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Abstract. The workspace of a manipulator robot is considered of great interest from theoretical and practical viewpoint, being a basic 
tool for kinematic evaluation and dimensional design. The accurate calculation of workspace and its boundary is of great importance 
because of its influence on the manipulator design, the manipulator position in the work environment and its dexterity. The presence of 
voids and singularities adds great difficulty in the algebraic formulation of a correct mathematical model for the calculus of the 
workspace volume. In this paper an optimization problem is formulated with the objective of determining the optimal geometric 
parameters of the manipulator, considering the case where the envelope of the workspace is regular. Since a fundamental feature of a 
manipulator is recognized as a workspace capability, the manipulator design can be expressed as a function of this workspace. The 
objective of the optimization problem is the maximization of the workspace volume. The main constraint is the regular form. Additional 
constraints are included to obtain manipulator dimensions within practical values, and to specify limits at the workspace. In the 
optimization procedure, the optimal design is achieved by means of sequential minimization techniques. A numerical example is 
presented to validate the proposal methodology. 
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1. Introduction  
  

The manipulator workspace is defined as the region of reachable points by a reference point H on the extremity of a 
manipulator chain (Kumar and Waldron, 1981). The workspace of a manipulator robot is considered a great interest from 
theoretical and practical viewpoint, being a basic tool for kinematic evaluation and dimensional design. The accurate 
calculation of workspace and its boundary are important because of its influence on the manipulator design, the manipulator 
position in the work environment and its dexterity. The presence of voids and singularities add high difficulty in the 
algebraic formulation of a correct mathematical model for the calculus of the workspace volume. More recently, an 
analytical formulation to obtain the boundary of all surfaces enveloping the workspace for a general 3-dof mechanisms was 
discussed in Abdel-Malek and Yeh (1997). Abdel-Malek et al (2000) have been introduced a broadly applicable formulation 
for the determination of voids in the workspace of serial manipulators. Wenger (2000) showed how to take into account, in 
the design stage, the possibility for a manipulator to execute non-singular changing posture motions. Connections between 
the concepts of solvability, genericity and cuspidality have been also studied. For the background in the subject it is 
recommended Lanni et al (2001) and Saramago et al (2002). 

In this paper, a suitable formulation for the workspace is used to propose manipulator design algorithms through an 
optimization problem in which the workspace volume is the objective function; subject to given workspace limits as the 
constraints and regularity of the workspace boundary. Additional constraints have been included to obtain manipulator sizes 
within practical values.  

The main contribution of this work is to achieve a regularity condition for the boundary of the workspace. This 
condition has been used as a constraint of an optimization problem and in this way only regular boundary can be accepted. 

The optimization problem is investigated by using a sequential quadratic programming (SQP) technique (Bazaraa et al, 
1993). The code DOT (design optimization tools) developed by Vanderplaats (1995) has been used. The optimum designs 
are then tested through numerical examples, confirming the efficiency of using the algebraic formulation for the workspace. 
A numerical example is presented to validate the proposal methodology. 
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2. The Design Problem 
 

One of the most used methods to describe geometrically a general open chain 3R manipulator with three revolute joint 
is the one which uses the Hartenberg and Denavit (H-D) notation, whose scheme is exhibited in Fig. (1). The design 
parameters for the link size are represented as a1,  a2,  a3, d2,  d3, α1, α2, (d1 is not meaningful since it shifts the workspace 
up and down). 

In this paper, the homogeneous transformation matrix is written obeying the following order of the stages, for i=0,1,2: 
- 1st stage: a clockwise rotation of angle αi around the axis Xi; 
- 2nd stage: a displacement of ai units along the axis Xi; 
- 3rd stage: a displacement of di+1 units along the axis Zi+1; 
- 4th stage: a counterclockwise rotation of angle θi +1 around the axis Zi+1. 
Hence, adopting the Hartenberg and Denavit notation and in the hypothesis that both reference 1 and reference 0 have 

the same origin and the same axes z, the transformation matrixes of a reference on the previous are: 
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in which  a0=α0= 0, d1= 0,cαi=cos αi, sαi=sin αi, cθi+1=cos θi+1, and sθi+1= sin θi+1,  for 2,1,0i = . 

 
 

 
Figure 1. The workspace for 3R manipulators and design parameters. 

 
The workspace W(H) of a point H of the end-effector of a manipulator is the set of all points which H occupies as the 

joint variables are varied through their entire ranges (Gupta and Roth, 1982). The point H is usually chosen as the center of 
the end-effector, or the tip of a finger, or even the end of the manipulator itself. The position of this point with respect to 
reference x3y3z3 can be represented by the vector 
 

H=[a3 0 0 1]t    (2)  
                   

The most immediate procedure to investigate the workspace is to vary the angles θ1, θ2 and θ3 on their interval of 
definition and to estimate the coordinates of the point H with respect to the manipulator base frame, that is 
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By expanding Eq. (3) one can obtain  
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where y
j

x
j H,H e z

jH represent the 1st, 2nd and 3rd components of vector jH , respectively, for j=1,2. 

The workspace of a three revolute open chain manipulator can be given in the form of the radial reach r and axial reach 
z with respect to the base frame (Ceccarelli, 1996;  Cecarelli and Lanni,1999). For this representation, r is the radial distance 
of a generic workspace point from the z-axis, and z is the distance of this same point at X1Y1-plane. Thus, using the Eq. (6), 
the parametric equations (of parameters θ2 and θ3) of the geometrical locus described by point H on a radial plane are  
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In addition, using Eq. (5),  
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and by multiplying the second equation of Eqs. (7) by )1sin/1a2( α  with the hypotheses a1 ≠0 and sinα1 ≠0, and using Eqs. 
(5)and (6), it yields 
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Squaring both sides of Eqs. (8) and (9) and adding the resultant equations, one can obtain 
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in which A,B,C,D coefficients are called the architecture coefficients. They are function of the Denavit and Hartenberg 
parameters a1, a2, a3, d2, d3, α1, α2 and θ3    in the form 
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The reach distances r2 and z2 can be expressed as 
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The Eq. (10) is the equation of the three revolute manipulator workspace, described by the reference point H. It can be 
thought as the equation of an 1-parameter family of plane curves, in the plan rz, of parameter θ3. Thus, the analytical 
expression of the workspace boundary can be obtained as the envelope of this 1 -parameter family (Bruce and Giblin, 1992), 
that is, the set of points (r, z) that satisfy the equations  
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Figure 2: Family of plane curves and its envelopes. 
 

The envelope of a  family of  curves can be regular as represented in Fig. (2a) or it can present singularities (cusp 
points) as shown in Fig. (2b). The theorem 1 presents the conditions for the regularity and parametrization of the envelope.   

In the theorem the variable t will be used instead of the variable 3θ , for simplify the notation. 

Theorem 1: Let RU:f → and RU:t/f →∂∂  functions of class C1 in the open set U of R2R × and ( ) U0t,0z,0r ∈ such 

that 0/),,,(),,( =∂∂= ttzrftzrf .  If, moreover, 
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then, given a family of curves, represented by 0)t,z,r(f = , 

(a) the envelope of  this family can be parametrized by t in a  neighborhood of  (r0, z0);  

(b) the envelope, given by ))t(z),t(r(t → , is regular in t if, only if, )0t,0z,0r(in02t/f2 ≠∂∂ . 
 
Proof: The part (a) of the theorem 1 is a direct consequence of the Implicit Function Theorem, because it guarantees, in this 
case, that there is an open interval RJ ⊂ , with J0t ∈  and a pair of functions )t(rr =  and )t(zz =  that are solutions of the 
system given by the Eqs. (13)-(14), with )( 00 trr = and )( 00 tzz = .  

Then  
 

Jt,0)t),t(z),t(r(f ∈∀=   
  (17) 

and 
 

Jt,0)t),t(z),t(r(
t
f ∈∀=

∂
∂       (18) 

 
Deriving the Eq. (18) with respect to t, one obtains 
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Admitting that 0/),,( 2

000
2 ≠∂∂ ttzrf , results 
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what guarantees that )0t('r  and )0t('z are not simultaneously null, that means that the envelope is regular in t0. This shows 
the only if part of  (b). 

Now deriving the Eq. (17) with respect to t and using the Eq.  (18), obtains 
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Admitting now that the envelope is regular in 0t , there are three possibilities: 
 
(1) 0)0t('r ≠  and  0)0t('z = ,  implying, due the Eq. (21), that 0/),,( 000 =∂∂ rtzrf . Then, using the Eq. (16), 
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(3) 0)0t('r ≠  and  0)0t('z ≠ ; according to the Eq.  (21)  
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The last equation, combined with Eq. (19) and Eq. (22), it results that 
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From  Eq. (16) it follows that   
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This concludes the theorem. 

 
The axial z and radial r coordinates of the boundary points are given as the solution of the Eq. (13) together with Eq. 

(14), supposing that sinα1≠0, C≠0 and E≠0. After some algebraic manipulations (Ceccarelli, 1996) one can see that 
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The angle θ3 is the joint angle of the extreme pair in the chain and it is the kinematic variable for the workspace 

determination. In fact, the workspace boundary can be obtained from Eq. (26) by scanning θ3 from 0 to 2π. 
Generally, the referred envelope is composed by two closed curves, an internal curve and other external one, called 

internal and external boundary, respectively (see Fig. (2)).  
In the generation of the cross section it is necessary that the angle varies in an interval of length 2π. The coefficient E 

should be different of zero. Thus, the angle θ3 cannot assume values as θ3
* + Kπ,  K∈ Z, where θ3

*= - arctan (d2sinα2 / a2 )  
Therefore, the domain of definition of  the angle θ3 can be (θ3

* , θ3
* +2π), except the point θ3

* + π . 
Referring to Fig. (3), the workspace design data can be prescribed through the workspace limits in term of the radial 

reach r and axial reach z. The design problem can be formulated to find the dimensions of a 3R manipulator arm whose 
workspace cross section is delimited by the given axial and radial reaches minr0, maxr0, minz0, maxz0.  

 

 
 

Figure 3. Axial and radial reaches of a given manipulator workspace. 

3. Formulation of an Optimum Design Procedure 

The objective of the proposed manipulator design procedure, considering workspace boundary regular, is the 
dimensional synthesis of 3R manipulator.  

The objective of the optimization problem is the maximization of the workspace volume V 
 
max Φ  = V (27) 
 

subject to 
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The optimization problem is subject to given workspace limits represented by constraints (28). The constraints given by 

Eq. (29) are necessary to guarantee the regularity of the boundary envelope. 
The workspace volume V can be evaluated by the Pappus-Guldin Theorem, according to the scheme shown in Fig.  

(4a), through the equation 
 
V = 2πrg Area (30) 
 
The area is obtained as 
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where N is the total number of the external boundary points, M is the total number of the ring void boundary points, Aext is 
the area inside the external boundary, Avoid is the area inside the ring void (if the ring void does not exist, Avoid = 0),  and Ati 
is the trapezium area represented in Fig. (4b). 

 
By considering the cross section area, the coordinate rg of the center of the mass can be given as 
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Figure 4. A scheme for evaluation of the workspace of 3R manipulators: a) volume computation; b) area computation from 
boundary points. 

The minimization is achieved by means of a sequential quadratic programming technique (SQP), using the sequential 
optimization method, and a pseudo-objective function is written using the augmented Lagrange multiplier method. The 
unconstrained minimization is performed by the Broydon–Fletcher–Goldfarb-Shanno (BFGS) method and the one-
dimensional search uses a polynomial interpolation technique.  

4. Numerical Example 

In order to prove the soundness of the proposed optimization design procedures numerical example has been reported. 
In particular, Fig. (5a) shows the envelope boundary of the initial guess for the proposed test of the optimum design of a 3R 
manipulator.   One   can   note  the   presence   of   the   four  cusp   points  in  the  internal   boundary,   which  are  roots  of    
∂2f / ∂θ3

2(r, z, θ3)=0, as shown in the Fig. (5b).  In this case,  the parameters design are: a1 =0.3, a2 = 1.0, a3 = 0.5, d2 = 1.0, 
d3 = 1.0, α1 = 30o,  α2 = 60o and the initial volume is 7.9606 uv. 

Figure (6a) shows the optimal result obtained through the optimization procedure, using the sequential techniques SQP 
of the code DOT. One can observe that the project parameters result in a manipulator with a regular envelope and a bigger 
volume. It is worth to note that all the optimization constraints were obeyed. The optimal parameters design are:  
a1=1.9917, a2 =1.0337, a3 =0.2996, d2 =1.1195, d3 =1.1996, α1 =20.31o,  α2 =22.79o and the final volume is 12.3546 uv., 
which represents an increase of about 55%.  In Fig. (6b) it is observed that ∂2f (r, z, θ3) / ∂θ3

2 = 0 has no roots, and this 
guarantees that the envelope is regular. The optimal workspace is presented in Fig. (7). 



                                                 (a)                                                                                     (b) 

Figure 5. a) Initial guess for the test of the optimum design of a 3R manipulator, b) The curve of  ∂2f /∂θ3
2 

 

                                                    (a)                                                                                 (b) 

Figure 6.  a) The optimum design of a 3R manipulator, b) The curve of  ∂2f /∂θ3
2 

 
 
Figure 7. The optimal workspace for 3R manipulators. 

 
5. Conclusions 

   
The optimum design of a general 3R manipulator has been formulated by using workspace characteristics and 

manipulator size. A suitable formulation for the manipulator workspace has been used to obtain efficient numerical 
procedure for solving the optimization problem. The design problem has been formulated as an optimization problem, 
searching for the maximum workspace volume.   

In the paper, the numerical example is presented to show the efficiency of the design process and that is possible to start 
with a singular condition and to reach a regular one. This is an important result that encourages the new researches in this 
subject. For example, testing other optimization technique, writing different objective function and imposing new 



constraints. Furthermore improving the area computation will be important to guarantee the precision of the results.  
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