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Abstract. In this paper, a two degree of freedom (TDOF) robust controller is developed to control the motions of an
Autonomous Underwater Vehicle (AUV) in six degree of freedom. Mathematical models used to develop controllers for
AUVs usually involves a number of uncertainties, mainly dueto the complex nature of this problem. A robust controller is
then needed to achieve desired levels of robustness of stability and performance. To tackle the problem of the controller
synthesis, a mixedH∞ approach with a TDOF structure is used, which leaded to a controller that improves the AUV
performance whereas guarantees stability specifications.The centralized controller was also evaluated with an AUV non-
linear model through a large number of numerical simulations. Responses both in frequency and time domains, including
trajectory tracking, are produced and analyzed, showing that planar and spatial motion control was fully achieved.

Keywords: H∞ , Two DOF Robust Controller, AUV.

1. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are designed to operate in adverse environments with good performance
concerning trajectory tracking and disturbance rejection. Control design is always challenging due to the non-linear
behavior of the vehicle, the multivariable nature of the problem and the uncertainties of parameters and environmental
conditions.H∞ approaches and non-linear control are popular methods to deal with robustness and performances issues,
and were successfully applied in the control of AUVs (Kaminer et al., 1981; Innocenti and Campa, 1999; Healey and
Lienard, 1993; Song et al., 2002; Ryoo et al., 2005). In former works, authors (Donha and Luque, 2006a, 2206b) tried
to use aH∞ controller synthesis to solve the control problem of an under-actuaded AUV, with limited success regarding
tracking performance. The objective of this work is to develop a robust controller for the aforementioned vehicle with
improved performance concerning tracking and disturbancerejection, which in a near future will be implemented and
used in the navigation of a torpedo like AUV, under development in the University of São Paulo.
This work tackle the tracking problem of reference signals,roll, pitch, yaw rate anddepth rate using theH∞ mixed
sensitivity approach. For this purpose a Two Degree of Freedom (TDOF) Controller is developed, which structure presents
more advantages concerning stability and performance, against traditional structure of One Degree of Freedom (ODOF)
controller (Donha and Luque, 2006a).
This paper is organized as follows: a brief description of the AUV model is presented in Section 2. TheH∞ mixed
sensitivity approach using a TDOF controller is exposed in section 3. In section 4, numerical results are presented and
analyzed. Finally, results are discussed and summarized inthe conclusion section.

2. AUV LINEAR MODEL: brief description

This section gives a brief description of the AUV model. The AUV, shown in Fig. 1, is a torpedo-like vehicle, 5.99
m long, with 0.62 m maximum cross-section diameter and 1460 kg mass. It is equipped with a thruster for cruising and
fully moving control surfaces (rudder and stern), to steer the vehicle in marine environment. The AUV nonlinear model
is composed of six differential nonlinear ordinary equations that represent the dynamics of the underwater vehicle andsix
equations for coordinate transformations between inertial frame and body frame.

Table 1 defines the nomenclature used for this type of vehicles (Fossen, 1994). As shown in Fig. 1, in this case
two reference frames are needed: an inertial frame for position and orientation coordinates (x, y, z, φ, θ andψ ), and a
body frame for linear and angular velocities of the AUV (u, v, w, p, q andr). Since two frames of coordinate systems
are necessary to determine the position and orientation of vehicle at sea, a transformation should be realized using Euler
angles (Fossen, 1994) (see Eq. (1)):
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Figure 1. Underactuated Torpedo Like AUV

Table 1. Notation of coordinate systems

motion description forces and linear and angular position and
moments velocities attitude

surge motion in thex direction X u x
sway motion in they direction Y v y
heave motion in thez direction Z w z
roll rotation aroundx axis K p φ
pitch rotation aroundy axis M q θ
yaw rotation aroundz axis N r ψ
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Dynamics of the vehicle is determined relatively to the bodyframe using second law of Newton in matrix form (Luque,
2007).

{F} = [M ]{υ̇} or {υ̇} = [M ]−1{F} (2)

Whereυ =
[

u v w p q r
]T

is a velocity vector, F is a force vector that contain forces and moments actuating on
the vehicle, their effects are due body lift, body drag, fin lift, fin drag, propeller force, and hydrostatic principles.M is a
6× 6 matrix that contain body mass, added mass and inertial coefficients. For a complete explanation and numerical data
for these coefficients see the work of Luque (2007).
Equations (1) and (2) describe the AUV model in body frame andinertial frame. After linearization, it is observed that
four states are totally uncoupled and the controller model is reduced to eight states. The uncoupled variables are controller
by SISO controllers, whereas the coupled part is controlledby a centralized controller, synthetized by a mixed sensitivity
procedure, shown in section 3. The model is linearized usinga cruise speed of 2 m/s, obtaining a Linear Time Invariant
(LTI) model expressed in classical form:

ẋ(t) = Ax(t) +Bu(t), x(to) = xo

y(t) = Cx(t) +Du(t)
(3)

In the above model,x =
[

u v w p q r φ θ
]T

, is the state vector;u =
[

δr δs
]T

, is input vector whereδr

is displacement of rudder andδs is displacement of stern flaps;y =
[

φ θ ψ̇ ż
]T

, output vector.A8×8, B8×2, C4×8



andD4×2 are adequately dimensioned. As said before, this is an under-actuated vehicle, where movements are controlled
only by rudder and flaps deflection. Output vectory was choose considering available sensors and variables considered
important for tracking.
To facilitate the design and analysis of the control system,the linear model is then scaled using the physical saturation
limits on the control surfaces: 30 degrees for the rudder and25 degrees for the stern. According to Logan (1994), the
scale values for the control states can be assumed as the maximum expected tracking errors, as follows: 1m for depth, 1
m/s for depth rate, 10◦ for heading, and 10◦/s for heading rate. The scale value for theroll andpitch was 10◦, and the
scale value (maximum expected) for bothroll rate andpitch rate was10◦. The scale values for both axial an vertical
velocity is 1m/s. For major details and numerical values of this procedure see Donha and Luque (2006b).
After scaling, the system used for control design was finallywritten in the usual way as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t), x(to) = xo (4)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

wherex(.) is the state vector,x(to) is the known initial state,t is the time,u(.) is the input vector,w(.) is the dynamic
disturbance, which may have random and deterministic components,z(.) is the controlled state vector andy(.) is the
measured state vector.

3. H∞ MIXED SENSITIVITY

An usual approach to characterize the closed-loop performance objectives in the modern control theory is the measure-
ment of certain closed-loop transfer matrices using different matrix norms (Skogestad and Postlethwaite, 1996). These
norms provide a measure of how large output signals can get for certain classes of input signals, which is a measure of the
gain of the system. A mathematically convenient measure of aclosed-loop matrixTzw(s) in the frequency domain is the
H∞ norm defined as:

‖Tzw‖∞ := max
ω∈R

(σTzw(jω)) (5)

There are several ways of setting up the control problem and consequently the selection of the weighting functions re-
lated to the system performance (Donha and Katebi, 2007). One of the most popular procedures is the mixed sensitiv-
ity loop-shaping approach where direct bounds on importantsystem transfer functions such as the system sensitivity:
S(s) = (I + GK(s))−1, the control sensitivityS(s) = KS(s) or the complementary sensitivityT (s) = I − S(s) are
considered.S determines the tracking performance and the disturbance attenuation,C limits the actuator action in re-
ducing the unnecessary cost, normally in high frequencies.T is associated with closes-loop system response. Therefore,
before synthesis of an optimal controller, specifications of well shaping of these sensitivity functions are given bellow:

E1 Closed-loop stability;

E2 σ(S) < 1 for ω < 0, 7rad/s;

E3 σ(T ) < 1 for ω > 2rad/s;

E4 σ(C) < 1 for ω > 7rad/s e

E5 Time responses at step signal

Table 2. System response, assuming a first order system response with settling timets = 4τ

Controlled Maximum Settling 1/τ
signal overshoot time ts

roll 20% 20s 0,2
pitch 10% 20s 0,2

yaw rate 10% 20s 0,2
depth rate 10% 80s 0,05

Input weighting functions are the used to reflect the available knowledge about the input and output disturbances (di and
d), and measurement noises (n). On the output side, other output function should be used toreflect the requirements on
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Figure 2. Two Degrees of Freedom Controller (TDOF) configuration

the shape of theH∞ controller, to reflect restriction on the control signals and to shape the complementary function to
modify, for example, tracking features of the system.
Thus, the first step of theH∞ controller procedure in this case involve the minimizationof a performance index, formu-
lated as follows:

‖Tzw‖ = ‖WSS WTT WcC‖
T
∞

(6)

WhereTzw is the closed loop transfer function from exogenous inputw to controlled signalz in a two port configuration
(see Fig. 2(a)); the weightWS on S will determine the tracking performance and the disturbance attenuation (Donha
and Luque, 2006a); the weightWC on C will limit the actuator action in high frequencies, ensuring a desired roll-off
frequency; weightingWT onT is used to set the closed-loop roll-off frequency.
Assuming that the matrix involved satisfy necessary detectability and observability, and based on well-known results,
there exist an optimal controllerK(s) such that a closed-loop function betweenz andw satisfies:

‖Tzw‖∞ ≤ γ (7)

Finally, the system is put in the two port form (Fig. 2(a)), for which there are many commercial and non commercial
softwares for computing theH∞ suboptimal controller ofn states equivalent to the extended plantP . Mathematical
synthesis for this structure are well exposed in (Skogestadand Postlethwaite, 1996). The controller synthesis is get using
µ-analysis toolbox (Balas et al., 1991), which solves this problem finding a suboptimalγ knowing systems and weighting
functions. If an adequateγ value is not get, then another weighing should be calculated. Whereby the synthesis should be
realized again until finding a suboptimal value forγ nearly to 1 if find.

TDOF Controller

It is common to observe in multivariable systems with a largenumber of degrees of freedom, that specifications like
good rejection of disturbances and good tracking are not reached simultaneously with total success (Donha and Luque,
2006a). Therefore, other structures must be investigated to minimize or to eliminate these problems, mainly in under-
actuated systems, as it is the case in this study. Figure 2(a)shows an alternative structure, whereK is a controller of

two degrees of freedom (TDOF) with the following structureK =
[

Kr Ky

]T
. The advantage in using a TDOF con-

troller, also used by Lundström, Skogestad and Doyle (1999), is to improve tracking and the specifications of temporal
responses.
The prefilterKr is destined to reaching these specifications in time domain,while Ky guarantees the stability of the
system. Eventually, frequency specifications were satisfied adjusting a second order functionWmodel. After these modi-
fications, the procedure of the synthesis of the controller TDOF follows the same steps of the ODOF synthesis controller
(Donha and Luque, 2006a).
Figure 2(b) shows a TDOF structure of controller, without weighting functionsW∗ neither the filterR. Sensitivity func-
tions of the system controlled is defined byS, T andC relative to outpute, y andu, respectively. Therefore the matrix
transfer from exogenous input to exogenous output can be expressed as Eq. (8):
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The input filterR was designed to improve performance and it was connected to right references input (see Fig. 2). In this
case,R was designed like a first order filter with proportional gaink and thus it was possible to achieve E5 specification
(see Tab. 2).

Ri =
ki

τis+ 1
(9)

Whereτi andts are obtained of Tab. 2,ts is a settling time which the output remains within±2% of its final value.
From this point of view, for multivariable systems,R was defined as a diagonal matrix given in the appendix section.

4. RESULTS

Using a common structure of One Degree of Freedom (ODOF) controller, specifications E1 to E4 was achieved
with excellent robustness specification (Donha and Luque, 2006a), however time responses still showed a tracking error
because the performance attenuation was poor in low frequencies. Controller synthesized with ODOF presented 27 states
4 input and 2 output. Additionally, aR filter could be implemented to solve tracking problem, but a better approach for
this purpose was using a two degree of freedom (TDOF) structure (see Fig. 2(a))
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Figure 3. Optimal Hankel norm approximation, from 28th to 16th order

Controller synthesized with TDOF presented 28 states, 8 input and 2 output. Using a well know Hankel norm, the
controller order was reduced to 16 states. This approximation was elected because the most representative singular values
are in these states, see Fig. 3(a). The practical implementation was defined achievable (Skogestad and Postlethwaite,
1996). Hankel norm approximation is shown in Fig. 3(a). For simples inspection, it is observed that the magnitude of
singular values are larger, and that the 16 first states contain the main information about the system. The controller was
thus reduced to 16 order and their poles are shown in Fig. 3(b), all poles are located in the open left s-plane.

Figure 4 shows the reduced order controller, whereKr is the tracking part, whereasKy is the feedback part. The
roll-off frequencies of both are less than 7 rad/s, satisfying E3. In the full order controller declines continuously, however
in the reduced orderKr andKy lead to lost similarity with the full order. This is due to theHankel norm approximation.
But this is not a problem when the attenuation is less than -40dB, as shows Fig. 4.

Figure 5(a) shows robust performance relative to sensitivity function. Figure 5(b) shows robust stability relative to
complementary sensitivity function. Both plots reflect robustness of the controlled system.
For multivariable systems, specification E1 to E4 are the same for all signals to be controlled, which reduced effort in
seeking parameters for weighting functions. After determining a suboptimal value of gammaγ, it is verified if the function
shapesS, T andC satisfied specifications E1 to E4. E5 was only possible to achieve using the TDOF controller.

Figure 6 shows the sensitivity functions for the controlledsystem with a TDOF controller. These plots have relation
with specification E2 to E4. The underactuated system is verysensible to disturbance output, thus in Figure 6(a) curves
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Figure 5. Robustness of controlled system using a TDOF controller

related toroll andpitch present poor characteristics of sensibility, and the values in low frequencies are above0 dB.
Therefore, the specification E2 was not guaranteed forroll andpicthmovements, however E2 is guaranteed foryaw rate
anddepth rate.
Although E2 was not satisfied, the system presents robust performance (see Fig. 5(a)). E3 was completely achieved for
all controlled signals (see Fig. 6(b)) and robustness stability was also achieved (see Fig. 5(b)), although it was observed
high separations between singular values, explained by thehigh coupling betweenroll/yaw rate andpitch/depth rate,
because the system is underactuated. E4 was also achieved for all controlled signals (see Fig. 6(c)).
In the linear model, step responses with full order and reduced order were similar. In nonlinear cases both full order

and reduced order showed saturation with steps inputs inroll andyaw rate, probably because the system underactuated.
Figure 7 shows step responses of the system, with 0.5 of amplitude in each channel. All variables controlled (roll, pitch,
yaw rate anddepth rate) reflected good tracking capability and E5 was finally achieved using a TDOF controller.
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Figure 6. Sensitivity functions
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Figure 7. Non-linear step response with 0.5 of amplitude

5. CONCLUSIONS

The synthesis of a robustH∞ controller based on the mixed sensitivity design using a TDOF approach was success-
fully used to improve tracking performance on an underactuated AUV. To mitigate the problem of high controller order
(28 states), which is a handicap of this synthesis procedure, a Hankel norm reduction was employed leading to a suitable
structure with a small performance impact. The centralizedrobust controller was developed using only the coupled part
of the model, obtained after linearization. The main problem during the synthesis procedure using the mixed sensitivity
approach remains in the choice of the weighting functions used to tune the controller to achieve the desired performance.
This choice was a matter of time and skill and perhaps an alternative approach is advisable. Nevertheless, robust stability
and performance were achieved and verified not only by the usual measures, but also by a number of simulations with
different operational conditions and disturbances. The control technique employed here assumes non-structured uncer-
tainties, which may lead to very conservative designs. Thisproblem can also be mitigated by an alternative approach such
as theµ-synthesis, and which will be the next step in this research.A guidance system for this AUV based on the control
procedure used here is under consideration, and some new andinteresting results are already being produced.
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7. APPENDIX

The weighting function used for synthesis of TDOF controller are given below:

Wi = I2×2 Wd = I4×4 Wn = I4×4 Wmodel = I4×4 (10)

WSφ =
s3 + 6.91s2 + 2.76s+ 8.3

s3 + 14.04s2 + 19.95s+ 19.43

WSθ =
s3 + 4.57s2 + 3.72s+ 3.61

s3 + 8.38s2 + 10.63s+ 4.81

WSψ̇
=

s3 + 1.32s2 + 2.37s+ 4.12

s3 + 19.98s2 + 11.75s+ 12.91

WSż =
s3 + 11.2s2 + 14.46s+ 7.51

s3 + 12.9s2 + 18.81s+ 11.93

(11)

WTφ =
0.29

7.12s+ 1

WTθ =
0.74

10.14s+ 1

WTψ̇
=

0.35

8.83s+ 1

WTż =
0.67

13.88s+ 1

(12)

WCδr
=

s2 + 3.44s+ 2.96

1e-4s2 + 0.32s+ 256.19

WCδs
=

s2 + 3.44s+ 2.96

1e-4s2 + 0.32s+ 256.19

(13)

WS =









WSφ 0 0 0
0 WSθ 0 0
0 0 WSψ̇

0

0 0 0 WSż









WT =









WTφ 0 0 0
0 WTθ 0 0
0 0 WTψ̇

0

0 0 0 WTż









(14)

WC =

[

WCδr
0

0 WCδs

]

(15)

R =









1.76
s+0.2

0 0 0

0 0.6
s+0.2

0 0

0 0 9.8
s+0.2

0

0 0 0 −10

s+0.05









(16)


