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Abstract. The workspace of a manipulator robot is considered of great interest from theoretical and practical viewpoint, being a basic
tool for kinematic evaluation and dimensional design. The accurate calculation of workspace and its boundary is of great importance
because of its influence on the manipulator design, the manipulator position in the work environment and its dexterity. The presence of
voids and singularities adds great difficulty in the algebraic formulation of a correct mathematical model for the calculus of the
workspace volume. In this paper an optimization problem is formulated with the objective of determining the optimal geometric
parameters of the manipulator, considering the case where the envelope of the workspace is regular. Snce a fundamental feature of a
manipulator is recognized as a workspace capability, the manipulator design can be expressed as a function of this workspace. The
objective of the optimization problem is the maximization of the workspace volume. The main constraint is the regular form. Additional
constraints are included to obtain manipulator dimensions within practical values, and to specify limits at the workspace. In the
optimization procedure, the optimal design is achieved by means of sequential minimization techniques. A numerical example is
presented to validate the proposal methodology.
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1. Introduction

The manipulator workspace is defined as the region of reachable points by a reference point H on the extremity of a
menipulator chain (Kumar and Waddron, 1981). The workspace of a manipulator robot is consdered a grest interest from
theoreticd and practicd viewpoint, being a basc tool for kinemaic evauaion and dimensond design. The accurae
caculaion of workspace and its boundary are important because of its influence on the manipulator design, the manipulator
postion in the work environment and its dexterity. The presence of voids and singularities add high difficulty in the
dgebraic formulation of a corect mahematicd modd for the cdculus of the workspace volume. More recently, an
andytica formulation to obtain the boundary of al surfaces enveloping the workspace for a genera 3dof mechanisms was
discussed in Abdd-Mdek and Yeh (1997). Abdd-Mdek e ad (2000) have been introduced a broadly gpplicable formulation
for the determination of voids in the workspace of serid manipulators. Wenger (2000) showed how to take into account, in
the desgn dage, the posshility for a manipulator to execute non-singular changing posture motions. Connections between
the concepts of solvability, genericity and cuspiddity have been dso sudied. For the background in the subject it is
recommended Lanni et d (2001) and Saramego et d (2002).

In this paper, a suitable formulation for the workspace is used to propose manipulaior design dgorithms through an
optimization problem in which the workspace volume is the objective function; subject to given workspace limits as the
congraints and regularity of the workspace boundary. Additional constraints ave been included to obtain manipulator sizes
within practica vaues.

The main contribution of this work is to achieve a regularity condition for the boundary of the workspace. This
condition has been used as a congraint of an optimization problem and in thisway only regular boundary can be accepted.

The optimization problem is investigated by usng a sequentid quadratic programming (SQP) technique (Bazaraa & d,
1993). The code DOT (design optimization tools) developed by Vanderplaats (1995) has been used. The optimum designs
ae then tested through numerica examples confirming the efficiency of usng the agebraic formulation for the workspace.
A numerical exampleis presented to validate the proposa methodology.
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2. TheDesign Problem

One of the most used methods to describe geometricdly a generd open chain 3R manipulator with three revolute joint
is the one which uses the Hartenberg and Denavit (H-D) notation, whose scheme is exhibited in Fig. (1). The design
parameters for the link size are epresented as a;, @&, a, dy, s, ai, a,, (dy is not meaningful since it shifts the workspace
up and down).

In this paper, the homogeneous transformation matrix iswritten obeying the following order of the stages, for i=0,1,2:

- 1% gage adockwiserotation of angle a; around the axis X;;

- sage: adisplacement of g units dong the axis X;

39 stager adigplacement of di4 unitsaong the axis Ziq;
4h sage: acounterclockwise rotation of angle g +; around the axis Zj.; .

Hence, adopting the Hartenberg and Denavit notation and in he hypothesis that both reference 1 and reference 0 have

the same origin and the same axes z, the transformation matrixes of a reference on the previous are:

€ CQj+1 - i 0 ai u

T+l _ 2 sgi«caj  cgivcaj  Saj di4Sa; ﬂ )
' & miysa; - cginsa; ca; djygca;l
g 0 0 0 1 8

inwhich a=ag=0, d;= 0,ca;j=cosa;, S3;=8n a;, a}j+1=C0S CJj+1, and Sfj+1= SN fi+1, for i =0,1,2.

Figure 1. The workspace for 3R manipulators and design parameters.

The workspace W(H) of a point H of the end-effector of a manipulator is the set of al points which H occupies as the
joint varigbles are varied through their entire ranges (Gupta and Roth, 1982). The point H is usudly chosen as the center of
the end-effector, or the tip of a finger, or even the end of the manipulator itself. The position of this point with respect to
reference xgy 323 can be represented by the vector

H=[a001]' )

The most immediate procedure to investigate the workspace is to vary the angles q;, g, and gz on their interva of
definition and to estimate the coordinates of the point H with respect to the manipulator base frame, that is

t
Ho= [HS HY HE 1] =T5 TZ T3 H3 (H3 =H) ©)
By expanding Eq. (3) one can obtain
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where H ]( , ij eHf represent the 1, 2nd and 3rd components of vector H; , respectively, for j=1,2.

The workspace of a three revolute open chain manipulator can be given in the form of the radid reach r and axiad reech
z with respect to the base frame (Ceccardli, 1996, Cecardli and Lanni,1999). For this representetion, r is the radia distance
of a generic workspace point from the zaxis, and z is the distance of this same point a X;Y;-plane. Thus, usng the Eg. (6),

the parametric equations (of parameters g, and gs) of the geometrica locus described by point H on aradid plane are
2 2 2 2
2 :(HC)J() + (Hg) = (Hi(oql' H{Sql) +(H)1( Sq1+Hi/Cq1) ; z=H{ ™
In addition, using Eq. (5),
2 2 2
r2+2% = (H)z‘) + (H%) + (H§ + d2) +2a1(H’2‘oq2 - H%sq2)+ & ®)

and by multiplying the second equation of Egs. (7) by (2a;/sinaq) with the hypotheses a; * 0 and sinay * 0, and using Egs.
(5)and (6), it yidlds

! Z 4 ’
2, 2l rdpjcay _ Zal(H)Z(SqZ +H¥CQ2) ©)

sag sa;

Squaring both sides of Egs. (8) and (9) and adding the resultant equetions, one can obtain
2,2 A8 2
?‘ +2z -Ag +(Cz+D)*+B=0 (10)

in which AB,CD coefficients are caled the architecture coefficients They ae function of the Denavit and Hartenberg
parametersay, ap, as, dy, dsz, a;, az andqgs intheform

2 ) N
— 32 2 2 2
A=af +15 +(22+d2) B:-4af§H§) +(Hg) h=-4ar}
e u

(11)
2a.
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The reach distancesr, and z, can be expressed as
. 2 1/2
_ 2u
r2 = é;(asoq3+ az) +(agsqzca; +dzsap) i
(12)

Zp =dgcap - agzsar

The Eg. (10) is the equation of the three revolute manipulator workspace, described by the reference point H. It can be
thought as the equation of an l-parameter family of plane curves, in the plan rz, of parameter gs. Thus, the andyticad
expresson of the workspace boundary can be obtained as the envelope of this 1-parameter family (Bruce and Giblin, 1992),
that is, the set of points (r, z) that satisfy the equations



2
f(r,2.09) :§2+22-Ag +(Cz+D)2+B=0 (13)

1:]—f(r,z,oe):2(r2+22- A)E + 2(Cz +D)G +2F =0 (14)
U3

where

E=- 2a3(agsq3 + dosa 20Q3) , F= 4a%a3§2313 + a35q30q352a2 - dzca zsachgg G= 23:|_a3CQ353-20a1/53-1 (15)

Figure 2: Family of plane curves and its envelopes.

The envelope of a family of curves can be regular as represented in Fg. (28) or it can present singularities (cusp
points) as shown in Fig. (2b). The theorem 1 presents the conditions for the regularity and parametrization of the envelope.

Inthe theorem the variable t will be used ingteed of the varigble (g, for smplify the notation.

Theorem 1: Let f:U® Rand ff/ft: U® R functions of dlass C' in the open set U of R2" Rand (ro,zo,to)T U such
that f (r,zt) =1f(r,z,t)/qt = 0. If, moreover,

RN

10 .20, tn), 16
iz g o (or%oto) 19

then, given afamily of curves, represented by f (r, z,t) = 0,
(a) theenvelope of thisfamily can be parametrized by tin a neighborhood of (rg, zo);

(b) the envelope, given by t® (r(t),(t)) , isregular intif, only if, 1% /t22 0in (19,2, t) -

Proof: The part (@) of the theorem Llis a direct consequence of the Implicit Function Theorem, because it guarantees, in this
casg, that there is an open intervdl J1 R, with tOT J and a pair of functions r =r(t) and z = z(t) that are solutions of the

system given by the Egs. (13)-(14), with ry =r (tg) and zg = z(tg) .

Then
f(r(t),z(t),t)=0, " tT J
17
ad
:T]—:(r(t),z(t),t):o, "tlJ (18)

Deriving the Eq. (18) with respect to t, one obtains
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Admitting that 1% (r,,2,,t,)/ t? 1 O, results

2

%(ro 20.tQ)" (t0)+'”_(ro 20.t0)Z'(tg) * 0 20)

what guarantees that r'(tg) and z'(tg) are not simultaneoudy null, that means that the envelope is regular in . This shows
theonly if part of (b).
Now deriving the Eq. (17) with respect to t and using the Eq. (18), obtains

f , f .
%(ro,ZO,to)r (to) +:TT—Z(VO,ZOvtO)Z (tg) =0 (21)

Admitting now that the envelopeisregular in tg, there arethree possibilities:

(D r'(tg)* 0 ad  Zz'(tg) =0, implying, due the Eq. (21), that Tf (ry,Z,.t;)/ Ir =0. Then, using the Eq. (16),
121 (ry, 2y,t,)/ Tt 2 O and, consequently, from the Eq. (19), T2 (r,,2,,t,)/ t? :—(ﬂzf(ro,zo,to)/'ﬂr‘ﬂt) r't,)* 0.

@ r'(tg) =0 and z'(tg) t 0. Similarly tothe case (1), it resultsthat 1°f (r,, z,,t,)/ t* 2 O.

@) r'(tg)* 0O and z'(tg) * O, according tothe Eq. (21)

% (ro, Z, to)r' (to) =- 11TT_fZ (ro, Zp, to)Z'(to) (22)
Thus

2 2
% E r': - M ﬁ Z' (23)
L n? T2

Thelast equation, combined with Eq. (19) and Eq. (22), it resultsthat

i aTZf rr+ — 2f gﬂ Z':@-I_f ﬁ r- E r' 2f O a]zf ﬂf - ﬂzf ﬂgr'z‘ (24)
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From Eq. (16) it followsthat

1t ff .
—2(I’0,Zo,t0) —(19,20.tg) r'(r9.zp,tg) * O. (25)
it r

This concludes the theorem.

The axid z and radid r coordinates of the boundary points are given as the solution of the Eq. (13) together with EQ.
(14), supposing that sina;* 0, C+ 0 and E* 0. After some agebraic manipulations (Ceccardlli, 1996) one can seethat
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The angle g3 is the joint angle of the extreme par in the chain and it is the kinemdic varigble for the workspace
determination. In fact, the workspace boundary can be obtained from Eq. (26) by scanning gz from O to 2p.

Generdly, the referred envelope is composed by two closed curves an internd curve and other externd one, caled
internal and external boundary, respectively (see Fg. (2)).

In the generation of the cross section it is necessary that the angle varies in an interva of Iength 2. The coefficient E
should be different of zero. Thus, the angle gz cannot assume vdues as q; + Kp, KI Z, where 3 = - arctan (dpsina, / a, )
Therefore, the domain of definition of theangle gz canbe(gs , s +2p), except the pointgs” +p.

Refaring to Fg. (3), the workspace design data can be prescribed through the workspace limits in term of the radid
reech r and axid reach z. The design problem can be formulated to find the dimendons of a 3R manipulaor am whose
workspace cross section is ddimited by the given axia and radid reaches minrQ, maxrO, minz0, maxz0.

ZA
maxzl
minviy
>
minrl} maxriy ¢

Figure 3. Axia and radid reaches of agiven manipulator workspace.

3. Formulation of an Optimum Design Procedure

The objective of the proposed manipulator design procedure, conddering workspace boundary regular, is the
dimensiond synthesis of 3R manipulator.
The objective of the optimization problem is the maximization of the workspace volumeV

maxF =V @0
subject to

minz3 minz0 ; max z£ maxz0 ; minr3 minr0; max r £ max r0 (28)
and

1‘|’2

—(r z,03)* 0 (29)

ﬂQ3

The optimization problem is subject to given workspace limits represented by condraints (28). The congraints given by
Eq. (29) are necessary to guarantee the regularity of the boundary envelope.

The workspace volume V can be evduated by the Pgppus-Guldin Theorem, according to the scheme shown in Fg.
(4a), through the equation

V= 2prg Area (30)

Theaeaisobtaned as
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At; = [r(i +1) + r(i)]2[z(i +1) - z(i)] 3)

where N is the totad number of the externa boundary points, M is the totd number of the ring void boundary points, Ay is
the area indde the externd boundary, Aiq IS the area indde the ring void (if the ring woid does not exist, Avig = 0), and At;
is the trgpezium arearepresented in Fig. (4b).

By considering the cross section area, the coordinate ry of the center of the mass can be given as

N-1 M-1
85 gt AL - 8 o (gtiAt)

r (33
9 Area
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Figure 4. A scheme for evauation of the workspace of 3R manipulators: @) volume computation; b) area.computation from

boundary points.

The minimization is achieved by means of a sequentid quadraic programming technique (SQP), using the sequentid
optimizetion method, and a pseudo-objective function is written using the augmented Lagrange multiplier method. The
uncongrained minimization is performed by the Broydon-Hetche—Goldfab-Shaano (BFGS) method and the one
dimensona search uses apolynomia interpolation technique.

4. Numerical Example

In order to prove the soundness of the proposed optimization design procedures numerica example has been reported.
In paticular, Fig. (58 shows the envelope boundary of the initid guess for the proposed test of the optimum design of a 3R
manipulator. One can note the presence of the four cusp points in the internal boundary, which are roots of
Pf 1 995%(r, Z 03)=0, as shown in the Fig. (5b). In thiscase, the parameters design are: a; =0.3, @, = 1.0, az = 0.5, d, = 1.0,
d;=1.0,a;=30° a,=60°andtheinitid volumeis 7.9606 uv.

Figure (6a) shows the optima result obtained through the optimization procedure, usng the sequentiad techniques SQP
of the code DOT. One can observe that the project parameters result in a manipulator with a regular envelope and a bigger
volume. It is worth to note that dl the optimization condraints were obeyed. The optima parameters desgn are
a;=1.9917, a, =1.0337, a; =0.2996, d, =11195, d3 =1.1996, a; =20.31°, a, =22.79° and the find volume is 12.3546 wv.,
which represents an increase of about 55%. In Fig. (6b) it is observed that Y% (r, z,03) / fgs® = O has no roots, and this
guarantees that the envelopeis regular. The optimal workspace is presented in Fig. (7).
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Figure5. ) Initid guess for the test of the optimum design of a3R manipulator, b) Thecurveof 1°f /1q5°

Figure 7. The optima workspace for 3R manipulators.

5. Conclusions

The optimum desgn of a gened 3R manipulator has been formulated by usng workspace characteridics and
manipulator sze. A slitable formulation for the manipulator workspace has been used to obtain efficent numerica
procedure for solving the optimization problem. The design problem has been formulated as an optimization problem,
searching for the maximum workspace volume.

In the paper, the numerica example is presented to show the efficiency of the design process and that is possible to start
with a singular condition and to reach a regular one. This is an important result that encourages the new researches in this
subject. For example testing other optimization technique, writing different objective function and imposng new



congraints. Furthermore improving the area computation will be important to guarantee the precison of the results.
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