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UUV DEPTH MEASUREMENT USING CAMERA IMAGES
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Abstract. In some cases, the control of an unmanned underwater vehicle (UUV) running near the free surface is
required. For such purpose, accurate measurement of the depth of the UUV is needed. This can be performed through
different techniques. Among them, it is possible to mention the pressure sensor and the sonar. Each tecnique has its
own set of unique features, advantages and disadvantages. The sonar, for example, delivers accurate range but can be
disturbed by reflections. This work proposes an alternative solution for the accurate depth measurement problem at
short range for control purposes. Through the use of computer vision techniques, the depth of an UUV near the free
surface is evaluated. First the CAMSHIFT tracking algorithm, a color based tracking algorithm, is applied to
determine the displacement in the image plane and then a projective transformation is applied in order to evaluate the
depth of the UUV in the world plane. The projective transformation is a plane to plane homography, implemented
using the DLT (Direct Linear Transformation) algorithm equations. The system was implemented in the C
programming language and extensive experimental tests were performed to evaluate the quality of measurements.
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1. Introduction

Nowadays, it is possible to find computer visiomplégations in many areas because there is an isedeaeed for
the automatic processing of the huge amount oftaligmages generated by cameras. The availabilitfaster
computers has opened the way for new applicatiotisa computer vision area.

Applications that provide industrial inspectiomaffic monitoring measurement become available &edetis also
some application in the naval architecture areajelets using computer vision techniques for theahaxchitecture area
are related to 3D reconstruction of underwater esdrom 2D images or to the underwater vehicletosicontrol
from real time processing of video data. Thesequtsjare useful for many undersea applicationsidtiiey scientific,
commercial and military applications, such as tlweam floor exploration, the marine life study amderwater
structures inspection and repair.

Computer Vision techniques can also be used toigeaaccurate depth measurement at short rangesoatiw! an
UUV. Such a feature is an important resource fodemwater navigation. For such purpose, this worbwshthe
applicability of computer vision techniques to reeothe depth of an UUV.

The implementation of such functionalities représehe first step in the development of a percdphtarface
system, one of the most promising applicationqyendomputer vision area. Perceptual interfacesiaes in which the
computer is given the ability to sense and produadogs of the human senses, such as allowing denspo perceive
and produce localized sound and speech, giving aempa sense of touch and force feedback, andrinase, giving
an ability to see and extract useful informaticonirthe scene. In order to provide this featuredwaace, this research
proposes an object tracking and distance measuteapplication.

The proposed system represents the first stepeidelielopment of a complete navigation systemridddV since
it is possible to track and determine the size &hawn object in the scene. This system makes tsmromercial
products such as personal computers and video eaamer

In order to recover the UUV depth, this work ugesking techniques to identify the image plane ldispment and
projective transformation techniques to estimate distance in the world plane. In addition, the saeament in the
world plane is compared to the real depth to gqéatiie result of estimation algorithm.



The objective of this paper is to describe the @ilgo used in the software development and theltsesbtained in
the experiments to measure the depth of an AUV theafree surface.

2. Homogr aphy

According to Hartley and Zisserman (2000), a cani®@mapping between the 3D world (object spand)a2D
image and it can be modeled using a pinhole cariidtia.model is the simplest, the most general lim@mera model
and is modeled from a 3D point in space projectetd the image plane. The camera image formationgz®can be
represented by the intersection of the visual mnnected to camera center (C) and the 3D poinb(he image plane
corresponds to the image point (x) (Fig. 1).

A A

z

/ P * G : z
Centre of prajection - L. ) f — Focal Length
or Camera Centre image plane Principal Axis

Figure 1. The pinhole camera model
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This model can also be used to map points from 2Doplanes. The mapping between two 2D planes (plane
plane) or the 2D projective mapping is also knowprjectivity or projective transformation or homography. From
the camera model for perspective images of plansspossible to map points on a world plane tn{sbn another
plane (Semple and Kneebone, 1979). It is possiblactice that the shape is distorted under persgeahaging
because parallel lines in the image tend to comvera@ finite point. The distance in the real wdrarld plane) can be
evaluated after removing the projective distortidrhis can be done through a projective transfaomair homography
to change the visualization plane, to correct thengetric shapes from the objects in the image argliminate the
projective distortion on the determined points. eAfthat, the mapping of an image point to a wortidnp is
straightforward through the use of an Euclideaati@hship between the desired points. Figure 2 shaworkflow
illustrating the projective transformation and threcess to evaluate the real distance between dimtspselected on the
image plane.
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Figure 2. Homography Transformation Workflow

If a coordinate system is defined in each planepidts are represented in homogeneous coordifitgs3), then
the homography can be expressed by (1).

X = Hx (1)



or by (2)
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Where X and x represent the points coordinatesath plane and H represents th@mography matrix and is
described by a 3x3 non-singular matrix. The homplgyamatrix (H) has 9 elements and only 8 degreeseafdom
because the scale of the matrix does not affecdation.

World Plane

Figure 3. Homography Transformation

There are two methods to evaluate the homograpltsixn@ne method uses the camera internal paramatat the
relative positioning of the two planes and camenater. The other one evaluates the homography>rditectly from
image to world correspondence eliminating the rteechlculate the camera’s parameters. In this ntetableast four
image to world feature correspondences are negebsaause each point-to-point correspondence onsible for
two constraints and a 2D point has two degreesesfdom (Hartley and Zisserman, 2000). If the nundicieature
correspondences increase, we have an over deterrsatgtion and H is determined by finding the tfanmation H
that minimizes some cost function. To evaluatehtbmographic matrix it is necessary that the founggomust be in
“general position”, which means that no three poare collinear.

Among the available algorithms to estimate the imadr it is possible to mention tHeirect Linear Transformation
(DLT) algorithm, a widely used algorithm becausis iiccurate and is relatively simple to implement.

2.1. The Direct Linear Transformation (DLT) Algorithm

Taking the Eq. (2) and considering a pair of matghpoints (X,Y) and (x,y) in the world and imageam
respectively, the following transformation can betten.

X (h31x + h32y + h33) = hllx + h12y + h13 3)
Y(h31x+ h32y + h33) = h21x+ h22y + h23

Wherexzé, Yzé, =2 andyzg correspond to the inhomogeneous coordinates inwtinid and image plane
3 3 3 3
respectively.

Expressing the transformation given by the Eq.if3erms of vector productX x Hx=0) enable a simpldéinear
equation to be derived. It is possible to write B (3) in terms of vector product because, stheeis an equation
involving homogeneous vector, the 3-vecté¢sand Hx are not equal (they have the same direction byt diféer in
magnitude by a non zero scale factor) (Hartley zisderman, 2000).

From the vector product, it is possible to write q. (3) as

Ah=0 4)
where for n pointsA is a 2n x 9 matrix andn is a 9-vector made up of the elements of the métri

The Eq. (3) is a homogeneous set of equations atehtonly be determined up to a non-zero scal@rfaétfter
selecting a set of four correspondents pointss jpassible to solve this equation through the dsthe least square



method to find out the solution fbi; that is the singular vector corresponding tosmallest singular value &, or the
last column of V in the SVD,(\:UDVT). This solution minimize#AhH subject to the conditioM =1. The SVD
(singular value decomposition) is a factorizatidAas A = upv T , where U and V are orthogonal matrices and D is
a diagonal matrix with non-negative elements (Cnigij 1999; Hartley and Zisserman, 2000).

This algorithm known as the basic DLT algorithm ¢enimproved by using a method of data normalirattr the
DLT algorithm, consisting of translation and scgliof image coordinates. This algorithm is knowrDa§ algorithm
with data normalization. The objective of the nolizaion is to translate the coordinates of the gm#&o new set of
points such that the centroid of this new set afifsas the origin. The coordinates are also sctieatljust the average
distance from the origin to the same average maggmit

3. Tracking

The ability to tracking moving objects in real tinsevery useful in many different areas for purmosech as robot
navigation, surveillance, video conferencing, étcthe real time tracking, a process that followsaving object (or
several ones) in time using a camera is requirbis process analyses each video frame and outpaitkc¢ation of
moving targets within the video frame based onadufie of this particular object.

Among the available tracking algorithms, this wodes a color based algorithm to output the locatioan object
to evaluate the AUV depth. To implement this altori a HSV color system is used to separate the(dnler) from
the saturation (how concentrated the color is) fameh the brightness. This algorithm creates a poditya distribution
image of the desired color in the video taking liBtdgram from the hue channel in HSV space. Usheg dolor
histogram as a model the incoming video is condeitea corresponding probability image of the textkolor and the
position of the desired image in the video is eatdd.

In this work a color-based tracking algorithm knoas Continuous Adaptive Mean Shift (CAMSHIFT) algun
(Bradski, 1998) was chosen. Since the color distidim changes over time for each video frame, gordhm that
searches this distribution changes is required. dlgerithm that satisfies this condition is the iified mean shift
algorithm or the CAMSHIFT algorithm because it adagpe probability distribution of the object dynaally to track
the object in each video frame.

The CAMSHIFT algorithm uses a robust non-parameg&ahinique for climbing density gradients to fime tmode
of probability distribution.

3.1. CAM SHIFT and Mean Shift Algorithm

The mean shift algorithm is a non-parametric tegh@ideveloped by Fukunaga and Hostetler (1975)timabs the
gradient of a probability distribution (Fig. 4) find the nearest dominant mode — peak. Since thectibe of this
technique is finding the densest region in the ieaigis possible to notice that the algorithm ale/@onverges to the
local maximum region in the probability density €tion.

Region of interest

Figure 4. Probability Density Function Mapping

To analyze the algorithm convergence let's considdata pointsy. , i = 1, ...,n on ad-dimensional spacé&d .
i

According to Silverman (1986) the multivariate k&lrdensity estimate obtained with kerigk) and window radius,
computed in the pointis defined as

1 n X—Xi
f(x)= Y K (5)
nhdi=1 { h J

where thed-variate kerneK(x) is nonnegative and integrates to one. A widelydusass of kernels is the radial
symmetric kernels.
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where the function k(x) is called the profile oktkernel, and, , is a normalization constant that make&)

integrates to 1 (Wand and Jones, 1995).
The gradient of the density estimator (Eq. (5)) is
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is themean shift (Cheng, 1995). The mean shift vector always pdimigard the direction of the maximum increase in
the density and is proportional to the normalizedsity gradient. The convergence proof is discugsé&heng (1995)
and is guaranteed to converge to a point whergréndient of density function is zer@f{(x) =0).

The mean shift algorithm interatively performs

+ computation of the mean shift vecttm, (X')
+ update the current positio™™ = X' +m_ (X')

The mean shift algorithm process is illustrate&iin 5.
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Figure 5. Mean Shift Algorithm

Since the size and location of the probabilityrilisttion changes in time due to the object movenmeiite video it
is necessary to modify the mean shift algorithmalese it is designed for static distributions. Thgodthm that
satisfies this requirement is the CAMSHIFT algaritibbecause it is designed for dynamically changiistridutions
since the search window size is adjusted in theseoaf its operation. The CAMSHIFT algorithm reli@s the zeroth
moment information to continuously adapt its windsiae within or over each video frame. Thus, windedius, or
height and width, is set to a function of the zZemnmoment found during search.



4. Experimental Results
4.1. Preliminary Results

In order to validate the distance measurement neodiithe developed software some tests were maieebne
underwater experiment. The test was made markingegmoints on a white board. The Fig. 6 shows argéraf the
scheme used to measure the real distance from timdspusing the developed software. After selecfimgr known
points in the image, the homography matrix canusuated and the real distance considering twotpain the white
board image can be evaluated.

Figure 6. Distance Evaluation Test

The Tab. 1 shows the results of the preliminaryeexpents. In order to compare the real distancé \he
measured distance, the absolute and the relativeane also presented.

Table 1. Preliminary Experiment Results.

Points | Real Distance (cm)  Measured Distance (gm) soAlbe Error (cm)| Relative Error (%
1-2 29 29.07+ 0.466 0.07 0.24
2-3 39.6 39.91+ 4.22 0.31 0.78
3-4 9.7 9.88+ 0.08 0.18 1.85
1-4 40 39.88+ 3.07 0.12 0.3
1-3 45.6 44.57+ 2.80 1.03 2.25
2-4 40.5 4111+ 3.44 0.61 15

4.2. Calibration

In order to enable the absolute depth measurenighecAUV it is necessary to perform an initial ibahtion. The
software calibration step can be divided in twotgathe first part involves the calibration to reradhe perspective
distortion of the measurement plane and the separtdinvolves the calibration to determine the tieteship between
the depth of the AUV and the position of the lighfiection in the camera image.

To remove the perspective distortion (homographyrimm@&valuation) of the measurement plane it isessary to
find out the displacement plane of the light refilere. In our case this plane is the perpendicurfer fo the wave surface
passing through the source of lightThe Fig. 7 shows the scheme for the plane calimati

Light Reflaction

Calibration Plane

Water Surface

Figure7. Calibration Plane and Light Position



After removing the perspective distortion of the amerement plane, the software is ready to measstande
between any two points in the image. Thus it issfids to evaluate the AUV vertical displacementafige depth)
considering an initial depth.

To measure the real depth (absolute depth) itéessary to find out the relationship between thattdef the AUV
and the position of the light reflection in the @mimage. After some preliminary tests, it wassfze to conclude
that each depth corresponds to a point coordimatee image because as the depth of the AUV inerdas angle of
incidence @) in the camera also increase. Then point coordinat the real depth of the AUV was determined from
this relationship.

4.3. AUV Depth M easurement experiment
After the calibration step, underwater tests weeefqgmed in still water condition, regular wave ddion and

irregular wave condition. Taking the most general eeal situation case, the results are as follow.
The Fig. 8 shows the depth variation in case efjufar waves.
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Figure 8. AUV Depth Time History in Irregular Wav€sndition.

In order to compare the irregular wave influencet@measurement the output measured depth wasacedhio the
real one. The Tab. 2 shows a comparison betweeméasurement depth data output and the real value.

Table 2. AUV Depth Measurement in Irregular Wavenditon.

Time Interval Real Depth Mean Depth Minimum Maximum Absolute Relative Error
(sec) (cm) (cm) Depth (cm) Depth (cm) Error (cm) (%)
0.10 - 26.9 40 40.35+ 0.22 | 35.4%0.121 | 47.3& 0.278 0.35 0.875
86 -116.9 50 52.03+ 0.88 | 46.86t 0.237 | 59.42 2.569 2.03 4.06
146 - 206.9 60 62.62+ 3.913 | 54.7% 1.25 | 73.33 10.55 2.62 4.36
236 - 276.9 50 52.33£0.941 | 47.1%0.253 | 61.3% 3.237 2.33 4.66
326 - 356.9 40 39.58+ 0.020 | 34.9% 0.147 | 44.94 0.115 0.42 1.05
386 - 417.6 50 52.04+ 0.876 | 46.5& 0.20 | 59.48 2.552 2.04 4.08

Since the irregular wave is often a combinatiomaiy wave components, the definition of the wawaratteristics

(height, period, etc.) must be statistical or pholigtic, indicating the severity of wave conditenAmong these
statistical parameters it is possible to mentian ghgnificant wave height (mean of the largestdf/8vaves measured
during the sampling period) and the average petiodur experiment these parameters are 2.369 cihdosignificant
wave height and 1.080 sec for the average period.

It was possible to notice that the presence affeetmtively the depth measurement increasing thertainty of the
measurement. In this situation there is a pertiobain the water surface and it is possible toaeotivo phenomena
that affect the AUV depth measurement.

First, the wave changes the height of the waveasartlisplacing the reflection light coordinate hie image when
compared to the position without waves. Considedngiven instant, the measured depth will dependhenwave
height in the same instant. Second, the light cafle suffers a deformation due to the water serfatovement
affecting the tracking and the light reflection odioate identification

From the experimental results it was possible &lyee the tracking algorithm performance in wavadition (Fig.
8). The Fig. 9 shows the areas where the trackgayithm performance is good when comparing thettiepthe AUV
and the wave type used in the experiment.
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Figure 9. Tracking Stability Analysis

5. Conclusion

As an alternative solution for the AUV or UV deptieasurement problem, the experimental results ghatthe
mean measured value is very close to the real deghtie. This proximity shows that, although thectipancy of the
measured value depth and the real depth is high iven instant t, it is possible to evaluatedbpth of the AUV with
a good approximation taking the mean value in secaft interval of time. The relative error considgrthe mean
measured value is less than 10%.

It was possible to notice also that two factorecfthe tracking performance: the tracked objer# sind the wave
type. The tracking performance is better for biggiejects than for small one. In our case sincetrdneked object size
depends on the depth, the tracking performancendispen the depth. The tracking performance algefter when the
wave height and the wave frequency are low (Fig. 9)

From the experiments it was possible to concludé thhe homography transformation represents a gppdoach
for the distance measurement when the displacepteme is known and the tracking performance deeraaghe wave
height and the wave frequency increase.
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