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Abstract. Underwater hydraulic manipulators are usually systems hard to be modeled and present strong non-linearities in its 
dynamics behavior. These types of manipulators are operated, nowadays, in a master-slave configuration with simple control 
algorithms performing tasks in hazardous and unstructured environments. In such conditions only low accuracy simple tasks can be 
performed. This paper presents the application of a special fuzzy controller in a hydraulic manipulator commonly used in offshore 
missions. This controller is able to cope with changes in the system parameters adapting itself to a desired system performance. A 
non-linear analysis of the manipulator’s dynamics is developed. Results of simulations comparing the adaptive fuzzy control and a 
conventional control are also provided. 
Keywords. fuzzy control, adaptive control, hydraulic manipulators, underwater. 

 
1. Introduction  

 
Underwater manipulators mounted on remotely operated vehicles (ROVs) have an important role to play in 

deepwater activities for the oil and gas industry, in military and exploration missions. Nowadays, the use of these 
manipulators is based mainly in the concept of teleoperation using a master-slave configuration. The operator controls 
the manipulator (slave) moving a smaller master arm installed in a safe location distant to the worksite. A video cam 
mounted near the slave manipulator provides images of the work environment allowing the operator to realize the tasks. 
However, teleoperation present drawbacks that reduce its efficiency. The operator’s work is made difficult by the poor 
quality of the video image and lack of sensibility of what’s really happening in the remote location, permitting him to 
perform only relatively simple tasks. 

One step forward in teleoperation would be the accomplishment of tasks in a teleassisted way. This would allow the 
manipulator to perform tasks like positioning or trajectory following automatically, only supervised by the operator. 
However in the way to do that it’s necessary to introduce a more sophisticated control than the one currently used since 
the manipulator operates in hazardous and unstructured environments and it’s submitted to unknown and continuously 
changing conditions, that simple controllers are incapable of deal. Teleoperation avoids this problem permitting the 
operator to adjust the errors induced by the poor controller observing the slave arm with the cam and adjusting its 
position moving the master arm. Another difficult arises from the actuation system used by underwater manipulators; 
most of them are hydraulic actuated because of the robustness and good relation force/weight. This also means a further 
trouble to the control because its dynamics has non-linearities and factors that difficult an accurate positioning of the 
actuator, like compressibility of the fluid and leakage in the piston’s seals. Recently there is an effort to adapt industrial 
electrical manipulators to operate underwater, but we are still far away to see them working. 

The purpose of this paper is to simulate the application, in an underwater hydraulic manipulator, of a control 
capable to deal with the non-linearities of a hydraulic actuated system and also able to coping with changes in the 
system’s parameters, always maintaining a suitable performance. The control here utilized is a fuzzy control referenced 
by Layne (1996) as Fuzzy Model Reference Learning Control (FMRLC). In the last years fuzzy controllers has 
demonstrated to be an effective alternative to conventional controllers, especially when one is interested in controlling 
systems with non-linearities and/or hard to be modeled. In fact there are many successful cases of fuzzy applications, 
like air conditioning systems, anti-lock brakes, chemical mixer, elevator control, camera autofocus, and even on 
robotics systems. Sepehri (1999) already showed a fuzzy control applied in a hydraulic actuated industrial robot. This 
papers goes further, showing as a simple but powerful algorithm can control in an effective way a hydraulic manipulator 
with variations on its parameters. 

The control here presented is to be used in an independent joint control scheme, where the manipulator is regarded 
as formed by independent joints and each joint being controlled as a single-input-single-output system. Coupling effect 
between the joints would be treated as disturbances in the system. In this paper only one joint was modeled but for a full 
control of the manipulator the same scheme can be applied to the remaining joints.  

The paper consists in a kinematics and dynamic analysis of a manipulator’s specific joint, a non-linear modeling of 
the hydraulic actuators, an explanation about fuzzy control and the FMRLC, and finally the simulation results followed 
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by a conclusion chapter. 
 

2. Underwater hydraulic manipulator model  
 
The model here presented was based on the Kraft Grips manipulator, widespread used on underwater operations. 

It’s a six-degree of freedom manipulator with an anthropomorphic configuration, which allows the operator to work in a 
more instinctive way. This manipulator has to be installed on a remote operated vehicle to utilize its facilities like 
pressure line, video cam and electronic bottle. Rack-and-pinion rotating actuators, except for the wrist rotation, make all 
the manipulator’s movements. Each actuator is controlled by servo-valves, and position sensing is done by 
potentiometers installed in the joints. An electronic circuit installed in the ROV’s electronic bottle executes a simple 
control algorithm that sends signals to the servo-valves based on the error between the slave and master position of each 
joint. 

 

 
Figure 1. Kraft Grips Manipulator. 
 

2.1. Mechanical system model 
 

The system to be modeled represents the elbow pivot of the Kraft Grips manipulator. This joint presents a great 
difficult to model as the shoulder elevation joint movement induces motion on it. It’s formed by a closed chain that 
increases its stiffness, reducing the manipulator inertia, but also difficults its kinematics analysis. This joint is actuated 
through a four bar linkage where q, θ2, θ3 and θ4 are the bars angles and l1, l2, l3, l4 its lengths, as shown in Fig. (2).  

 

 
 
Figure 2. Schematic view of Kraft elbow joint mechanism. 
 
The angle θ4 is maintained constant because just the elbow’s joint mechanism was simulated. It’s appropriate to 

define the angle q as the input variable, because the bar l1 is the one that is actuated by the hydraulic piston. The four-
bar linkage is a single degree of freedom mechanism, so it is fully determined when the input q is specified.  

The values of the secondary variables θ2 and θ3 were determined from the following position loop equations: 
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The velocity loop equations are determined by differentiating the position loop equations: 
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The velocity coefficients may be determined by dividing the velocity by q� : 
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Time differentiation of the velocity loop equations provides the acceleration loop equation: 
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where: 
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is known as velocity coefficient derivatives. Similar procedure allows calculating, for any point of the mechanism, 

the x and y speed and acceleration’s components. Then is possible to determinate its coefficients. 
According to Conservation of Energy’s Principle the work done on a mechanical system is equal to the change on 

its kinetic energy. The differential form of this principle can be written as: 
 

dt
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The kinetic energy is:   
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where the generalized inertia I(q)  isn’t constant. Differentiating the kinetic energy with respect to time and 

equating this result to the power expression, it’s obtained the equation of motion in Eksergian’s form: 
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where Q is the generalized force composed by two parts, one conservative dV(q)/dq and the other non-conservative 

(Qnc). This is an appropriate form to account the potential energy 
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V(q) is the potential energy due the bar’s masses and the payload, its differentiation with respect to q is: 
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where g is the acceleration due to gravity, M1, M2, M3 and Load are the masses, Ky1, Ky2, Ky3a e Ky3b are the velocity 

coefficients with respect to y, because the forces due to the weights only realize work in this direction. 
The forces supplied to the system are originated from the hydraulic actuator, composed by two pistons actuating in 

the same gear and the forces of viscous friction, considered only in the last pivot, so: 
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where r is the radius of the pinion coupled to the actuator’s rack, F is the piston’s force, and v is the coefficient of 

viscous friction. The generalized inertia and its differentiation is given by: 
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where the Js represents the mass moment of inertia for the bars. 
 

2.2. Hydraulic actuation system model 
 

The manipulator joint is actuated by an electrohydraulic system composed by a two-stage four-way electrohydraulic 
servovalve and a hydraulic actuator coupled with the joint by means of a rack-and-pinion type mechanism. 

The servo valve controls the flow to the piston converting a low power electrical signal in a movement of the spool 
inside the valve, which in turns controls the flow and/or pressure to the hydraulic actuator. The spool movement opens 
an annular orifice, which allows the passage of the fluid to the actuators as illustrated in Fig. (3). 
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Figure 3. Servovalve schematic diagram. 
 
Four-way servovalve is termed this way since it has four hydraulic connections: one for the supply pressure, one for 

the exhaust and two control ports connecting the valve to the hydraulic system. Motion of the spool is provided by 
means of an electric actuator that moves a deflector causing a differential pressure between its extremities. The dynamic 
analysis of this mechanism is particularly complex, however for low frequencies can be approximated to a 1st order 
equation: 
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where u is the valve aperture, i the input signal, Ki  the input gain and iτ  is the spool actuation system time 

constant. The equation above is valid for a critical-center spool valve. 
The flow Q through the servovalve is modeled as a flow through orifices and is given by: 
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where CD  is the vena-contracta coefficient, A0 the orifice area, ρ the density of the fluid and ∆P the difference 

between the inlet and outlet pressure. The above equation can be rewrite for each control port considering the orifice 
percent aperture and the flow direction according to the pressure difference: 
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where: 
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PS is the supply pressure, PE the exhaust pressure assumed to be negligible and KV the valve flow coefficient. 



 
Figure (4) illustrates the pinion-rack rotary actuator that moves the joint. The fluid enters in one side of the actuator 

increasing the pressure in the piston and creating a force F that moves the joint. This movement causes the fluid to leave 
the other cylinder until reach an equilibrium pressure. 

 

 
Figure 4. Rack-and-Pinion Hydraulic Rotary Actuator 
 
The force in the piston can be written as: 
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where AP is the piston area. The dynamic of this mechanism can be found applying the Continuity Equation as 

presented by Merrit (1967) in the control volumes V1 and V2: 
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 The first term on the left side represents the flow caused by a variation in the volume control, hence, by the 
movement of the piston: 
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where yD  is the actuator position (y) time derivative. The second term of the equation represents the compressibility 

of the fluid produced by the volume control pressure variation, where the volume V0 of each chamber can be written as: 
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where VT is the total volume in the pistons and connecting tubings. Usually there will be a leakage through the 

piston’s seals, causing a flow outside the control volume. This flow is proportional to the difference between the 
chamber pressure and the manipulator’s fluid compensation oil pressure. This pressure is equal to the return pressure, 
and, as it, considered negligible. The flow can be written due to leakage in each piston (qL1 and qL2) as: 
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where KL1 and KL2 are the piston leakage coefficient. In this model both seals have the same coefficient’s value 

represented by KL. So the following equations describe the hydraulic actuator’s dynamics: 
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3. Fuzzy control 
 

The fuzzy controller utilized on the hydraulic manipulator has the ability to adapt itself to changes in system 
parameters trough a learning process that: (i) observes data form a conventional fuzzy control system, (ii) evaluate its 
performance and (iii) automatically modifies the conventional fuzzy control system so to maintain a pre-specified 
performance. 

 
3.1 Conventional fuzzy control 
 

The purpose of the conventional fuzzy controller is to compute values of action variables from observation of state 
variables from the process under control. The action and the state variable here in are, respectively, the servovalve input 
signal and the error signal defined as: 

 
E(kT)=qd(kT)-q(kT) (23) 
 
where qd(kT) is the desired angle joint in a time kT (T is the sample period). The Fuzzy controller is based in the 

concept of fuzzy logic introduced by Zadeh (1973) and consists in covert they states variables in linguistic variables and 
apply linguistic rules to find the proper action for the plant.  

The fuzzy controller is formed by three main components. The first component is the fuzzyfication interface, which 
converts input data into linguistic values. This is done assigning to the input variable a membership value for each fuzzy 
set. Fuzzy sets represent linguistics values as “positive-low” or “negative-high”. Each fuzzy set has a membership 
function used to do this conversion. Figure (5) shows an example of membership functions. In this example, for an 
input of 0.45, the membership value are 0, 0.3 and 0.7 for the fuzzy sets E-4, E-3 and E-2, respectively. 

 

 
Figure 5. Example of triangular membership functions. 
 
In the second component an inference mechanism maps fuzzy input into fuzzy output based in rules stored in the 

knowledge base. Example of a rule: 
 
If the (error signal) is [positive-low] then the (servovalve aperture) is [negative-high] 
 
or   If E(kT) is E j THEN i(kT) is I j 
 
Where E j are input fuzzy sets and I j are the outputs. The conventional fuzzy control used in this work is a single-

input-single-output control system and its rule base array is resumed in Tab. (1).  
 
Table 1. Rules for the SISO conventional controller 
 

jE  -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 
jI  -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0

 
The last component is the defuzzyfication interface, which converts all the outputs from the inference mechanism 

into a non-fuzzy action to be applied in the plant. In this work the output of each rule is a constant numerical value. The 
final output for the system is the weighted average of all rule outputs, computed as: 
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where Jδ  is the firing strength of each rule, in this case the membership value of the input.  
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3.2 Learning Mechanism 

 
The conventional fuzzy control evaluation is done comparing the real plant output to a reference model output. The 

reference model may be any type of dynamical system that characterizes the desired performance for the process. In this 
work the following equation was used: 
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The performance of the system is compute with respect to the reference model by generating an error signal 

Em(kT): 
 
Em(kT)=qm(kT)-q(kT) (26) 
 
where qm(kT) is the ouput from the reference model in the time kT. The learning system observers also the error 

signal variation: 
 
dEm(kT)=(Em(kT)-Em(kT-T))/T (27) 
 
If the performance is met (both errors are zero) then the learning mechanism will not make significant 

modifications to the fuzzy controller. If the performance is not achieved, the learning mechanism will adjust the fuzzy 
controller. Two parts compose the learning process. First a component called fuzzy inverse model shows how to change 
plant inputs to force the plant output to get closer to the desired output. This is done mapping the deviations from the 
desired performance, represented by Em(kT) and dEm(kT), to changes in the process input p(kT) that are necessary to 
force Em(kT) to zero.  

 
Table 2. Fuzzy inverse model rule base array table. 
 

Emj Pj,k 
-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 

-5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 
-4 -1.0 -1.0 -1.0 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 
-3 -1.0 -1.0 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 
-2 -1.0 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 
-1 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 
0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 

+1 -0.8 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.0 
+2 -0.6 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.0 +1.0 
+3 -0.4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.0 +1.0 +1.0 
+4 -0.2 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.0 +1.0 +1.0 +1.0 

dEmk
 

+5 -0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 
 
The FIM is a MISO (multi-input-single-output) system with two inputs and one output. Emj and dEmk are the fuzzy 

sets for the inputs related to Em(kT) and dEm(kT) respectively. Table (2) shows the rule base employed in this process. 
The use of the error variation provides some “damping“ to the learning mechanism. Without this overshoot is likely to 
occur. The FIM rule base array is designed to take advantage of this feature. The defuzzyfication in this case is slightly 
different form the previous fuzzy control. Using these two inputs the firing strength is calculated as: 

 
))}(()),((min{)(, kTdEmkTEmkT kj dEmEm

kj µµδ =  (28) 

 
where jEmµ  and kdEmµ denotes the membership function of fuzzy sets Emj and dEmk respectively. 

 
The second part consists in changing the knowledge base of the conventional fuzzy controller so that the previous 

applied control action will be modified by the amount p(kT). The desired controller output, or process input, is 
expressed by: 

 
id(kT-T)=I(kT-T)+p(kT) (29) 
 
Knowledge base modification is done adding p(kT) to the output values which are associated to the fuzzy 

implications that contributed to the previous control action u(kT-T). Only the rules that have a firing strength greater 
than zero will be modified. The other rules remain unchanged allowing a kind of local learning. 

Figure (6) shows the schematic of the FMRLC control.  
 



  

 
Figure 6. FMRLC Fuzzy Controller 
 

3.3 Implementation issues 
 

For a greater flexibility of the controller, and to make easier to tune it, both conventional fuzzy controller and fuzzy 
inverse model inputs are “normalized” by means of constant scaling factors. The gains ge, gm and gdm were employed to 
normalize the variables E(kT), Em(kT) and dEm(kT) respectively. Both fuzzy controllers provides normalized outputs 
which are converted to useful range by the gains gi and gp, respectively for the variables i(kT) and p(kT). For sake of 
simplicity this work uses triangular membership functions in both fuzzy controllers (conventional and FIM), and the 
membership value for an input x in a fuzzy set A is calculated with the following equation: 
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here, a, b and c are the triangles vertices in ascending order. 
 

4. Results 
 
The simulation was performed using MATLAB software package. Two controllers were used for comparison. The 

first is a fuzzy controller with membership functions and outputs were adjusted so to make the fuzzy control correspond 
to a tradition proportional controller usually applied in this type of systems. Then the learning mechanism was applied 
on the conventional controller above, modifying its parameters as needed. A sample time of 0.1 s was used in both 
controllers. The reference model was tuned so to represent the performance of a conventional P-controller applied in the 
plant in optimal conditions. The desired position is represented by a ramp function until it reaches the final desired 
angle. As shown in Fig. (7), in optimum conditions both controllers follow the reference model. If the manipulator 
extremities are loading, the P-controller response deviates from the desired path. The FRMLC control, instead, adjust 
the outputs of the fuzzy controller maintaining a good performance, see Fig. (8) 

In the next simulation the pressure supply was reduced to 75% of its nominal value. Even in this case the system 
with the FMRLC control was able to follow the reference model. The simple P-control can’t deal with this parameter 
change and shows a degraded performance, as showed in Fig. (9). Figures (10) and (11) show the system behavior with 
a different θ4. As was explained before, the dynamics characteristics of the system change with the variation of θ4. As 
can be seen, the results are similar to the obtained before. 

The simulation’s parameters used were: g=9.81m.s-2; r=0.022m; υ=20s-1; Ps=1.0345E7N.m-2; Pe=0N.m-2; 
Vt=7.22E-5m3; β=7E8N.m-2; Ap=11.37E-4m2; Kleak=8.476E-14m5N-1s-1; J10=0.07kg.m2; J30=0.80kg.m2; J2cm=0.11kg.m2; 
M1=3Kg; M2=4Kg; M3=10Kg; M4=13Kg; l1=0.14m; l2=0.56m; l3=0.15m, l4=0.56m; Kv=3.6045E-8; Ki=1; Ti=0.002; 
ge=0.5464; gu=0.915; gdm=0.5464; gyc=0.2; gp=0.2, T= 0.05s. 
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Figure 7. Simulation results - Manipulator without load in optimal conditions and θ4=2.19 rads 
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Figure 8. Simulation results - Manipulator loaded with 40 Kg. and θ4=2.19 rads 
 

0 5 10 15

2.6

2.8

3

3.2

3.4

3.6

Time (sec.)

Jo
in

t A
ng

le
 (r

ad
.)

FMRLC Control
Set Point
P-Fuzzy Control
Reference Model

 
 

Figure 9.Simulation results - Manipulator with 75% of its nominal pressure supply, loaded with 25 Kg and θ4=2.19 
rads 
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Figure 10. Simulation results - Manipulator without load in optimal conditions and θ4=.14 rads 
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Figure 11. Simulation results - Manipulator loaded with 40 Kg. and θ4=.14 rads 
 

5. Conclusions 
 
In this work was presented: (a) the development of a non-linear model for the actuation system of a industrial 

underwater hydraulic manipulator; (b) the modeling of a closed-chain manipulator joint dynamics; (c) the simulation of 
the application in the elbow pivot Kraft Grips joint of a control algorithm with a learning mechanism able to deal with 
changing in the system’s parameters. 

The results demonstrates that this fuzzy control could possibly be applied with success in the control of this type of 
manipulator, allowing to make tasks in a teleassisted way. In this paper was addressed the problem of positioning 
control with changing parameters. Future works could address the problem of path following or a hybrid position/force 
control. Other problems, not addressed here, could emerge when the application of the algorithm in a real manipulator. 
Noisy sensors, stiction or coloumb friction in the actuator’s pistons or manipulator’s joints could degrade the control 
performance and practical solutions should be investigated as needed. In future experimental tests with the manipulator 
could be used to validate the kinematic and dynamic models presented here. 
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