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Abstract. This paper provides a new algorithm for time-optimal adaptive trajectory planning for parallel robots. The 
approach enhances existing solutions by including the parameter information obtained for adaptive control schemes in 
the trajectory planning process. Furthermore, an explicit limitation of the path jerk is realized. A new algorithm to 
identify reachable points of the maximum velocity curve (MVC), which leads to smooth trajectories, is derived. 
Experimental results using the plane parallel robot PORTYS demonstrate the high performance of the proposed 
algorithm. 
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1. Introduction 
 

Time-optimal trajectory planning is an effective way to increase the productivity of robotic manipulators for a 
variety of tasks especially in the areas of handling and assembly. A time-optimal trajectory describes the maximal 
velocity and acceleration for each pose along a prespecified path, where the dynamic properties of the robot, limited 
drive forces or torques as well as different task-specific boundary conditions are met.  

A basic algorithm for time-optimal trajectory planning has been developed almost simultaneously by the groups of 
Boborow, Dubowsky and Gibson (1985), Shin and McKay (1985) and Pfeiffer and Johanni (1986). The basic idea of 
these algorithms is to describe the robot dynamics in dependency on a path description in parameterized form. Thus, an 
optimization problem independent of the degrees of freedom (DOF) of the robot is obtained. It has been shown, that an 
intuitive solution of this problem can be found, eventually based on Pontryagins maximum principle. The approaches 
differ e.g. in the way reachable points on the maximum velocity curve (MVC) are determined. The MVC describes the 
maximal velocity for each point on the path which could be reached if no dependencies between position, velocity and 
acceleration along the path would occur. Thus, it defines the boundary velocity for each trajectory and can only be 
reached at certain (“reachable”) points. The main drawback of these approaches is the generation of a hard switching 
between minimal and maximal acceleration on the trajectory causing increasing waste of the drives and robot 
mechanics. 

Pledel and Bestaoui (1995) propose to include the drive dynamics in the trajectory generation using a cost 
functional, which weights travelling time as well as drive energy in order to achieve a “softer” trajectory characteristic. 
A similar approach has been developed by Shiller (1996). The difficulty of these approaches is the determination of the 
cost functional. An implicit jerk limitation is achieved by the algorithm of Constantinescu and Croft (2001) by limiting 
the drive force rate, leading to reduced strain, improved tracking accuracy and speed. In contrast, the proposed 
algorithm limits the trajectory jerk explicitly while the drive force rate is implicitly limited. So far, all algorithms can be 
used for serial as well as for parallel robots. Generally the ratio of payload to moved robot mass of serial robot 
manipulators amounts typically 1/10 (Hirzinger et al., 2001). Therefore the influence of changing payloads on the 
dynamic robot behavior is small. On the other hand high structural stiffness of parallel robots allows the construction of 
light-weight links and joints. As a result, the ratio of payload to moved robot mass decreases. Therefore, payload 
changes significantly influence the dynamic behavior of the robot.  

This changing dynamic behavior has to be taken into account for control as well as for the generation of time-
optimal trajectories in order to exploit the full dynamic robot capabilities. Therefore, an algorithm for time-optimal 
trajectory planning is derived which can be combined with adaptive control approaches. The algorithm is formulated in 
parameter-linear form, allowing the direct use of parameter estimates of the adaption laws of standard adaptive control 
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schemes as e.g. the approaches of Craig (1988) or Slotine and Li (1989). Furthermore, the path jerk can explicitly be 
prespecified and a new algorithm for finding reachable points on the MVC is presented. The performance of the 
proposed approach is evaluated using the plane parallel robot PORTYS (Hesselbach, Pietsch and Budde, 2001) (Fig. 1). 

 

 
 

Figure1. Plane high-speed parallel robot PORTYS 
 
2. Adaptive time-optimal trajectory planning 

 
The aim of time-optimal trajectory planning, as it is commonly understood in this context, is the determination of 

the maximum velocity profile along a given path that complies with all given dynamic and kinematic robot constraints. 
The problem can be described mathematically as an optimal control problem aiming to minimize the traversal time 
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with the strictly increasing path parameter ps  and the path velocity pv  underlying the following constraints 
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where pa  and pj  are path acceleration and path jerk respectively. ( )ps=q q  forms the path constraint in joint-
coordinates. The drive torque limitations are given as ( )min max, , .p p ps v a≤ ≤τ τ τ  

The drive velocity contraints are formulated as (3a), the path velocity limitation as (3b), where forward motion 
along the path is assumed and the jerk limitation as (3c). 
 

v v q vmin max max min max(a) , (b) 0 , (c) .q q q p path p p pv v j j j≤ = ≤ ≤ ≤ ≤ ≤  (3) 
 

The admissible torques can be obtained from the robot dynamics. Dynamic modelling of parallel robots is a complex 
task because of additional kinematic constraints imposed by closure conditions of the kinematic loops (Dasgupta and 
Mruthyunjaya, 1998). The robot dynamics can always be expressed in parameter-linear form as ( )Y q q q, , ,=τ π  with 
the regressor matrix l n×Y ∈ R  and the dynamic parameter vector ,n∈ Rπ  where n  determines the DOF of the robot 
(Sciavicco and Siciliano, 2000). The usage of the parameter-linear form has two advantages: Firstly, the dynamic 
parameter estimates of adaptive control algorithms can directly be used to improve the results of the trajectory planning 
process. Secondly, it needs less computational time (Hesselbach et al., 2003). From (1) it is obvious that the optimal 
control problem can be solved in the ( ,ps  pv )-state-space by finding the maximum admissible value of pv  for each .ps  
By inserting the parameterized path ( )ps=q q  and its time derivatives as a function of the path parameter ps  in the 
robot dynamics, the dimension of the optimization problem can be reduced from 2n  to 2 for rigid robots (Dahl, 1992). 
In order to determine the admissible acceleration from the robot dynamics, ( )Y q q q, , ,=τ π  can be reformulated as 
 

( ) ( )( )( ( ) ( ) ( )( ))Y q q Y q q q, , , , ,a p p p sv p p p ps s a s s s v′ ′ ′′= +τ π  (4) 
 
where ( ) ( ) ( ) ( ) ( )q q q q q2,p p p p p p p ps s s s s s s a′ ′′ ′= = +  have been used. With (4) the maximum and minimum 
dynamically allowed acceleration for each drive i  can be calculated analytically as: 
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The drive, which is maximal stressed, is responsible for the acceleration limit ( ) ( )( ) 

max max, min , ,dyn i dyn
p p p p p pi
a s v a s v=  

( ) ( )( ) 
min min, max , .dyn i dyn

p p p pp pi
a s v a s v=  The acceleration is also limited by the maximum jerk: ( )max max ,jerk

p pa t j dt= ∫  

( ) minmin .jerk
ppa t j dt= ∫  

Thus, the extreme path accelerations yield 
 

( ) ( )( ) ( ) ( )( )max max max min max minmin , , , max , , .dyn jerk dyn jerk
p p p p p p p p p pa a s v a t a a s v a t= =  (6) 

 
As a result of the different constraints, for each path parameter ps  an upper limit for the reachable velocity max

pv  can 
be calculated which cannot be exceeded without violating at least one constraint. The set of all max

pv  for [ ]0, es s  
determines the maximum velocity curve (MVC). Given a pair of state-space variables ( ,ps pv ) the constraints (3) can 
easily be checked: 
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With the following considerations the maximum velocity that depends on the drive torque constraints 

( )min max, ,p p ps v a≤ ≤τ τ τ  can be calculated. The boundary condition for the drive torque constraints is a amin max= . 
With regard to (4), if ( )Y 0,a ps π ≠  this case only occurs if max min.

dyndyn
p pa a=  Introducing the abbreviations 

( ) ( ) ( )( )Y a a2
1 2,sv p p p p ps v s v s= +π π   the last condition can be checked analytically using (5), thus leading towards 
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If at least one element of ( )Ya ps π  equals zero,  

max
k dyn
pv  can be calculated according to 
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The minimum value of ( ) 

max
k dyn
p pv s  yields the maximum admissible velocity ( ) ( )  

max max maxmin ,  .dyn k dyn k dyn
p p p p pk
v s v s v= ∀ ∈ R  

In general, a trajectory can reach the MVC at single points or on single intervals only because of its dynamic 
constraints (2). Reachable MVC points are characterized by one of the four following conditions: 
a) Points, where the MVC results from constraints (7) and the acceleration is below the limits defined by (6). 
b) Tangency points where the slope of the MVC is equal to the slope of the trajectory. The condition can be checked by 

detecting a sign change of  
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c) Points, where ( )Y 0.i

a ps π =  
d) Discontinuity points of the MVC. 

 



Thus, the algorithm can be broken down into eight steps. It is formulated in a way suited for direct implementation: 
 

Algorithm 1: Jerk-limited, time-optimal trajectory planning 
A1.1. Integrate forward from 0s  with maximum acceleration according to (6) until either ( )p p e es s t s≥ =  or the trajectory 

exceeds the MVC. In the latter case set 1 .ps s=  Go on with step A1.2. 
A1.2. Integrate backward from es  with minimum acceleration until either the curve intersects the forward trajectory or vanishes at 

the MVC. In the first case go to A1.8, in the second case set 2 ps s=  and go on with A1.3. 
A1.3. Calculate the MVC once and all reachable points on the MVC between 1s  and 2.s Continue with A1.4. 
A1.4. Proceed from 1ps s=  on the MVC as long as the points on the MVC are reachable or until the backward trajectory is 

intersected. In the first case attach the new trajectory segment to the forward trajectory and set 3s  the last reachable point. If 
3 1s s≠  continue with A1.7, else with A1.5. 

A1.5. Go to the next reachable point on the MVC and set this point 1s . If no reachable point is left, the algorithm fails, otherwise 
proceed with A1.6. 

A1.6. Integrate backward from 1s  until the forward trajectory is met and connect the new trajectory segment with the forward 
trajectory. Continue with A1.7. Otherwise go back to A1.5. If 1 2s s=  the trajectory is closed. Proceed with A1.8. 

A1.7. Integrate forward from 1s  until the backward trajectory is reached or the trajectory vanishes at the MVC. In the first case go 
to A1.8, in the latter case attach the new trajectory segment to the forward trajectory, set 1s  the last point of the new forward 
trajectory and go back to A1.4. 

A1.8. Search for points is  on the trajectory, where the jerk limitation is violated. This case can occur at intersection points of 
different algorithm steps, i.e. if trajectory segments from forward and backward integration meet or at intersection points of 
trajectory segments calculated either with forward or backward integration with trajectory segments of former MVC 
segments (A1.4). Divide the trajectory at is  in one front segment with 0 p is s s≤ ≤  and one back segment with 

i p es s s≤ ≤ . From s is s=  go stepwise backwards on the front trajectory segment, start a new trajectory segment 
considering the jerk limitation starting at this point. Repeat this procedure until the new trajectory segment meets the back 
trajectory segment tangentially or 0.ss s=  In the first case the jerk limitation for this point was successful, and the new 
trajectory segment can be inserted between the actual ss  and the meeting point at the backward trajectory segment. In the 
latter case the jerk limit cannot be adhered. Thus, either the jerk limitation is relaxed until the algorithm succeeds or the 
algorithm fails and stops. 
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Figure 2. Time-optimal, jerk-limited and smoothed trajectory for a circular path 
 

Figure 2a demonstrates the proceeding. Step A1.1 - forward integration - is active between point 0 and point 1. 
Between point 9 and point 8 the algorithm integrates backwards in step A1.2. In the third step A1.3 the MVC is 
calculated. Step A1.4 leads to 3 1,s s=  and the algorithm identifies the next reachable point on the MVC at point 2 in 
step A1.5. From point 2 integrate backward and forward in step A1.6 and A1.7, respectively. Again skipping step 4, 
point 4 is found in step 5. Go on by integrating backward and forward in steps A1.6 and A1.7 and so on until the 
trajectory is closed at point 8. Finally, the jerk limitation algorithm of step A1.8 is active at points 1, 3, 5, 7 and 8. 

The jerk-limiting algorithm is illustrated in Fig. 2b and 2d. Figure 2b depicts how the jerk at point 1 is limited by an 
iterative search for a jerk-limited trajectory in area 2. It is found within trajectory segment 4. Figure 2d proves that the 
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algorithm works properly and the jerk is limited to the prescribed value of 1000 m/s3 in this example. Figure 2c shows 
the drive forces with and without jerk limitation. The traversal time of the jerk limited trajectory is slightly increasing, 
but the difference is small compared to the increasing settling time at the desired position if the jerk is not limited. The 
reachable points on the MVC are identified using an improved algorithm, that allows to determine reachable points with 
a prespecified accuracy and adequate computational effort. Previous approaches from Boborow, Dubowsky and Gibson 
(1985) and Shin and McKay (1985) suffer from high computational burden or low accuracy, respectively. 
  
Algorithm 2: Identification of reachable MVC points for smooth trajectories 
A2.1 A forward or backward trajectory section (FTS or BTS) is calculated according to step A1.6 or A1.7 in algorithm 1. The start 

value for a reachable point e e
e p px s v⎡ ⎤= ⎣ ⎦  is determined using (12). The maximum value of the numerical deviation between 

the true and the numerically determined reachable point ( )lim 0e
p pv s∆ >  is defined.  

a. Backward integration: The intersection between FTS and the recent BTS serves as starting point s s
s p px s v⎡ ⎤= ⎣ ⎦  for the 

smoothing algorithm. 
b. Forward integration: If the FTS intersects the BTS, the intersection point is the starting point sx . If the FTS exceeds the 

MVC, this intersection point serves as starting point sx . 
A2.2 Defining the starting conditions for the iterative smoothing algorithm: 

a. Backward integration: 1.i i= +  Beginning from sx  integrate forward until e
p ps s≥ . Compute ( ) ( ) ( )i e e e e

p p p p p pv s v s v s∆ = − . If 
limi

p pv v∆ > ∆ , sx  was too high in the p ps v−  plane. Thus, the next lower point on the FTS is defined as new
sx . If 

( ) ( )1sgn sgni i
p pv v −∆ = ∆  set new

s sx x=  and repeat A2.2. If ( ) ( )1sgn sgni i
p pv v −∆ ≠ ∆ , the starting point is between new

sx  and sx . 
In this case 2k >  equidistant points ( ) ,k

sx j  1 ,j k= …  ( )1 ,k new
s sx x=  ( )1k

s sx k x+ =  are inserted in the trajectory segment 
between new

sx  and sx . Go on with step A2.3. If limi
p pv v∆ < −∆ , sx  was too low in the p ps v−  plane. Thus, the next higher 

point on the FTS is defined as new
sx . If ( ) ( )1sgn sgni i

p pv v −∆ = ∆  set, new
s sx x=  and repeat A2.2. In this case 2k >  equidistant 

points ( ) ,k
sx j   1 ,j k= …  ( )1 ,k

s sx x=  ( )1k new
s sx k x+ =  are inserted in the trajectory segment between new

sx  and sx . Go on 
with step A2.3. If lim limi

p p pv v v−∆ ≤ ≤ ∆  a sufficiently smooth trajectory is found. 
b. Forward integration: 1.i i= +  Beginning from sx  integrate forward until e

p ps s≤  and compute ( ) ( )e e e
p p p pv s v s∆ − . If 

limi
p pv v∆ > ∆  sx  was too high in the p ps v−  plane. If the BTS in A1.7 was intersected, choose the next lower point on the 

BTS as new
sx ; otherwise define 1new s s

s p px s v −⎡ ⎤= ⎣ ⎦ , where 1s
pv −  is the velocity of the next lower point on the FTS. If 

( ) ( )1sgn sgni i
p pv v −∆ = ∆ , new

s sx x=  and repeat A2.2. If ( ) ( )1sgn sgni i
p pv v −∆ ≠ ∆ , the starting point is between new

sx  and sx . In 
this case 2k >  equidistant points ( ) ,k

sx j  1 ,j k= …  ( )1 ,k new
s sx x=  ( )1k

s sx k x+ =  are inserted in the trajectory segment 
between new

sx  and sx . Go on with A2.3.  
If limi

p pv v∆ < −∆  sx  was too low in the p ps v−  plane. If the BTS in A1.7 was intersected, choose the next higher point on 
the BTS as new

sx ; otherwise define 1new s s
s p px s v +⎡ ⎤= ⎣ ⎦ , where 1s

pv +  is the velocity of the virtual next higher point on the FTS, 
obtaine by extrapolation. If ( ) ( )1sgn sgni i

p pv v −∆ = ∆ , new
s sx x=  and repeat A2.2. If ( ) ( )1sgn sgni i

p pv v −∆ ≠ ∆ , the starting point 
is between new

sx  and sx . In this case 2k >  equidistant points ( ) ,k
sx j  1 ,j k= …  ( )1 ,k

s sx x=  ( )1k new
s sx k x+ =  are inserted in 

the trajectory segment between sx  and new
sx . Go on with A2.3. If lim limi

p p pv v v−∆ ≤ ≤ ∆  a sufficiently smooth trajectory is 
found. 

A2.3. Iterative search for a smooth trajectory: 
a. Backward integration: 1i i= +  and 1j j= + . Starting from ( )k

sx j  integrate forward until e
p ps s≥ . Compute 

( ) ( )e e e
p p p pv s v s∆ − . If limi

p pv v∆ < −∆  repeat A2.3. If limi
p pv v∆ > ∆ , 2k >  equidistant points ( ) ,k

sx j  1 ,j k= …  
( )1 ,k new

s sx x=  ( )1k
s sx k x+ =  are inserted in the trajectory segment between new

sx  and sx , set 1j = , repeat A2.3. If 
lim limi

p p pv v v−∆ ≤ ≤ ∆  a sufficiently smooth trajectory is found. 
b. Forward integration: 1i i= +  and 1j j= + . Starting from ( )k

sx j  integrate backward until e
p ps s≤ . Compute 

( ) ( )e e e
p p p pv s v s∆ − . If limi

p pv v∆ < −∆  repeat A2.3. If limi
p pv v∆ > ∆ , 2k >  equidistant points ( ) ,k

sx j  1 ,j k= …  
( )1 ,k new

s sx x=  ( )1k
s sx k x+ =  are inserted in the trajectory segment between new

sx  and sx , set 1j = , repeat A2.3. If 
lim limi

p p pv v v−∆ ≤ ≤ ∆  a sufficiently smooth trajectory is found. 
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Figure 3. Procceding and functionality of algorithm 2: Smoothing of discontinuities caused by numerical inaccuracies 
due to finite sample time during calculation of reachable points on the MVC 



In Fig. 3a the proceeding of algorithm 2 is depicted. The reachable point 2 on the MVC is firstly determined using 
the analytic algorithm of Shin and McKay (1985), according to a sign change of equation (12). Because of the finite 
sample time (0.0005 s for this example), the reachable point 2 is detected with a slight deviation from its true value. 
According to steps A1.6 and A1.7 it defines the starting conditions for the adjacent backward and forward integration, 
respectively. These inaccuracies of the integration starting conditions cause the oscillations in the vicinity of point 2. 
These oscillations result in strong peaks in the acceleration (Fig. 3b) and in the drive forces (Fig. 3c) accordingly. Using 
the intersection points 1 and 3 of the (oscillatory) trajectory sections with the BTS and FTS, as starting points for steps 
A2.2 and A2.3 for an iterative accuracy improvement of the computationof the reachable MVC point leads to a smooth 
trajectory as shown in Fig. 3a. Thus, also the undesired peaks in the path acceleration signal and the drive forces signal 
are removed, as depicted in Fig. 3b and 3c, respectively. 

 
3. Experimental Results 

 
The robot PORTYS (Fig. 1) is used to evaluate the performance of the proposed approach for adaptive time-optimal 

path planning. In Tab. 1 some important robot parameters are given: 
 

Table 1. Parameters of the PORTYS robot. 
 

Parameter Value 

moved robot mass 29.2 kg 
max. payload 10.0 kg 
max. drive force  550.0 N 
max. drive velocity 6.0 m/s 

 
Again, it is noteworthy, that the ratio of payload to moved robot mass is high (1/3), thus payload changes are 

expected to influence significantly the robot dynamic behavior.  
Two different test paths are used for the experiments: a circular (Fig. 4a and 4b) and a triangular path (Fig. 4c and 

4d). The results of the adaptive, time-optimal trajectories are compared to the results obtained using conventionally 
planned trajectories based on a trapezoid acceleration profile. The conventional trajectories are iteratively planned with 
respect to the maximum payload such that the maximum drive forces are fully exploited but do not exceed the drive 
force limitations.  

An adaptive composite control approach developed by Slotine and Li with bounded-gain forgetting is used to 
control the PORTYS robot (Slotine and Li, 1989): 
 

( ) ( ) ( ) ( )ˆ ˆ ˆˆ, , , , , , ,d rs r rs r rsY= + + =B q q q q C q q q g q q q q qτ Π  (13) 
 
with the estimated mass matrix ˆ n n×∈B R , the matrix of the estimated centrifugal and coriolis terms ˆ n n×∈C R , the 
gravitational force vector ˆ n∈g R . r d= −q q qΛ  describes a reference velocity, where dq  is the desired position, 

n n×∈ RΛ  is a weighting matrix and the position deviation is described as d= −q q q . The parameter estimation is 
performed using a least-squares approach: 
 

( ) ( )( )ˆ ,T T
rst t= − +Y s W RyΠ Γ  (14) 

 
where = +s q qΛ  is the weighted position and velocity error, ( ),W q q  is a low-pass filtered version of ( ), ,Y q q q  (in 
order to avoid error-prone measurement of q ) and R  weights the ratio between s  and the prediction error 
( ) ˆt = −y W WΠ Π . The time-variant adaption gain is calculated according to 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ),Tt t t t t t tχ= − + W WΓ Γ Γ Γ  (15) 

 
with the forgetting factor χ , which is defined as 
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 (16) 
0k  describes an upper bound of ( )tχ . 
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Figure 4. Circular and triangular test path 
 

A dSpace DS1103 Rapid-Prototyping System based on a DSP (Motorola PowerPC 604e, 400 MHz) is used as 
controller hardware. A control sample frequency of 2 kHz could be realized. During the experiments the traversal time 
et  as well as the mean tracking accuracy 5H∆  and drive utilization rate uη  are investigated. We define the mean 

tracking accuracy in operational space after passing N  times the test paths as 
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∆ = − =∑ p p p  (17) 

 

For the described experiments we chose 5N =  in order to compare the tracking error when parameter adaption of 
the controller is completed. Payloads of 0.0 kgem =  and 7.5 kgem =  are used to show the influence of payload 
changes on the dynamic behavior of the robot. Both, traversal times and mean tracking error for the two test paths for 
conventionally planned (conv.) as well as for time-optimal trajectories (t.o., generated using the approach decribed 
above) are compared in Tab. 2. In the case of the time-optimal trajectories, the payload estimate of the adaptive control 
law (13)-(16) is used to adapt the trajectory to changing dynamic robot properties. For conventionally planned 
information can not be used directly to optimize the trajectory. Therefore, in this case for both payloads the same 
trajectory has been used. 

Obviously, the traversal time can significantly be reduced up to 40 % if the time-optimal trajectory is used instead of 
the conventional trajectory. 
 

Table 2. Traversal times and mean tracking accuracies for conventional and time-optimal trajectories. 
 

Trajectory  [kg]em   [s]et  5  [mm]H∆  

circular, conv. 0.0; 7.5 1.04 0.06; 0.08 
circular, t.o. 0.0 0.62 0.62 
circular, t.o. 7.5 0.68 0.51 
triangular, conv. 0.0; 7.5 1.45 0.07; 0.08 
triangular, t.o. 0.0 1.22 0.37 
triangular, t.o. 7.5 1.28 0.35 

  
This result can be explained according to Fig. 2a using equation (1). The traversal time is inversely proportional to 

the area beyond the trajectory in state-space formulation. Because the time-optimal trajectory better exploits the drive 
capabilities especially during acceleration and deceleration phases it is located higher in the p ps v− -plane, thus 
covering a larger area, hence reaching lower traversal times. Furthermore, if the payload information is included, the 
traversal time is further decreased by app. 10 %. 

At the same time, the mean tracking error increases. But even if the relative increase is significant, the absolute 
tracking error remains considerably small. Figure 5a shows the tracking error and the drive forces for the circular path 
using the time-optimal trajectory without additional payload. 

 

 

(a) Testpath with time-optimal trajectory  
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(b) testpath with conventional trajectory

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

tra
ck

in
g 

er
ro

r [
m

m
]

0 0.2 0.4 0.6 0.8 1
-1000

-800

-600
-400
-200

0
200
400
600
800

1000

time [s]

dr
iv

e 
fo

rc
e 

[N
]

right drive 
experiment
simulation

experiment
simulation

dr. force
limit.

left drive 

 
Figure 5. Tracking error and drive force for circular testpath with, (a) time-optimal trajectory and no additional payload 

after five trajectory passes, (b) conventional trajectory and no additional payload after five trajectory passes. 



In order to refute the assumption that similar traversal time reductions could be obtained using conventional 
trajectories which are modified in a way that similar path deviations occur, Figure 5b depicts tracking error and drive 
forces for a modified conventionally planned trajectory. 

Showing a similar maximum tracking error as obtained using the time-optimal trajectory, the drive forces exceeds 
their limitations clearly, whereas the traversal time is only slightly reduced to 1.01 s. 

 
4. Conclusions 

 
The adaptive time-optimal trajectory planning approach presented in this paper enhances existing algorithms by 

integrating information of dynamic parameter changes, including a jerk limitation and an improved algorithm to 
determine reachable MVC points. Because of its adaptive properties it is especially suited to the needs of parallel robots 
obtaining a high ratio of payload to moved robot mass. Experimental results indicate a significant decrease in the 
reachable traversal times thus leading to increasing productivity of the robotic system. A drawback of the proposed 
approach are slightly increasing tracking errors. A possibility to overcome this problem may be the application of a path 
velocity control algorithm as proposed by Dahl (1992). 
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