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Abstract. This paper presents a new formulation for robust traffic regulation of metro lines. The approach uses a linear
time-variant state feedback control law computed in real-time. The formulation is based on the stability analysis using the
eigenvalues of the feedback system and consider the traffic model uncertainties and the constraints on its state and control
variables. It is assumed the constraints on model variables and uncertain parameter domain defined by convex compact
polyhedra. The simplicity and computational efficiency of this formulation makes it applicable to real-time regulation of
nowadays metro lines and presents better performance than the obtained using already known robust regulation approaches.
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1. Introduction

The traffic of trains in high-frequency metro lines is known to be naturally unstable. Consider, for example, a
train delayed with respect to the nominal time schedule of the line (Cury et all, 1980), (Assis et all, 2002). Due to this
delay, its time interval relative to the preceding train is increased, more passengers will be waiting at the platforms
to get on the train, resulting in increased delay (Campion et all, 1985). Thus, traffic control is necessary to keep
the departure time at the stations, the time interval between successive trains as close as possible to their nominal
values. The control actions consist of instructions given by the controller to the trains at the stations, increasing or
decreasing their speed during the running time to the next station and/or their waiting time at the platform. The
control is naturally constrained by the speed range allowed to the trains, minimum waiting time at the stations and
traffic security rules. The time interval between successive trains is also constrained by the traffic security rules and
the maximum train occupancy (Van Breusegem et all, 1991). Milani et all (1997) proposed a formulation based on
linear programming for robust constrained regulation of metro lines, considering explicitly the constraints on the
state and control variables, the parameter uncertainties and random operational disturbances. The constraints on
model variables and uncertain parameter domain were defined by convex compact polyhedra. Exploring structural
properties of the traffic model, the method gives a linear time-invariant control law, with bidiagonal structure,
obtained solving independent linear programming problems, related one to one with the platforms of the line. This
paper presents a new formulation for robust traffic regulation of metro lines using a possibly nonlinear time-variant
state feedback control law computed in real time. The formulation is based on eigenvalues assignement of the closed-
loop matrix. The simplicity of the formulation and the computational efficiency makes it applicable to practical
application. Moreover, using a time-variant control law, the formulation can presents better regulation performance
than robust regulation approaches, where we have time-invariant control.

2. Traffic Modeling

Consider n trains (i = 1,---,n) in an open metro line with N platforms (k =1,2,---,N) (Fig. (1)).
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Figure 1. Open metro line with N platforms
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Defining y;(k) as the deviation of the actual departure time of train 4 in platform k with respect to the nominal
time schedule results the basic equation for the traffic of trains (Milani et all, 1997) e (Corréa et all, 2001):

(I=ci(k+1)yi(k + 1) = yi(k) — ci(k + 1)yi—1(k + 1) + us(k + 1) + vi(k + 1) (1)

where:

- The parameter ¢(k) is related to passengers demand, inherently uncertain;

- v;(k) is the random disturbance;

- u;(k) is the control action applied to train ¢ between the platforms k£ — 1 and & in order to increase (u;(k) > 0)
or to decrease (u;(k) < 0) the running time.

Throughout this paper: for two real matrices nem, A = (a;,;) and B = (b; ;), A < B is equivalent to a; ; < b; ;
for all 4, j such that 1 <i<mand 1<j<m. A>1 are equivalent to a; ;j > 0, a;; > 1, respectively. |A| = (|a;;|).

a) Stations Sequential Model (SSM)

The equations (1) can be put in matrix form as the following station sequential model (SSM), suitable for stability
analysis (Campion et all,1985):

YK+1 = AK(YK + UK+1 +VK+1) (2)
Ve £ [ k) k) o yak) ] V=12, N
UKé[ul(k) ua(k) - un(k) ]T; Vk=1,2,---,N
VKé[m(k) va(k) - wp(k) ]T; Vk=1,2,---,N

Ak = (Cky1)~! where Ck 1 is the following bidiagonal 7*™ matrix:

1—c(k+1) 0 0
c(k+1) 1—c(k+1) --- 0
Ckt1 = ° c(k_+1) ? (3)
0 0 -kt )

The order of the state space representation is the number of trens. The terms c(k+1) presents a uncertain degree
assumed equivalent to all trains: ¢;(k + 1) = ¢(k + 1), Vi.

b) Real Time Model (RTM)

The real time model (RTM) (Campion et all,1985), (Van Breusegem et all, 1991) presents a state-space formu-
lation suitable for robust control design:

Yy = A(C)Y; + B(O)[U; + Vj] (4)
GE[ g 2@ o ) 1T Vi=j-1j-2 -k Vk=12 N
Uj é [ u](l) uj—1(2) uj—N-i-l(N) ]T; vz:]_]-aj_2aa.7_k7 Vk = 1725"'7N
Vi 2[v;(1) 1@ - vinpa(N) 1T Vi=j—1,j-2,--i—k Vk=1,2,---,N
A
C=[c@) ¢?2 - ¢N)] (5)

where Y}, U; and V; are N dimensional vectors representing the state, the control and the external disturbances of
the system, respectively; C is the vector of uncertain parameters; A(C) and B(C) are given by:

) 0 0 0
I LR
1—(0)(2) l—g(Z) o o
A(C) 2 e . . (6)
0 oy 0
0 1 —c(N)
L 1—¢(N) 1—c¢(N) 4
1
1—c(1) (1) 0
A 0 1—c(2) 0
Bey=| 0 0 0 (7
0 0 L




The equation (4) presents the term y;(k) multiplicated by the factor 1_0(1T1) where tipically 0 < ¢(k +1) < 1.
This means that, if the deviation of the train i-1 at the station k + 1 is equal to zero, without control at the station
k + 1, the deviation at the train ¢ at the station k£ + 1 increase with respect to the deviation at the station k: this
is the well-known intrinsically unstable behaviour of a high density public transportation system. Previous robust
regulation formulations based on Real Time Model present a time-invariant control law for the solution of the traffic
regulation (Milani et all, 1997), (Corréa et all, 2001).

3. Constrained Robust Regulation Problem (CRRP)

Consider an open metro line with NV platforms and equations (4)-(7). Consider also the uncertain parameters C,
the disturbances V; and the control Uj, restricted to the polyhedrons:

ct<c<cv (8)
_dv S V} S dv (9)
—dy SUj < dy (10)

where CL,CV e RN, 0<Ct<CY < 1,d, e ®RN,d, >0 and d, € RY,d, > 0.
Train occupancy requirements and security rules impose limits on the admissible variation of the time interval
between two successive trains (Yj;1 — Yj), which will be considered restricted to the polyhedron:

—dp <Yj11 —Y; <dy (11)

where dp, € RV, d, > 0.
Consider system equations (4)-(7), constraints (8)-(11) and a linear time-invariant state feedback control law:

Uj = FY; (12)

In order to guarantee the stability in the sense of Lyapunov of the traffic of trains in the metro line, considering
the state feedback control law (12), the states Y;, along all trajectories of system (4) will be considered restricted to
the polyhedron:

_dy < YJ < dy (13)

where d, € ®V,d, > 0. This corresponds to assume that (13) is positively invariant with respect to system (4),
(Bitsoris et all, 1988); (Milani et all, 1997) which is equivalent to require that:

—dy <Yj41 < dy (14)
must be satisfied for all Y; in (13).

Definition 3.1: Constrained Robust Regulation Problem (CRRP): find a matrix F' € RV*¥ such that for all
C (8), V; (9), Y; (13), j > 0, the following constraints are jointly satisfied (Milani et all, 1997):

Yj+1 =[A(C) + B(C)F]Y; + B(C)V; (15)
_dy < Yj+1 < dy
—dy <U; <dy (16)
—dp <Y;11 —-Y; <dp
_dv S V] S dv

It can be verified that the problem CRRP is solbable iff all the following N independent sets of constraints have
a feasible solution:
Constraint set 1:

|fi1 = e()Y]dy1 = (1 = e(1)")dy17n < —don
|fia — () dy — (1= c())dyivyn < —dus
|fia = Udyr — (1 = ¢(1)Y)dp1yn < —din
[fin = 1dy1 = (1 = c(1)")dnivm < —du (17)
|f1,1|dy1 —duy1Yu1 <0
0 < 9y1,7m1, Y1 <1
Constraint sets k; k =2: N:
| £re — (&)Y dyk + | frp—1 + Ldye—1 — (1= c(k)V)dyryye < —duk
| i — (k) dyr + | frp—1 + Udyr—1 — (1 — c(k)")dyryyr < —dok
| frk = Ldyk + [ fre—1 + Ldyr—1 — 1 — c(k)Y)dpeyne < —duk
|fek — Udyr + | Frh—1 + Udyr—1 — (1 — c(k)X)dnrynr < —dor (18)
| frkldyr + | fre—1|dyk—1 — durYur <0
0 < v, Y7 <1

d
d



The solution of the CRRP can be obtained by N reduced order independent mathematical programming pro-
blems, using the constraints (17), (18) and a performance index given by:

mindy = dyryyr + PApeYak + qduk Yuk (19)

where p > 0 and ¢ > 0 are scalars used for relative weighting of vy, Yar and yux-
Using routine algebraic manipulations and linear programming properties, the mathematical programming pro-
blems (17) and (18) with the performance index (19) can be solvable by independent linear programming problems

(Milani et all, 1997).
4. Stability Analysis

Consider the SSM (2) with v;(k) = 0, Vi, j:

Y1 = AxYr + AkUk 11 (20)
where:
- 1 -
T=e(ktD) 0 0 0 0
_—c(btl) S N 0 0 0
(l—c(k+1)2)2 1—c(k+1)
(c(k+1)) . —c(k+1) . (1 5 0 0
A (1—c(k+1)) (1—c(k+1)) T—c(k+1
Ag = . . : (21)
(=)™ (c(k+1)" "2 (=)™ (c(k+1))"~® D™ (k1™ —* 1 0
(l—cglﬂ—l))"—1 (1—c(k+1))"—2 (1-c(k+1))m—3 1—c(k+1)
(=)™~ (k1" ! (=)™ (e(k+1))" "2 (=DMt —c(k+1) 1
L (1—c(k+1))" (I1—c(k+1))n—1 (1—c(k+1))n—2 (1—c(k+1))2 1—c(k+1) J

Matrix Ak is lower triangular with eigenvalues equal to 1/(1 —c(k+1)). Since 0 < ¢(k+1) < 1, and assumming
Uk4+1 = Vky1 = 0, the eigenvalues of Ag are outside the unity circle, showing the unstable behavior of traffic in
metro lines in the abscence of control. Moreover, since the system not stationary, all the eigenvalues inside the unity
circle is not sufficient to assure asymptotic stability (Chen, 1984).

Considering the state feedback control law Uk 1 = FrYk + AI}IG k Yk 41, the equation (20) can be rewritten
as:

(I -Gr)Yr11 = Ax(I + Fr)Yk (22)
where I is the identity matrix and:

fkl,l fkl,z e fkl,j

R @)
fk‘,-,1 fk;,Q fk‘i,j
k11 Gk " Gk

S 2
9kin ko 0 Gkij

Defining Ak, (k) = Ax(In + Fk) and Gk, = Iy — Gk, after some algebraic manipulations in (22), one has:

Yy = (G;(]];AKJ')YK (25)
where:
L -
—c(k+1 1 -
—c(hrD)? T—e(h+D) 0 Trin+1 0 fras fry
) . fk2,1 fk2,2 +1 - ka,J‘
Ak, = : : : . . . .
D™+ ()" e(h+1)" 8 0 : : : -
(I—c(k+1))n—1 (T=c(k+1))n—2 Thiq Tki o o ey L
(=" (e(k+1))" ! (=)™ (c(k+1))"~2 AU S ’ ' '
(1—c(k+1))™ (1—c(k+1))n—1 1—c(k+1) |
1- k11 k1,2 T —9k,; 1
k21 1- Gkop " —Gka ;
Gk, = . ) )

—Gki1 —Gk; - R Gki,; |



Proposition 4.1: The time-variant system Gk r(k)Yx 11 = Ak, (k)Yk, where c¢(k+1) is known, is asymptoticaly
stable if the following constraints are satisfied:

0 frw - 0 0
A . . . .
0 0 Srn_s 0
0 0 0 fka
0 0 0 0
9k 0 e 0 0
—9k1 9k 9k 0 0
Gx = - . (27)
(1" Gk ks ks (1) "GhoOks Gkn o - 0 0
(D" Gky Gks = Gk (1) GhoGhs " Gk, _s gkn-1 0
fr, +1
A, < —— < Mg, 28
M1 k1) -k (28)
0< A, <A <1 (29)
c(k+1)
= 30
b = 1 ek +1) (30)
Vk=0,1,---,N -1 (stations)
Vi=1,2,---,n (trains)

where )\, is an scalar that represents the desired stability degree and A, are weighting variables that we have to
consider at the performance index.

Proof: It can be verified, if the constraints (26) and (27) are satisfied, substituting in (25) gives:
Gy, Ak, =
frqt1

1—c(k+1)
gy g 1) (k1) (fag +1)
T—c(hF1) (I e(ht1))2

9k, 1 (cCe+1)" "2 (fr, +1) _1 (1) (g +1)
T 5)) L A = )

0
frot1
1—c(k+1)
: (31)
1 Tk A 3(f, J.rl) n C+1)" "2 (frp+1) f ".+1
)" = OO eyt et
Substituting (30) in (31):
e 0 o0
G-’}lfAKf - : : - : (32)
0 0 =
It is easy to verify that G}i Ak, is a diagonal matrix with elements %
It can be verified in (28):
Using the worst case in (29):
ck+1)—2< fr, <—c(k+1); Vi=1,2,---,n; Vk=0,1,---,N—-1 (34)

Substituting in (32), it can be verified that all elements of G;éAKf presents magnitudes less than 1, which
concludes the proof. O

The formulation proposed in (26) - (30), presents the control g, fixed and related to the traffic constant (c(k+1)).
Nevertheless, considering the uncertainties in ¢(k) (5), (8), the problem with time-variant control law proposed can
not be aplicable.

In this case, consider the following proposition:



Proposition 4.2: The time-variant system Ggs(k)Yk41 = Ak, (k)Yk, uncertain c(k) is asymptoticaly stable
if the constraints (26), (27), (29) and the following ones are satisfied:

oo +1
Ay K ————— < A,
Aki =1 —C(k+1)U > Akz (35)
fri +1
QA < ————— < A,
e e SR (36)
c(k + 1)V (37)

gk; = m
(1—=c(k+1)V)(1 —c(k+ 1))t

ck+ 1)U —c(k + 1)& + (A —ck+1D)5" 2+ (1 —e(k+ )5 " Be(k + 1) + - +

(1—c(k+ 1))

+(1 =k + DY) (e(k+ 1)) 2 + (e(k + 1)) 2 < M@k T DV ek 3 D) (38)
Vk=0,1,---,N—1 (stations)
Vi=1,2,---,n (trains)

where )\, is an scalar that represents the desired stability degree and A, are weighting variables that we have to
consider at the performance index.

Proof: Equation (31) can be rewritten as:

[ freg +1 (l—c(k+1)U)
T—c(hTD) \ Tc(k+1)0
gy (feg +1)  e(k4+1)(fr, +1) 1—c(k+1)Y
1 1—c(k+1) (1—c(k+1))2 1—c(k+1)V
GKfAKf = .
n Gk g ((RHI)" T2 (f1, +1) no1 R+ () +1) —c(k+1)V
((1) e+ D ) C—e&iﬂ”)
0 oo 0
frgF1 (l—c(k+1)U) 0
T—c(k+1D) \ 1—c(h+1)0
(39)
(—1)n=1 Ik, _q ((b+1)" 73 (fry +1) + (1) (e(k+1)" "2 (fry +1) 1—c(k+1)Y Srep +1 1—c(k+1)Y
(1—c(k+1))n—2 (1—c(k+1))n—1 1—c(k+1)U 1-c(k+1) 1—c(k+1)U
Considering the worst case for A, in (35) and (36) when (c(k) = c(k)Y)
fr, +1
— | < A\, 40
T—c(k+1)0 | =" (40)
Substituting (40) and the control (37) in G}i Ak, (39):
kg (L—c(k+1)Y)
1—c(k+1)
Akg e(k+1)Y Mgy e(hb+1)(1—c(k+1)7)
-1 - 1—c(k+1) (1—c(k+1))?
GKfAKf = :
n Akg (c(k+1))" " Ze(k41)Y . n—1 Ak (c(k4+1)" " (1 —c(k+1)")
()" + (D) e
0 0
Akg (1—c(k+1)7) ... 0
1—c(k+1)
: . . (41)
1)1 kg (c(k41))" "3 (e(k+1)7) 1)n Mg (k1)) 2 (1—c(k+1)7) Aky (1—c(k+1)Y)
(-1) I ch))n 2 +(-1) aTchF)) 1 1 o(ktD)
where ¢(k + 1) is the traffic constant for the station k41 during the period, restrited to the limits c(k + 1)V and
\ g
c(k+1)".

It can be verified that if c(k+1) = c¢(k+1)Y (32) is obtained. Nevertheless, in the worst case, c(k+1) = c(k+1)F
and A\, = Ay, in (29) for all ¢ =1,2,---,n, (41) becomes:
Am (1—c(k+1)Y)

1—c(k+1)L
Amc(k+1)Y /\m(c(k+)1)L(17c(k+1)U)

G}i Ay, = T—c(k+1)E - (—c(k+1)L)2

Am (c(k+1)E)"2c(k4+1)Y . 1 Am(c(k+1) )Y (1—c(k+1)Y
(_1)n (c((l—c(zc—‘,-)l)L)i(—l ) +(_1)n ! (el (1)_6)(194_1()1,)2( ))




0 0

Ak (1—c(k+1)Y) ... 0
—c L
1 (l?+1) (42)
(_1)n—1 Am (c(k+1) ™)™ =3 (c(k+1)Y) + (-1 Am (c(k+D)")"2(1—c(k+D)Y) | Am(Q—c(k+D)Y)

(A—c(k+1)T)n—2 A—c(k+1)E)n—T 1_c(h+1)T

Now, considering the worst case for Yi in the SSM (25) and analysing matrix (42) it can be noted that the system
is asymptoticaly stable if the sum of the absolute value of the terms related to train n is less than 1. After some alge-
braic manipulations it can be verified that it is equivalent to satisfy the constraint (38), which concludes the proof. O

It can be verified that (25) considering (26) - (30) can be rewritten as:

Fry+1

1—c(k+1) 0 0
0 ot 0
YK+1 — - l—c(.k+1) . . YK (43)
0 0 e
Analysing SSM (2), it can be verified that:
1 Fre
ik+1)= ———;(k — ik 44
yz( + ) l_c(k+1)yz()+1_C(k+1)yz() ( )
Note that if the control is:
ui(k+1) = fr,ui(k) + c(k+ Dy—1(k+ 1) (45)

this equation is equivalent to the basic equation for the traffic of trains described in (1) assuming v;(k) = 0. This
also can be obtained from the state feedback equation proposed:

Ukt1 = FrYx + ARG Yy

Assuming Fx and Gk obtained by the constraints (26) - (30), SSM (2) and the matrix Ax (21) it is easy to obtain
(45). Analysing (15) and the formulation proposed by Corréa et all (1997), it can be verified that the terms fj, for
i =1,2,---,n described in SSM are equivalent to the terms f; x—1 presented in RTM. Similarly, if fi , = c¢(k+1) in
RTM, without uncertainties, the SSM will have the control u;(k + 1) described by (45). Thus it can be concluded
that the sufficient condition for the RTM system to be asymptoticaly stable corresponds to:

Yiu1 = [A(C) + BO)FIY; + BC)Y; (46)
[ fin O 0 0 0
foq fo2 O 0 0
0 fa2 fasz --- 0 0
F=| . . . . . (47)
0 0 0 - fN-in-1 O
| 0 0 0 - fvn—1  fNnN
frp—1+1
— _ 2 < Ak k=2,3,---,N 4
Ak:,lc 1> 1— C(k)U > Akk—1 v ;37 ) ( 8)
Sep—1+1
- — < _ < — = e
}\k,k 1> 1_ C(k)L =~ )‘k,k 1 vk 2a33 aN (49)
fk,k = c(k)U Vk = 1127"'7N (50)
0< A1 <A <1 Vk=2,3,---,N (51)

(1—c(k+1)")(1 —-clk+ 1)1
c(k+ 1)V —¢(k+ 1)L

+(L=e(k+ 1)) + (L= (b + D))" Pelb + )P + - +

(1 —c(k+1)")"
Am(c(k + 1)U —¢e(k + 1)E)

+1—c(k+ 1) (c(k +1)X)" 3 + (e(k+ D))" 2 < (52)
Note at platform k = 1 the control is constant given by c¢(k)V. The designer can adjust the stability degree by A,
but respecting the conditions in (51) and (52). Nevertheless it is necessary to verify that, depending on the vector
Yk, for lower values in A,;,, the problem can be unfeasible, due the saturation of the control. So, it is necessary to
satisfy the control bounds defined by:

—Yukduk < frp—1yi(k — 1) + c(k)yi—1 (k) < vurdur; 0< v <1 (53)



5. Real-Time Robust Regulation

The real-time robust regulation of metro lines can be formulated as independent reduced order linear program-
ming problems related one to one with platforms of the line, initiating at the 2"? platform. The problem consider
all the operational constraints related to safety traffic in the time deviation y;(k), time-variant control u;(k), and
variation of the time interval between two successive trains (y;(k) — y;j—1(k)).

In the first platform the control is constant fi1 = c(k)V. Thus the state y;(1) can be obtained directly by:

fll’l_;c(cl(;)yi—l(l) + L

yi(1) = vi(1) (54)

1—c(1)™

where v;(1) is the random disturbance and y;—; (1) is known by the initial condition.

For the others (N — 1) platforms, the following formulation is proposed:
PL . k;k=2:N:

mAn(WAg,k—1 + 2dyrYyk + PArk Yk + @duk Yuk)

fep—1+1 fkk

yi(k) = 1= c(h) ()y (k)+#dvk

— c(k) 1—c(k)
—Yykdyr < ?h(k) < Yykdyk
_Vukduk S fk,k—lyz(k ]-) + (k) Yi— l(k) S ’Yukduk

yi(k—1) +

fop—1 +1
— << _
Ak -1 < 1 —ch) = Ak k—1
frw = c(k)Y (55)

0< Mpe—1 <A L1
_’thdhk <wyi(k) —yi—1(k) < Yhrdhr

_ U _ L
(1 C(Ck()k)zj(l (ckf)kL ) + (1 _ C(k)L)N_2 + (1 _ C(k’)L)N_3C(k)L +oeeet
(L= e(B)E) (elb) YV 4 (el FyN-2 < — (L= RO

Am(c(k)Y — c(k)*)

where w > 0, 2 > 0, ¢ > 0 and p > 0 are scalars used for relative weighting of A\x.x—1, Yyk, Yhr and Yuk; Am can
be considered as variable in the problem or adjusted by the designer to obtain the desired stability degree; c(k)U is
the upper bound constant related to the passenger demand; dyx, dyr and dpy are the limits imposed to the control,
state and time interval between two consecutive trains; v;(k) is the random disturbance. The delays (states y;(k—1)
and y;—1(k)) are known or estimated on-line nearly simultaneously when the trains arrive at the platforms. The
formulation have to consider the worst case of uncertainties and random perturbance. Thus, (55) must be feasible
for ¢(k) = c(k)Y and c(k) = c(k)", and similarly for d,;, = dY, and d,), = d¥,

6. Numerical Example

Consider a metro line with N = 10 plataforms and passenger demand parameters bounded by:

U=[.200 .210 .250 .200 .120 .150 .250 .170 .180 .125 ]
F=[.18 .189 .225 .180 .108 .135 .225 .153 .162 .112 ] (56)

Also consider the state vector Y}, the interval (Yjy1 — Yj), the control U; and the disturbance V; bounded by:

dy=130 30 30 30 30 30 30 30 30 30 ] (57)
dh_[60 60 60 60 60 60 60 60 60 60 ] (58)
=[20 20 20 20 20 20 20 20 20 20 ] (59)
d=[22 2 2 2 2 2 2 2 2] (60)

To ilustrate the performance obtained using the real-time robust regulation comparing with the time-invariant
control law proposed in CRRP (Milani et all, 1997), are presented a set of 100 simulated trajectories for the delay
(state y;(k)), interval (y;(k) —y;—1(k)) and control (u;(k)) for a train j along the platforms, starting from the initial
condition:

Yo=[30 =30 0 —30 30 0 0 30 —30 0]
The simulations consider random C and V; bounded by (8), (56), (9) and (60).



Fig. (2) presents the results obtained using the formulation CRRP and considering the following weighting pa-
rameters in the performance criterium:
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Figure 2. Constrained Robust Regulation (CRRP)

10

The robust control law U; = F'Y; presented the following bi-diagonal state feedback matrix:

r 0.1909 0 0 0 0 0 0 0 0 0 7
—0.6163  0.0504 0 0 0 0 0 0 0 0
0 —0.6083  0.0583 0 0 0 0 0 0 0
0 0 —0.6183  0.0484 0 0 0 0 0 0
F= 0 0 0 —0.6361  0.0306 0 0 0 0 0
- 0 0 0 0 —0.6290  0.0377 0 0 0 0
0 0 0 0 0 —0.6083  0.0583 0 0 0
0 0 0 0 0 0 —0.6246  0.0420 0 0
0 0 0 0 0 0 0 —0.6225  0.0442 0
L 0 0 0 0 0 0 0 0 —0.6349 0.0318

Fig. (3) presents the results obtained using the real-time robust regulation, considering A,,, = 0,3 and weighting
parameters:
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Figure 3. Real-Time Robust Regulation

10

Comparing the results of the real-time robust regulation, where the feedback control matrix F' is time-variant,
with the results presented in CRRP, the better performance of the real-time regulation approach is evident.

It can be verified the proposed approach uses the maximum possible control to eliminate the delays and intervals
deviations.



7. Conclusion

A new approach for robust regulation of metro lines with nonlinear time-variant state feedback control law was
presented. The control law is computed in real-time, assuring asymptotic stability in the presence of traffic model
uncertainties and constraints on its state and control variables. The constraints on model variables, the disturbances
and uncertain parameter domain were defined by convex compact polyhedra. A numerical example ilustrates the
efficiency of the proposed approach which presents better regulation performance than known robust regulation
approach using time-invariant feedback control law. The computational efficiency of the proposed approach makes
it applicable to real-time regulation of nowadays metro lines.
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