpose of the experiment was to have a single neural network that learn the whole process behaviour, that 
means, a neural controller that works properly (linear behaviour) in every operating point of the 4th order non linear 
liquid level process.  

The experimental data was recorded using an OPC server connection. The data was acquired from the level sensors 
located in each tank. The data transmission from the Allen Bradley PLC-5 is one way so that the 4rd order level process 
is not interrupted. A diversity of model input e output signals have been considered including the input electric pumps 
and ouput level sensor. The system handles most of the data transfer from the Programmable Logic Controllers through 
a data server and the Matlab OPC Toolbox, connected to the PLC through RS-232 communications. 

The obtained results show the viability of the neural approach for the control of real non linear plants. The behavior 
of the manipulated variable for the neural controller is softer, still reaching the desired value, in relation to a PID 
controller, preserving the pump s during operation. Careful attention was needed to not saturate the control variable. A 
good controller must follow the reference in the steady state )( ∞→t , while keeping the control signal in the operation 
band of the actuator. 

A future enhancement would be to actively treat the saturation, an important issue for every real system.  
The common computer does not have robustness and compatibility with the electric standards and electromechanical 

specifications used in the industry. This work investigated the implementation of the theory of artificial neural nets in 
NARMA-L2 in commercial computer associated with PLCs.  

Further studies and experiments are in progress at the Group of Robotics, Automation and Computational Vision - 
GRAV, University of Brasilia, so that the NARMA-L2 controller would be a feasible approach for the process industry. 
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