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Abstract. This paper presents a novel technique for fault detection and isolation based on the singular value 
decomposition of a Hankel matrix, which is built from plant output measurements. The singular value based fault 
detection and isolation (SVFDI) algorithm uses the singular values of the Hankel matrix to detect and identify faulty 
plant parameters. It is shown that the detection (alarm generation) and isolation (alarm interpretation) tasks are easily 
permormed based on the SVFDI algorithm outputs. Simulation examples are finally presented to illustrate the 
performance and application of the proposed algorithm. 
 
Keywords: Fault Detection and Isolation, Parameter Drift Detection, Singular Value Decomposition. 

 
1. INTRODUCTION 

   
The development of safer and more reliable control systems has been an increasingly need in the last decades.  To 

full-fill the modern standards, the control systems design must include fault detection and isolation issues at their very 
early design stage. The ultimate goal of these systems is to reach a fault-tolerant control (FTC) environment. 

 Fault detection and isolation (FDI) schemes are implemented as real-time algorithms whose inputs are plant output 
observations. They are used for a) fault detection: to decide whether the plant is in a normal operating condition or in a 
faulty one and b) fault isolation: to point out and identify the kind of the fault (if present) among a given fault set. 
Following the FDI diagnosis, on-line procedures are usually needed for FTC purpose, while off-line procedures could 
be used for maintenance purpose. 

 During the last decades, the international scientific community has presented several fine works. Two main streams 
can be identified, control related techniques and artificial intelligence based methods. System theory, signal processing 
or artificial intelligence approaches have been extensively used according to the available data format. Most of the 
model-based and non-model-based techniques have been developed based on the comparison of the data produced by 
the real-time plant operation with some previously obtained knowledge of the system.  

This paper presents a novel FDI algorithm based on the singular value decomposition of a Hankel matrix built from 
plant output measurements. The main feature of the proposed algorithm is that it does not rely on plant models. All it is 
required is a plant signature that can be experimentally obtained. The paper is organized as follows: Section 2 includes 
some comments on the FDI problem; Section 3 presents the basic formulation of the Eigensystem Realization 
Algorithm (ERA); Section 4 introduces the singular values based fault detection and isolation (SVFDI) algorithm; 
Section 5 explores the SVFDI algorithm features through experimental results; and finally, Section 6 presents final 
comments and conclusions. 

 
2. SOME COMMENTS ON THE FDI PROBLEM 

 
In general, FDI algorithms use the plant input-output measurements to implement a two-steps procedure: the fault 

detection and the isolation tasks. The first step is the fault detection step or alarm generation. The problem of the alarm 
generation is to decide whether the system is in a normal operating condition or not. The set of output measurements 
along with a previously obtained knowledge of the system constitute the algorithm inputs while a set of generated 
alarms are the algorithm outputs. The second step consists on the alarms interpretation. The main issue in this case is to 
correctly decide which faults are present (fault isolation) chosen from a pre-defined fault set.  It is also of one’s interest 
to establish their characteristics such as occurrence time, fault size, class, consequences, etc.  

The input is the set of alarms and the output is the faults isolation, characterization and diagnosis. In the case of 
FTC, further analysis is usually required to determine whether the system is still capable to perform properly after the 
failure. 

The algorithm performance is an important issue that must be always considered. The decisions taken at every step 
of the FDI problem solution might include and accumulate evaluation errors. The measured variables may include noise 
and load perturbations that might obscure system failures. Also the knowledge one has about the system normal 
operation might include uncertainties. Detection errors and false alarms can be confirmed by their probability of 
occurrence. Incomplete isolation and false isolation errors can be evaluated by comparison based on the faulty events 
probability of occurrence.  
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3. THE ERA ALGORITHM – A SHORT REVIEW 
 

This section presents the basic formulation of the Eigensystem Realization Algorithm (ERA), as originally proposed 
by Juang and Pappa in 1985. Since then, the scientific community has proposed several modifications and 
improvements. The ERA algorithm is a very reliable computational procedure originally proposed for modeling of 
dynamic systems. For the sake of simplicity and without lost in the argument, this work focuses on the original 
algorithm. In the following, all posterior algorithm improvements and less important derivation steps and several results 
have been omitted. 

Consider a state space realization for a linear time-invariant discrete-time dynamic system given by 
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where, [A, B, C] defines a discrete-time state space realization, x is a n-dimensional state vector, u an m-dimensional 
control input, y a p-dimensional measurement vector and v represents measurement noise. 

  
The system impulse response sequence is given by 
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in compact form, it can be written as 
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A Hankel matrix can be constructed from the impulse response sequence as 
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also 














=























= BCBCABCABCA
BCABCABCA
BCABCACB

H

.....

.....

..

..

..

)0( 432

321

21

       (5) 

 
it should be noted that, usually,  H(0) is not square and that ( ) nmnpHdim Χ=)0(  and  and also, ( ) nHrank ≤)0(
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From the singular value decomposition (SVD) 
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then 
 

BCTQDPH ==)0(                        (8) 
 
and 
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It is known that, there exist matrices Ep and Em such that 
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and that 
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then 
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hence 
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finally, a minimal order realization can be found as 
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Besides that, Juang and Pappa (1986) have also proposed two quantitative criteria to eliminate modal frequencies 

created by measurement noise. 
 

4. THE SINGULAR VALUES BASED FAULT DETECTION AND ISOLATION (SVFDI) ALGORITHM 
   
The proposed SVFDI algorithm can be seen as a generalization of the ERA algorithm (originally applied for model 

identification). It will be shown later that in the case of the SVFDI problem there is no need for a plant model, all one 
needs is the singular values of the Hankel matrix built from the plant time response, as shown in the previous section. 

In the following and for the purposes of the SVFDI algorithm we shall call an observable plant parameter if any 
drift from its nominal value can be detected from output measurements. Also, it is assumed that in a close neighborhood 
of its nominal value a parameter drift will “friendly” affect the singular values of the Hankel matrix.  Finally, it is also 
clear that observability and controllability properties of the plant (as their standard definitions) also play important roles 
in the performance of the SVFDI algorithm.  



In this context, the set of singular values can be considered a natural choice for detecting parametric drifts and 
failures. The singular values set can be interpreted as an image of the plant parameters. Assuming this fact, it can be 
established a relationship between the singular values and the plant parameters using standard correlation analysis and 
use these singular values as flags to indicate any parameter drift from its nominal value.  

The choice of singular values as a measure to detect parametric drift is due to the fact that its nature (real positive 
numbers) does not change as natural frequencies and eigenvalues do when plant parameters change. Under “normal” 
operational conditions any change of plant parameters values would affect the system dynamics and in a final analysis 
the singular values of the Hankel matrix. 

It is worth to mention that in a statistic framework, correlation does not imply causality meaning that correlation 
cannot be validly used to infer a causal relationship between the variables. Consequently, correlation between two 
variables is a necessary but not a sufficient condition to establish a causal relationship.  

However, having established causality, and in a close-enough neighborhood of the nominal plant, correlation can be 
taken as the natural choice for analysis. The correlation analysis will deliver a mapping of the plant parameters drifts 
into the singular values set of the Hankel matrix built from the plant time response. 

The proposed procedure for fault detection and isolation is depicted in the following section through examples. 
 

5. EXPERIMENTAL RESULTS 
 
To illustrate the features of the proposed technique, two lumped parameter models have been chosen. Table 1 shows 

the parameter values used to build the following application examples. 
 

Table 1. Parameter Values for Examples I and II 
Parameter Value Parameter Value Parameter Value 

m1 = 1 d1 = 0.0600 k1 = 16 
m2 = 1 d2 = 0.0200 k2 = 6.0 
m3 = 1 d3 = 0.0020 k3 = 0.4 

 
� Application Example I: 

 
Let us consider the spring-mass-dashpot system connected as shown in Fig. 1. 
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Figure 1. The Spring-Mass-Dashpot System for Example I 

 
 
For the given model, the kinetic energy, potential energy and the Raleigh dissipation function are given by:  

http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
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and the differential equations of motions by 
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in matrix form with u1 = u2 = u3 = u 
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then, a state space representations can be written as 
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� Application Example II: 
 

As a second example, let’s consider the system presented in Fig. 2. 
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Figure 2. The Spring-Mass-Dashpot System for Example II 

 
In this case, the kinetic energy, potential energy and the Raleigh dissipation function are given by:  
 

{ }
{ }
{ }2

233
2

122
2

11

2
233

2
122

2
11

2
33

2
22

2
11

)()(
2
1

)()(
2
1
2
1

qqdqqdqdR

qqkqqkqkV

qmqmqmT

&&&&&

&&&

−+−+=

−+−+=

++=

 

 
and the differential equations of motions by 
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in matrix form with u1 = u2 = u3 = u 
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It should be notice that in both examples the plant observability matrix is ill conditioned as shown in Tab. 2. Despite 
of that the proposed technique still delivers good results as it is shown later. 

 
Table 2. Conditioning Numbers for Examples I and II 

Uncoupled System 
Observability Matrix Conditioning Number 

Coupled System 
Observability Matrix Conditioning Number 

2320.249=γ  7896.454=γ  
 

Figures 3 through 6 present several dynamic results of the plants used in the Examples I and II. They are placed side 
by side for comparison purposes. The Hankel matrix in both cases was built from the results shown in Figures 3a and 3b 
respectively.  
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Figure 3a. Impulse Responses for Example I 
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Figure 3b. Impulse Responses for Example II 
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Figure 4a. Frequency Responses for Example I 
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Figure 4b. Frequency Responses for Example II 
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Figure 5a. Power Spectrum Densities for Example I 
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Figure 5b. Power Spectrum Densities for Example II 
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Figure 6a. System Poles for Example I 
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Figure 6b. System Poles for Example II 

 
Table 3 presents the systems eigenvalues. Table 4 shows the nominal singular values of the plants. 

 
Table 3. System Eigenvalues for Examples I and II 

Uncoupled System – Eigenvalues Coupled System - Eigenvalues 
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Table 4. System Singular Values for Examples I and II 
Singular Values for the Uncoupled System Singular Values for the Coupled System 
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Using standard regression analysis techniques, the correlation coefficients between plant parameters and the singular 

values of the plant output based Hankel matrix were calculated and normalized such that it has been assigned the value 
of “1” to the greatest coefficient and “0” to the smallest.  The results are depicted on Tab. 5 that shows the normalized 
correlation coefficients between plant parameters and the singular values of the Hankel matrix for both examples. The 
“ones” mean strong correlation and the “zeros” a weak or inexistent correlation. 

 
Table 5. Correlation Coefficients for Examples I and II 

Correlation Coefficients for Uncoupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

M1 0.9014 1 0.3533 0.0825 0 0.0766 
D1 1 1 1 0.7136 0 0.3777 
K1 0.9638 1 0 0.3411 0.5061 0.5920 

 
 SV1 SV2 SV3 SV4 SV5 SV6 

M2 0.6571 0.6571 0.6571 0.7383 0 1 
D2 1 1 1 0.6552 0 0.2040 
K2 0.0295 0.0295 0.0295 1 0 0.7824 

 
 SV1 SV2 SV3 SV4 SV5 SV6 

M3 0.2000 0.2000 0.2000 0 1 0.4783 
d3 1 1 1 0 0.5160 0.4836 
K3 0.1018 0.1018 0.101  8 0.9599 1 0  

Correlation Coefficients for the Coupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1 0.1573 0 0.4929 0.4240 1 0.9050 
d1 0.7229 1 0.7304 0.6243 0 0.2977 
k1 1 0.8384 0 0.7924 0.9313 0.6100 

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m2 1 0.9941 0.4138 0.3606 0 0.3907 
d2 0.8411 0.9746 0.6043 0.4854 0 1 
k2 0 0.5938 0.9933 1 0.6442 0.1995 

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m3 0.6912 0.7102 1 0.4055 0 0.8637 
d3 0.4788 0.6470 0.9994 1 0.4091 0 
k3 0.9978 1 0 0.9978 0.9762 0.9540  

 
Table 5 can be used to select the best singular values to be used as “flags” based on their correlation with plant 

parameters. Finally, from Tab. 5 one can built Tab. 6 that presents the structural sensitivity of the singular values with 
respect to parameter drifts.  

 
Table 6. Structural Sensitivity Coefficients for Examples I and II 

Structural Sensitivity Coefficients for the Uncoupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1  1     
d1 1 1 1    
k1 1 1     

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m2      1 
d2 1 1 1    
k2    1   

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m3     1  
d3 1 1 1    
k3    1 1   

Structural Sensitivity Coefficients for the Coupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1     1  
d1  1     
k1 1      

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m2 1 1     
d2  1    1 
k2   1 1   

 
 SV1 SV2 SV3 SV4 SV5 SV6 

m3   1    
d3   1 1   
k3 1 1  1 1 1  

 
 



6. FINAL COMMENTS AND CONCLUSIONS 
 
This paper presented a fault detection and isolation algorithm based on the singular value decomposition of the plant 

output. In a close neighborhood of the nominal plant values the regression analysis has shown to be the proper choice to 
link the Hankel matrix singular values with the plant parameters. 

An important feature of the SVFDI algorithm is that its formulation eliminates the need for a plant model. Having 
obtained a nominal plant image through the singular values of the Hankel matrix; this image can be used to determine, 
by comparison, any value drift of the plant parameters. 

Two functional levels of SVFDI procedure have been distinguished, namely alarm generation and alarm 
interpretation. At the alarm generation level (detection) the SVFDI algorithm naturally displays plant failure through the 
change of the singular values structure and values. At the alarm interpretation level (isolation) the SVFDI algorithm 
delivers an image of the plant parameters through the singular values allowing the identification of the faulty parameter.    

Finally, the proposed SVFDI algorithm was applied to ill conditioning plants showing outstanding performance in 
solving both, detection and isolation problems.  
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