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Abstract. This work presents a methodology of parameters fault diagnosis in rotating mechanical systems excited by unbalance and 
coloured stochastic noise, through the correlation analysis based on the Ljapunov Matrix and the Artificial Neural Network (ANN). 
The procedure of parameter fault diagnosis described  uses only measured state variables. The direct measurement of the stochastic 
excitation is not necessary.  Coloured noise stochastic excitation is modeled using a dynamical system excited by white noise. The 
proposed method avoids the necessity of measuring the excitation forces and works on the displacement and velocity signals 
obtained form different points of the rotor system. Using correlation the output variables, it is possible to derive specific relations 
involving the physical parameters of the system and the correlation matrices of the measured variables. Faults in the rotor can be 
detected by monitoring the variation of the physical parameters through a comparison of theoretical and estimated correlation 
functions. Some variables are difficult to be measured and the correlation functions involving such variables cannot be directly 
estimated. Artificial Neural Network is used as a tool to map such correlations. The analysis of the results is made with the 
application of the method to a rotor system modeled with six degrees of freedom. The good results of these examples show the 
viability of further studies in this area.  
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1. Introduction  
 

Fault detection and diagnosis processes has been receiving considerable attention in recent years due to the obvious 
importance of this problem. In addition, the increasing availability of powerful computing environments and the 
progress in problem-solving paradigms has facilitated the application of a wide variety of methods for real-time 
diagnosis. Many of these methods were developed in different fields, such as in control theory, signal processing and 
artificial intelligence (AI). As a result, the methods differ with respect to the type of prior knowledge they are based on 
and how this knowledge is used for developing a diagnostic system. 

At the heart of fault diagnosis lies the model-based approach, where by as many variables and system parameters 
are taken into account as possible, in order to construct a detailed mathematical model of the system under observation. 
Once the dynamic behaviour of the system has been "adequately" modelled, it should theoretically be possible to detect 
faults via analysis of changes in the model to input parameters. Several approaches are based on parity space equations, 
diagnostic observers, and process identification (Frank, 1990; Gertler, 1991; Patton and Chen, 1992; Isermann, 1984; 
Patton et al., 1989; Isermann, 1993, 1999; Chen et al., 1999). Venkatasubramanian et al (2003) conclude that these 
methods are based on the analytical redundancy inherent to modelling process. They also introduce the problem of fault 
diagnosis and review some approaches based on quantitative models. 

Pederiva (1992) and Chiarello (1998) propose an alternative approach to face the problem of  parameters estimation 
and fault detection in stationary dynamic systems. The relations between correlation functions and physical parameters 
are used and it is evidenc that the correlation functions tends to steady and constant values. 
       This work shows that it is possible to expand the proposed formulation by introducting the relations between the 
Ljapunov Matrix and the Artificial Neural Network (ANN). This procedure of parameter fault diagnosis uses only 
measured state variables..  The correlation function involving only output variables can be estimated through the 
measurements of these variables. One can verify the compatibilty of the equation applying the estimated correlations in 
association with the theoretical values of the parameters. Equations that depend on parameters that have changed will 
present inconsistency and the others not. In this way, it is possible not only to detect changes in the system but also to 
locate them.  

A numerical example shows that is also possible to locate the fault parameters, even when mechanical system are 
excited by stochastic forces. 
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2. Dynamical Model  

 
 Consider a rotor system that can be described by the following differential matrix equation, 

 
( ) ( ) ( ) ( ) ( )tHntSutQtPtM +=++ ξξξ &&&  (1) 

 
where the matrices M, P and Q are respectively, the mass, damping and stiffness matrices with appropriate dimensions. 
The matrices S and H are input matrices of stochastic forces,  unbalance forces and harmonic perturbations. The vector 
ξ(t) is the n dimensional vector of displacements and the dots indicate differentiations with respect to time. The vector 
u(t) representing the stochastic forces is considered as a white noise process. It is easy to transform the above n 
dimensional equation  into a 2n dimensional state space model, 
 

 ( ) ( ) ( ){ },tttxT ξξ &M=  (2) 

 
The state space equation can be obtained, 

 
( ) ( ) ( ) ( )tEntButAxtx ++=&  (3) 
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The squared matrix A of order n =2f  is called the system matrix; The matrix B (n, p) is the input matrix; and n(t) is 

a harmonic excitation given by,  
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In Eq. (3), if u(t) is not a white noise it may be modelled as the output of a similar dynamic system (filter).  
Considering the dynamic system  

 
( ) ( ) ( )twStRztz *+=&  (7) 

 
( )tz is the state vector t-dimensional. 

The input u(t)  of in dynamic equation (3) is a coloured process, 
 

( ) ( )tzHtu u=     (8) 

 
Hu is a matrix with dimension (p,t). 
 Figure 1 shows the diagram of a dynamic system excited by coloured noise 
  
 
 
 
 
 
 
 
Figure 1 – Dynamic system excited by coloured noise 

 
The figure 1 shows blocks the dynamic system excited by coloured noise, where: Block 1- modeling coulored noise 

through white noise; Block 2- composition of excitation modeled as the output of a similar dynamic system (filter); 
Block 3- response of system mechanical. 
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An expanded model is then obtained as a result of the composition of the system equation and the filter equation. 

This new expanded showed in Fig. (1), is similar to Eq. (3), with new matrices *A  and *B , Eq. (9). 
 Associating equations (7), (8) and (3) one can obtain the expanded dynamic equation 
 

( ) ( ) ( ) ( )tnEtwBtxAtx ***** ++=&  (9) 

 
with, 
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 The new matrix of the system ∗A  has the following structure  
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2.1 Physical Model 
 

The mechanical system considered is a rotor with a flexible shaft coupled to a fixed end eletric motor. Between the 
motor and the disc, there is a bearing of mass m1 fixed elastically. The six degrees of freedom are the four translations 
and two rotations ilustrated in the Figure 2. Table (1) shows the numerical values used in the simulations.  
 

 
 
Figure 2- The 6-DOF model 

 
The displacements are represented in the vectors, 
 

{ }ϕψξ 2121 zzyyT =  (13)

 
The diagonal mass matrix M is, 
 

{ }221221 ImmImmdiagM =  (14)

 

Table 1: Values parameters 
 

Parameters Values Unit 
m1 15 kg 
m2 10 kg 
I2 0.25 kg.m2 

I2polar 0.50 kg.m2 
L1=L2 0.4 m 

k1 90.000 N/m 
k2 120.000 N/m 
c1 30.000 kg/s 
c2 37.500 kg/s 
Ω 60 rad/s 



 
The matrix  S has the following structure,  
 

{ }654321 ssssssS T = , (15)

 
with si (i=1,...6) constants values. The matrix H is, 
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where e is the rotor unbalance eccentricity. 
 
2.2 Response of Dynamical System Excited by Coloured Noise 
 

The time response of the linear system is a superposition of the response due to the stochastic excitation xw(t) and 
the response caused by unbalance xn(t), 

 
( ) ( ) ( ) ( ) tsinqtqtxtxtxtx wnw Ω+Ω+=+=∗

21 cos  (17)

 
with  q1 and  q2  representing  n–dimensional amplitudes vectors. The  correlation matrix, ( )i

xx
R τ

∗∗
can be defined as 

Yaglom (1962), 
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where τi represents a time lag. Substituting the solution of the state space, Eq.(9), and with Eq.(17) into Eq. (18), the 
following relation can be obtained for stationary condition (Yaglom, 1962), 
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where the matrix wwψ  is the intensity matrix of the excitation process w(t). The eq. (19) is called Ljapunov Matrix 
Equation be used to develop the method of fault detection described in this work. Expanding the Eq. (19), 
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The sub matrices multiplications of the Eq. (20) provide the following equation , 
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 Equation (21) is n-dimensional and contain the relations between the correlation functions of the output  

(displacements and velocities) and the physical parameters Eq. (1). Equation (21) contains also the correlation between  
the unbalance forces and the output. Althought, it can be further developed and simplified. 

 The correlation matrix between unbalance and output variables can be evaluate. From the definition  
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Substituting the equations (6) and (17) in to (22) and (23) ,and after some mathematical manupulation we obtain, 
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It means that under stationary condition the numeric values of matrices 

nx
R * and *nx

R are constants depending on the 

amplitudes q1 and q2, the rotation speed and the time lag (τi). The terms containing this correlations in the Eq.(21) are 
constants too. Equation (21) represents the base for the proposed approach and contains relations of compatibility. On 
can verify some variation on the parameters by checking these relations. 
      The matrices A1 and A2 in the Eq.(21) have the following internal structure (Pederiva, 1992), 
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Expanding Eq.(21) on can obtain the following relations involving the parameters of the bearing, the shaft and the 

unbalance: 
 

0***** 111131211 111713121177
=+++++ bRcRkRkRkRR zξξξξξξξξξξξ &&

 (28)

 
0**** 2

2313222278 1211
=Ω++++ eRkRkRkRR nξξξξξξξξξ &&

 (29)

 
0***** 3232333131332 211179

=+++++ bRkRkRkRkRR zξξξξξξξξξξξ &&
 (30)

 
0**** 44110131244710 161514

=+−++ cRkRkRkRR ξξξξξξξξξξ &&
 (31)

 
The indices in Rξξij indicate the correlation between the state variable i and the state variable j. The equations of 

compatibility (28) to (31) have different dependences on the parameters. For example, in the Eq.(28) only three 
parameters appear. It means that this equation is not sensititive to the parameter e related to the unbalance. It is also 
insensitive to parameters k44 and k33. This property is very useful, not only to determine variations in the parameters but 
also to locate where the failure is present. 
 
3. Proposed Method 
 

It is proposed a methodology for fault diagnosis in stationary rotor systems through correlation analysis and 
artificial neural network using multi-layer perceptron to map the correlation functions involving variables that cannot be 
directly estimated. Multi-layer perceptrons (MLP) are neural nets usually referred to as function approximators. A MLP 
is a generalization of Rosenblatt's perceptron (1958).The fundamental importance of a neural network is not only the 
way a neuron is implemented but also how their interconnections (more commonly called topology) are made.  

One of the easiest forms of this topology in recent years is made of three layers :  
• one input layer (the inputs of the network)  
• one hidden layer  
• one output layer (the outputs of the network)  



 
All neurons from one layer are connected to all neurons in the next layer. One way to do this is by representing the 

mapping of equations (28) to (31), as illustrated in the Fig. 3. Applying estimated correlation functions on the input and 
comparing the output, in this case, the correlation function 

77ξξ &&R .       

 
 
 
 
 

 
 

 
 
 
 
 

Figure 3- The structure neural for equation (28) 
 

Each input has an associated weight Win. The unit computes some function  f  of the weighted sum of its inputs: 
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• The weighted sum ∑
n

inin wR  is called the net input to unit i, often written neti.  

• Note that Win refers to the weight from unit n to unit i.  
• The function f is the unit's activation function. In the simplest case, f is the identity function, and the unit's 

output is just its net input. This is called a linear unit.  
 

Structurally, this net is composed by three neurons in input layer (corresponding the correlations functions), fifteen 
neurons in layer hidden (physical parameters of the system 11c ... 11k  and random weights 11a ... na1 ) and an output layer 
(corresponding the correlation function associated with the velocity vector). The correlations associated to the rotations 
and velocities coordenates of the rotor had been disconsidered (Eqs. 28 to 31). It is effect was trained by the net. For the 
architecture 1 of the neural net it was used the functions 

11ξξR , 
12ξξR and 

17ξξ
R at the input layer and 

77ξξ &&
R at the output 

layer. For the architecture 2 of the neural net it was used the functions 
11ξξR , 

12ξξR and 
n

R
ξ

at the input layer and 
78ξξ &&

R at 

the output layer. For the architecture 3 of the neural net it was used the functions 
11ξξR and 

21ξξR at the input layer and 

79ξξ &&
R at the output layer. For the architecture 4 of the neural net it was used the functions 

14ξξR , 
15ξξR and 

110ξξ
R at the input 

layer and 
710ξξ &&

R at the output layer. 
 
4. Results 
 

In order to demonstrate the applicability of the proposed approach, some operational situations of the dynamic 
behaviour a rotating system had been simulated.  

The response of dynamical system excited by coloured noise was analyzed for different cut frequencies. The Figure 
4 shows to the distribution of the coloured noise-type excitation generated from the white noise. The study of the 
variations of the parameters with the cutoff-frequency is associate to parameters variations in the resonance region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4- Distribution of the excitations coloured noise 
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To simulate a failure, the value of the parameter was changed about 20%. The system was simulated and the 

correlations calculated and the neural nets as described was trained. The output of the net from the fault condition was 
compared to one without failure. To compare the outputs it was used a Mean Squared Deviation (MSD) between the 
functions. 

 
4.2 Studies cases  
 

Equations (28 to 31) represent the base for the proposed approach and it contains relations of compatibility. One  
can verify some variation on the parameters by checking these relations. Table 2 shows the subjective percentage of 
fault 

 
Table 2: Values parameters 

 
Fault conditions Fault Description 

1 reduction of 20% 11k  

2 reduction of 20% 11c  

3 reduction of 20% 44c  

4 reduction of 20% unbalanced 

5 reduction of 20% 11k  and 44k  

6 reduction of 20% 11c and 44c  

7 reduction of 20% 11k  and unbalanced 

8 reduction of 20% unbalanced and 44c  

 
4.2.1 Variations in the parameters of the system and cutoff frequencies of the filter  

 
Figures 5(a)-(d) show the deviations of the four equation considered (28) to (31). It is considered variations in cut-

off frequencies for the fault conditions 1 to 4(table 2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (a)-(d) - Squared Mean Deviation of network output: parameters variations and cutoff frequency. 
 

Figure 5(a) shows the effect of the variation in the parameter 11k . It is observed that for different cutoff frequencies 
of the filter, the neural architecture 1 approximately presents variation. This fact is not found in the other architectures 
(equations 29 to 31). It means that are not dependent on the parameter 11k . Figure 5(b) shows the behavior of the 
architecture associated with a variation in the parameter 11c . It is interesting to note that the Eq.(28) presents a 
significant variation when compared to the behavior of the other equations. This is because equations (29) to (31) are 
not dependent on the parameter. 11c  Figure 5(c) shows the behavior of the equations associated with a variation in the 
parameter 44c . The same behavior occurs, indicating that the failure is associated with Eq.(31). One can see that the 
equation associated with this parameter presents a great variation when compared to the others, indicating that the 



 
failure is associated to the parameters of this equation. Finally, Fig. 5(d) ilustrates the variation in the unbalance of the 
rotor. The conclusions are similar to the cases already commented. 

 
 These cutoff frequency showed in Fig.4 (a)-(d) are distribution of the excitations coloured noise (Fig. 4).  
 
 Table 3 shows this correspondency. The Table 4 shows the correspondency neural architecture. 
 

 Table 3: Correspondency cuttoff frequency     Table 4: Correspondency Neural architecture 
 

axis y  Cutoff frequency 
1 fc= 50 rad/s 
2 fc= 120 rad/s 
3 fc= 185 rad/s 
4 fc= 250 rad/s 
5 fc= 600 rad/s 

axis x  Neural architecture 
1 Eq. 28 
2 Eq. 29 
3 Eq. 30 
4 Eq. 31 

 
 

4.2.2 Combining Variations in the parameters and cutoff frequencies  
 

Figures 6(a)-(d) show the deviations of the four equation considered (28) to (31). It considered different cut-off 
frequencies for the fault conditions 5 to 8(table 2). 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
Figure 6(a)-(d) - Squared Mean Deviation of network output: parameters variations and cutoff frequency 
 

Figure 6(a) shows the behavior of the architecture associated with a variation in the parameter 11c and 44c . It is 
interesting to note that equations (28) and (31) presents a significant variation when compared to the behavior of the 
other equations. Figure 6(b) shows the behavior of the architecture associated with a variation in the parameters 11k  and 

44k . The conclusions are similar to the cases already commented. Figure 6(c) shows the behavior of the architecture 
associated with a variation in the parameters unbalance and 44c . The equations (29) and (31) presents a significant 
variation when compared to the behavior of the other equations. Finally, Fig. 6(d) shows the variation in the unbalance 
of the rotor and the parameter 11c .Here the same behavior occurs, indicating that the failure is associated with equations 
(28 and 29). One can see that the equation associated with this parameter presents a great variation when compared to 
the others, indicating that the failure is associated with the parameters of this equation.  

 
 

4.2.3 Percentuals Variations of coloured noise in system output 
 

Figure 7(a)-(d) show the deviations of the four equations considered, Eqs. (28) to (31). The parameters are 
considered to be constants. Coloured noise is additioned in system output (variations in the order of 1 up to 5% of value 
RMS of the original signal). 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7(a)-(d) - Squared Mean Deviation of network output: variations of coloured noise output  
 

One can see that the equations (28) to (31) do not present a great parameter variation, indicating that the failure is 
associated with the coloured noise added in system output  of theses equations. In addition, the effect of coloured noise 
is minimized at the outputs of the nets for different architectures and noise levels. 

 
5. Conclusions 
 

In this work, a method of fault monitoring of a rotating system was developed, using the association of Ljapunov 
Matrix Equation and artificial neural network. The model simulated for the studied cases presented satisfactory results. 
In the considered method, there is no necessity to know the excitation force. However, the knowledge of the type and 
the form of the excitation is necessary. It is possible for a certain operational condition of the rotating mechanicalal 
system, to identify and to locate the fault exactly.  
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