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Abstract. This article reports the development of an optimization scheme based on factorial design analysis applied to
a vision tracking system embedded on a mobile robot aiming at speeding up the vision system responses for navigation.
The approach isintended to be used with an automated routine for finding optimal parameters for feature tracking and
position location in real-time, according to the object/environment in sight and its distance from the camera. A review
of factorial design is presented along with implementation details to identify and optimize sensor parameters. The
method was applied to a model that uses SSD (Sum of Squared Differences) correlation for feature tracking and a
gradient-based optical flow estimation for position calculation. Results show which are the most important parameters
and the influence they have on time expense for image processing and position error estimation, including parameter
interactions. A technique for finding optimal parameter values for each image isimplemented and discussed.
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1. Introduction

Visual Servoing of mobile robots is a thriving apach to the control of robot navigation since iuéates human
sense of vision. The best control of a mobile rolotild be achieved by constructing a complete tdigeensional
world model, planning a path and then executingrétgiired steps to move the robot along the patiwd¥er, many
challenges are still posed ahead as object reéognitbstacle avoidance [1,2] and sensor fusianddo and Verri,
1998; Klette et al, 1998).

Robot navigation based on visual tracking has hamj@ificant amount of research work in the lasirge(Trucco
and Verri, 1998; Klette et al, 1998; Corke and Hirison, 2000; Kara et al, 2000). A robust robotknag system can
provide information about the relative 3-D motidhaotarget relative to the observer and may simphe retrieval of
an object shape and/or localization.

Several researchers have published different appesato the problem of visual servoing of robotd amany
methods have been presented for tracking a mouijecbover a sequence of images, based on optma) image
correlation or deformable contours (Santos-Victod &entiero, 1993; Kass et al, 1998; Santos-Viatat Sandini,
1997).

Plakas e Trucco (1998, 2000) showed an uncalibietkra model to keep robustness in underwaterceamuent.
The computer-vision algorithm was based on projectieconstruction of image points in a stereovisgystem
calculating relative distances between points. dlgerithm uses SSD correlation used by Tomasi-Kessta (1991,
1994) and an automatic scheme for rejecting spsirfeatures using residual calculation. The systeowed to be
robust in artificial underwater environment. Howewactual absolute distances cannot be recoveiiad image points
without knowing the absolute positions of at Ifast feature points.

Espiau (1993) presented an investigation that gthemed the conclusions of Plakas and Trucco, stgpvéasults
from a vision controlled system with little influem from camera calibration errors. The main comafusvas that
vision systems in closed-loop can compensate cawedibration errors, meaning that camera calibraiio those
systems has minor importance.

Spindler (1998) presented an estimation of the igopdi-dimensional motion induced in the imageusege by a
subsea vehicle in order to compensate for it, usingffine model and a gradient-based image olptic. f

The research related to this article aims at ptagg@n optimization scheme based on experimestdiniques,
namely factorial design, to investigate sensitigeameters in an image-based tracking system, inabke of using SSD
correlation and a gradient-based optical flow dalkbon. Experimental tests were carried out usimglaot simulator,
which was validated by comparing the speed curvaiodd with the simulator and a physical mobileatpla NOMAD
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XR4000 with a monocular camera. A fuzzy logic colér was used to cancel the apparent motion fieencaptured
images. This article solely reports the desigrhefrnain parameters of the vision tracking system.

2. Factorial Design

Factorial Design is a technique to design an erpent or to estimate how changes in input paramagsr affect the
system output (Coleman and Montgomery, 1993; Mantgry, 1991). The ISO Guide to the Expression ofddtainty
in Measurement (1995) mentions the usefulness aflysis of variance technigques to determine measemem
uncertainty.

Before conceiving the experimental design and apglg performance test, it is necessary to congiieamount
of time spent to perform experimental runs. In daei design, the total number of runs (N) is detieed using the
expression N = (1Y , where L is the number of levels of each paramatel V is the number of experimental
parameters investigated. As an example, when stgdgur parameters with three levels each, thd tatmber of runs
is 3' = 81 (Montgomery, 1991).

To achieve a generic factorial design, a fixed neimbf levels (or values) can be selected for edtcithe
parameters (or factors) and the experiments areedasut with all possible combinations. A levelaoparameter refers
to the discrete values of that parameter domainekample, if an experiment is such that the stitienperature has
the values of 20°C, 50°C and 100°C then the exparihas 3 levels associated to the variable teriperéparameter).
If there arel; levels for the first parametds, levels for the second,..., ahdevels for the n-th parameter, the complete
arrangement df; x I, x ...xI,, runs of the experiment is called a factorial desig I, x ...x1,.

If only two levels ) of the parameter n is considered, then it is reteto as a factorial design of the tyge Phe
factorial design in two levels: a) requires a lowmiber of runs per studied factor and, even soribispossible to get
full information about the effects due to each dactit allows future experiments to be better pkohnb) when
combined with the concept of fractional factoriakijn allows few experiments to be carried throergn with a large
number of factors; c) can be used as blocks ofraxeats whose complexity can follow the requirersesstablished
during the proper experimentation; d) the intemgtien of its results can be accomplished whetharguthe common
sense or by means of elementary calculations areh&)les the average main effect of each factdretestimated
along with the interaction effects between factors.

Factorial design possesses an important faculshoiving up the interaction between parametersthimiioes not
mean that these interactions are numerically ajgivlec The main effects of a single parameter tenbe larger than
the effects of interactions between two parametedsthose larger than three, and so on.

The number of runs or experiments performed in ctoféal design 2 increases geometrically as n increases.
However, in many cases the information desired ftbenexperiments can be obtained with only a paftaztion of
the total runs, leading to the concept of fractidaetorial design.

Fractional factorial design disregards the effdotsn interactions of higher orders to reduce thenber of
experiments. In this case, the fractional factadiedign may be defined on the basis of the origgmpbnent minus the
fraction factor. For an original factorial desightgpe 25 using 1/4 of the experiments it is shdahat 1/4.2 = 2.2 =
252 referred to as a factorial design of the typé Plowever the greater the fractionating the lesgidence there will
be in the results, since some interaction usedaatidn generator may be highly insignificant.

3. Vision-Based Tracking System Design

The mobile robot whose vision tracking system imagrn is mounted on can be shown in Fig. 1, conmgria
control system, sensors, communication and progiagimdesigned aiming at R & D in robot manipulaticomputer
vision, sensor navigation and learning. As a subgyshe robot includes a monocular vision systeth wicolored TV
camera and a video capture plate with 45 MbyteEtsansfer speed, generating images with resolutib@56x256
pixels to this application.

Software for the Image System are not availables fiivigation system that is intended to be develapehis
research is composed by the four main modulesatiegpictured in Fig. 2.

This article reports the second and third blocksception and their parameter design. Pre-procesetigdes
filtering, image thresholding and gradient estimatiThe motion calculation step includes opticahflestimation using
SSD and correlation between image frames in segu@usition estimation is the output.

4. Optical Flow Calculation

Optical flow calculation is implemented on the Isasi the correlation method. The correlation aloni used is based
on SSD, in accordance with the equation below (@aa and Bergen, 1992):
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whereW(i, j) represents a window of weight¢c, t) is the image intensity ino = (x, y) in timet andd is restricted
to a square shaped neighborhood equélrie- 1)?, centered irx.

S: correlation between images intimetand t + 1
W: window of weights

c: image position (x,y) in image coordinates

d: neighborhood of the point (x,y) in the image
n: half-width of neighborhood d, in pixels

I: image intensity value

t: time of capturing the previous image

The speed of the correlation calculation is infleesshmainly by two factors: the correlation windawesand search
window size.

The search window defines the search area on thgeinnside of which the correlation window calcegathe
maximum similarity between points of two capturethges within a time interval. The search windowrdef a set of
N points (pixels) in the image (square) that wil temporarily the central point (pixel) C(x, y) thfe correlation
window. Once the local correlation in (x,y) is adlted its value is stored and a new correlatiocaisulated in the
next point inside the search window. The point B(3) with the largest correlation (minimum S ig.K1)) is set to be
the central point of the search window, B(X, y,)t+df the next image.

The correlation window is a square shaped mafrixegghboring points of a central point C(x, y).€Be points
are used in Eq. (1) for the calculation of the etation values between two images in a sequence.

Figure 1. Nomad XR4000 mobile robot (Nomadic Tedbgies)
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Figure 2. Vision tracking system fluxogram.



Since all points with the largest correlation bedwdwo images are calculated the velocity fieldeath position
(x,y) can be estimated (v =,(w,)), producing the optical flow. The velocity is calated from the approximated
temporal derivative using finite differences. Theocity data are used to anticipate the next positif a feature point
in the image, locating the new central positiothef search window in the next image.

5. Image Motion Estimation

To calculate the image motion feature points hashhoefined all over the image. The method usegégify those
points was to calculate the gradient of the thrieltbimage and to select the points with largedigrat values. For
feature points to be the most uniformly distributeithin the image area the image was divided inamgles and the
number of feature points to be selected in eactamgte had been limited. Subsequently, the excégmiats was
eliminated aiming at a limited number of pointstlie whole image. In Fig. 3 an image is shown wétesal feature
points indicated by squares. The centroid of aldblected feature points in the image was cakdilahd a scattering
number was defined as a dispersion around the geeas:

N N
Xe:_Z|X_Xi| yez_%y_yi
1= (2)

where (x y) is the centroid of the feature points on the imggey:) is the position of point i, N is the total numimr
points of the set and {xy.) is the scattering number of the points in dil@tsix andy.

The image motion in th& direction was estimated by the centroid positiohshe feature points and in the Z
direction by the scattering numbers indicating dbgect gets closer to the camera when it increasddarther when it
decreases.

5.1 Results Analysis

In order to verify the method effectiveness to alte image motion tests with real images in latmyahad been
carried through with motion along the X and Z diiewgs.

Figure 4 shows captured images of both directidnsation estimated in the tests. Table 1 showsctmroid
positions and scattering numbers on several feahirdgs for these movements.
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Figure 3. Feature points on an image and the refereoordinate system.
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Figure 4. Observed movements: a) x direction hyecton

Table 1. Centroid and scattering numbers of fegiomts for motion in X and Z directions

MOTION ALONG THE || MOTION ALONG THE
X AXIS Z AXIS

NPI| Xc|Ye| Xe | Ye |[NPI| Xc [ Ye| Xe | Ye
19| 48|62 332|504|| 19 | 48|62 332| 504
19| 51|62 |267|511|| 19 | 46|57 | 379 568
19| 55|63 |256|512|| 8 | 40| 75| 40 | 23
17|56 | 62| 200 | 444|| 8 | 38| 75| 30 | 22
17| 60|63 |218|448|| 8 | 40| 75| 30 | 21
16|67 |64|188|405(| 8 | 42|74| 29 | 21

8

8

8

16| 71| 63| 205| 398 42|76 17 | 20
16| 75| 64| 218 403 43| 75| 17 | 24
16| 80| 64| 235| 397 44|\75| 15 | 21
168463 251|395(| 8 |45|/74| 15 | 21

NPI: Number of feature points in the image

(a) (b)

It can be seen in Table 1a that the value.déyemained relatively stable. This confirms thetfthat the object
motion is predominantly in the X direction. It ipgsible to observe in Table 1b thyatandx. have a small variation
during the sequence, showing that there is nofsgigni motion in direction X. On the other hande thalues ok, and
Ye have a clear reduction, showing that the objentaging away (distance increases) in relation &rtbot.

It can be seen from the tests that the algorithrmfotion estimation is capable, in the conditionsofall linear
displacements, to follow the motion of the featpaints and to generate data of centroid positiansd scattering
numbers as predicted. It is important to emphattiae the tests were not conceived to check motiegigion but to
highlight important parameter interactions/effdzyausing a factorial design model.

6. System Parameter Optimization

In order to examine the parameters of larger ingmme in the vision tracking system a study usirgfétctorial
design methodology was planned aiming at gettingepened knowledge of the effect of different patens on the
system effectiveness and moving towards to developptimization scheme to speed up image procesking
parameters were used in this study, showed in Table



Table 2. Variables studied by Factorial Designir(f¢rior limit (+) superior limit

Variable (parameter) Meaning -(+)
MAX_FEAT _NUM('1) Maximum number of feature points 5200
THRES_PERCENT (2) [Threshold for feature points recording 03,0

SEARCH_SI ZE ( 3) Search window width 1030
CORR_SI ZE (4) Correlation window width 5 15
UNGROUP_SI ZE (5) Minimum distance between feature 5 | 20

points

6.1 Experiments Design and Results Analysis

In order to perform the experiments in a simplenfa fractional factorial design was specified ¢oifp the form of
2> with no repetitions, totting up’2 = 16 runs. The order of the runs was set to béaamn

The sequence of experiments was carried througtkoteefour values of outputs; {time for processing the first
image), £ (time for processing the following images),(position error in directiolX) and ¢ (position error in direction

The time to process an image was measured usiegnaitfunctions of the programming language esfigcia
designed for this purpose, as ttheck() function, that returns the number of time unitsnéggnce the processor started.
Recording the initial time unit and subtracting fimal time unit yields the span of time needegiocess an image.

The position errors had been calculated using fesemce the system position operating with largarce and
correlation windows (values of 50 and 30 respebtlyen such a way that the error of this "referehavould be
minimum in relation to the errors calculated in tlsts.

The results of the analysis of variance can be se@&able 3, showing variables and interactions &na significant
at 99% and 95%. All variables or interactions &t not shown have a significance level smallem 8%26.

Table 3. Results of the Analysis of Variance, simmwivhich input variables and their interactionseeffeach output
variable.

Output Variables Input Variables and Interactions
Significant 99% Significant 95%
ts 1,2 12, 13,23, 34
t 3,4,34 5,12, 35,45
€ 4,5, 45 3,34
ey 1,2,12,34 3,4

To show up the importance of the input variables8 4 a sensitivity analysis was carried out t@meine optimal
values for these variables reducing the time farcpssing images without losing too much in the coxmistness
(keeping small errors,@&nd ¢). For this purpose, experiments had been run ngryie search window width between
10 and 20 pixels and the correlation window widdiween 5 and 15 pixels, according to the rangemeatefin the
previous factorial design runs. The values assigodde other variables are shown in Table 4. g, 6 and 7 show
these results.

Table 4. Fixed values used on the sensitivity aslgf variables 3 and 4.

Input Variables Fixed Value
VAR 1 = MAX_FEAT_NUM 100
VAR 2 = THRES_PERCENT 2

VAR 5 = UNGROUP_SIZE 5
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Figure 5. Graph showing the effect of the widthhef search and correlation windows on variaple t
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Figure 6. Graph showing the effect of the widthhef search and correlation windows on variakle e
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Figure 7. Graph showing the effect of the widthlaf search and correlation windows on variable e



From the graphs above it is easy to choose iddaksdor the variables 3 and 4 as 15 and 9 reyadetiA
strategy to calculate automatically an optimal edhr the width of the windows is straightforward.

7. Conclusions

The article presented an optimization scheme basefhctorial design analysis techniques to showefifects of
important variables in an image-based trackingesysior a mobile robot using SSD correlation andadignt-based
optical flow calculation. Results showed the effeftall possible combinations of input variables e system
performance and a sensitivity analysis of the nrapbrtant variables, namely the correlation anddeaindow sizes
for tracking feature points in the image. The noei involved can be easily automated. The methesepted can be
very useful in a non-structured environment whereiees of usually fixed variables may strongly efffthe system
performance.
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