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Abstract. Piezoelectric transducer design involves mathematical modelling and experimental verification, which are necessary to 
validate the piezoelectric transducers. To make a precise numerical model by using finite element method (FEM), it is necessary to 
know dielectric, piezoelectric and mechanical properties. Therefore, damping is a hard property to measure,since it is related to 
mechanical loss and it is dependent on the frequency. In addition, damping values for piezoelectric and non-piezoelectrics 
materials, such as, resins, steel, aluminum etc., which are usually applied to assemble these transducers are not appropriately given 
for FEM software. The objective of this work is to determine damping values of these materials so they can be used in a FEM 
software. Damping values are determined by combining experimental and numerical techniques. For piezoceramics the damping is 
determined through the quality factor (Qm) obtained by measuring the admittance curve which are influenced by damping. By using 
these damping values, harmonic FEM simulations of piezoceramics and piezoelectric transducers are performed and the simulated 
electrical admittance curve is compared with the measured one. Damping determination for non-piezoelectric materials are done by 
comparing experimental and simulated results. 
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1. Introduction  
 

Piezoelectric materials produce a charge proportional to an applied stress and vice-versa, as first discovered in 1880 
by Jacques and Pierre Curie, and is natural sensor and electrical generator materials (Jona and Shirane, 1960). The 
converse piezoelectric effect, as utilized in actuator applications, describes the deformation of the material in response 
to an applied electric field. 

Piezoelectric materials, such as PZT-4A, PZT-5A, PZT-5H, PZT-7A, PZT-8, PMN, PMN-PT, PVDF, etc., have its 
dielectric, piezoelectric and mechanical properties generally given by manufacturer catalog. Therefore, the damping is 
an important property is not given by manufacturer. Damping is related to mechanical loss and it is dependent of the 
frequency. It is important to know a precise damping value and other properties to model piezoelectric transducer, 
because piezoelectric transducer design involves mathematical modeling and experimental verification, which are 
necessary to validate the piezoelectric transducers. These analyses allow us to verify experimental boundary conditions 
influence and how to model them. However, the currently literature does not discuss these topics in a comprehensive 
way. In addition, the mechanical damping influence is a difficulty to perform numerical modeling of piezoelectric 
transducer. 

Piezoelectric transducer are manufactured by using piezoceramics and non-piezoelectric materials (isotropic), such 
as epoxy resin, metals etc. These materials have its Young modulus, density, Poisson ratio, and thermic expansion 
coefficient given by handbooks. Therefore, it is necessary to develop a measurement technique to determine an 
important mechanical property, which is the damping material. By knowing all piezoelectric and non-piezoelectric 
property values of piezoelectric transducer, finite element method (FEM) and topology optimization (Silva et al., 
1998_A, Silva et al, 1998_B, Silva et al, 1999, Silva et al, 2000) can be applied to design piezoelectric transducers with 
desired behavior without manufacturing prototypes.  

Therefore, the objective of this work is to determine damping values of these materials so they can be used in a 
FEM software. Damping values are determined by combining experimental and numerical techniques. Numerical 
analyses of piezoelectric transducers are done by using ANSYSTM. Experimental analyses are done by using an 
impedance analyzer (HP4194A) to determine the electrical admittance curves of piezoceramics and piezoactuators. 
Simulations are done in 2D since 3D simulations are computationally expensive. These simulations are done 
considering plane stress assumption. The damping values are obtained considering damping definitions in ANSYS 
software. 
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Next sections will describe theory and analysis done in this work. In section 2, it is shown the viscous damping 
formulation since the transducer is supposed to vibrate in fluid medium. In section 3, it is shown the piezoelectric 
equations of motion including damping. Section 4, it describes the techniques applied to analyze piezoelectric 
transducers. In section 5 experimental and numerical results of electrical frequency responses of piezoelectric 
transducers are compared. Finally in section 6, some conclusions are given. 

 
2. Damping 
 

Damping is a material property, which is very important to vibration control in engineering. In addition, numerical 
results of vibration and acoustical analysis are very sensitive to this parameter. For the mechanical damping treatment 
of structure is necessary to consider three parameters (Nashif et al., 1985, Cook, 1995, Cai et al., 2002): damping; mass, 
and stiffness. These three parameters are needed to design and optimize piezoelectric transducers by using numerical 
modeling since all of them have some effect in piezoelectric transducer dynamic response. In addition, most part of 
systems that dissipate energy by vibration is non-linear. Therefore, it is necessary to develop models of ideal damping 
with satisfactory approximation. 

The several types of damping are (Nashif et al., 1985, Cai et al., 2002):  
 

• Viscous damping, due to energy dissipation;  
• Structural damping, due to the material properties;  
• Friction damping, due to mechanical sliding between surfaces.  

 
Normally, viscous damping occurs in piezoelectric transducer vibration at low kHz range. Therefore, in this work 

only the viscous damping is explained and it is shown how to use FEM to model it. 
 

2.1. Viscous Damping 
 

When mechanical systems oscillate in a fluid medium, such as air, gas, water and oil, the fluid resistance to body 
movement causes energy dissipation. The amount of dissipated energy is dependent on factors such as size, body shape, 
fluid viscosity, frequency vibration and body vibration velocity. In the viscous damping, the damping forces can be 
expressed as: 

 
,ucF

�
=      (1) 

 
where c is a proportionality constant and u

�
 is the body velocity. When the single mass-spring system is freely 

oscillating, the motion equation is 
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where u

��
 is the body acceleration, m is the mass and k is the modal stiffness. Equation (2) has the follow solution 
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where A and B are arbitrary constants, which are dependent on motion starting. Analysis of influence of stiffness, mass 
and damping, in the resonance frequency ωr of the system, can be obtained from exponential radical of Eq.(3) 
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the contribution of each term in the response curve of piezoelectric material and non-piezeolectric, in terms of the 
resonance frequency is: 

 
• Decrease mass → increase resonance frequency [Fig.(1a)]; 
• Increase stiffness → increase resonance frequency [Fig.(1b)]; 
• Increase damping → decrease (a little) resonance frequency and displacement amplitude [Fig.(1c)]. 

 
Notice that, Fig.(1) shows resonance and anti-resonance frequencies. These response curves are for piezoelectric 

material. 
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Figure1. Frequency displacement amplitude under influence: (a) mass (m); stiffness (k); damping (β). 
 
The damping behavior of damped system is dependent on numerical values of Eq.(4). Considering the resonance 

frequency expression (ω=k/m) the critical damping cc can be obtained: 
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which can be written as 
 

.2 nc mc ω=      (6) 
 
An important parameter to describe the damping properties is the mechanical damping coefficient:  
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The relationship between natural resonance frequency, of a non-damped system, and resonance frequency of a 

damped system is obtained by Eqs.(4) and (7):  
 

.1 2ζωω −= nr      (8) 

 
The Rayleigh equation is the most common way to describe the damping coefficient:  
 

,kmc βα +=      (9) 
 

where α is the mass multiplication factor and β is the stiffness multiplication factor. Thus, different physical damping 
can be modeled by determining α and β values (Lerch, 1990). These relationships are: 

 
• Non-damped (α = 0 and β = 0); 
• Viscous damping (α = 0 and β > 0); 
• Damping proportional to the mass (α  > 0 and β  = 0); 
• Rayleigh damping (α  > 0 and β > 0). 

 
The α and β values are dependent on energy dissipation characteristic of structure. Currently, these values cannot 

be obtained through direct calculation and they must be measured. They are determined through modal damping ratio 
(ζmr): 

 

,
22

r

r
mr

βω
ω
αζ +=      (10) 

 
which is the ratio between effective damping and critical damping for a particular mode shape r. 

 
Normally in piezoelectric transducer vibration occurs the viscous damping. Thus, α =0 and the damping β can be 

determined by known values of ζmr and ωr, representing structural mechanical damping. When a structure is under an 
harmonic excitation, it can be modeled as subjected to viscous damping with coefficient (Naillon et al., 1983}  
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where Qm is the mechanical quality factor. Qm can be experimentally determined through electrical impedance analysis 
(Holland and EerNisse, 1969} by resonance and anti-resonance frequencies of mode shape r. 

After determined the Qm factor and consequently the damping material to mode shape r, it is used in FEM 
simulations. Next section describes the piezoelectric equations of motions, and how to apply the damping in 
simulations.  

 
3. FEM Piezoelectric Equations of Damping Motion 

 
Piezoelectric equations of motion can be obtained considering the minimum energy principle from variational 

calculus (Allik and Hughes, 1970, Naillon et al., 1983, Ostergaard and Pawlak, 1986). By using finite element 
formulation, resulting equations are able to represent piezoelectric medium in a matrix. Matrix equations can be written 
in terms of displacement {u}, electric potential {ΦΦΦΦ}, mechanical forces {F} and electrical charges {Q} at nodal points: 
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where [MUU] is mass matrix, [KUU] is elastic stiffness matrix, [KUΦΦΦΦ] is piezoelectric stiffness matrix and [KΦΦΦΦΦΦΦΦ] is 
dielectric stiffness matrix. The term [CUU] is the damping matrix given by: 
 

c jα β β β= +   Nmat Nele
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ANSYSTM damping matrix [CUU] can be written as a function of the structure damping properties, which normally 

are dependent on the frequency. Equation (14) is the most common damping matrix (Cook, 1995, Kohnke, 2001). Each 
term of Eq. (14) is used in ANSYSTM as follow: α is constant mass matrix multiplier; β and βj are constant stiffness 
matrix multiplier of system and of each j material, respectively; βc is variable stiffness matrix multiplier; [Cζζζζ] is 
structure damping matrix; [CK] is element damping matrix.. 

The damping value of each material used in ANSYSTM model is βj. When damping is applied to simulations, it is 
more convenient to approximate it by Rayleigh damping, which relates the matrix: 
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Therefore, for viscous damping α =0, thus: 
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Next section shows piezoelectric transducers analyzed (flextensional actuators) and the techniques applied to 

analysis. These analyses are done by electrical admittance curves and numerical techniques, which describes 
considerations done in simulations. 

 
4. Analysis 

 
To check the damping results, experimental electrical analysis is applied and it is compared with numerical 

analysis. Analyses are done in piezoceramics to determine the damping value and in flextensional piezoactuators to 
verify the damping value obtained for piezoceramic and to determine the aluminum and epoxy resin damping. Epoxy 
resin (Araldite 502/956) is applied to bond the aluminum endcap on piezoceramic. The endcap cover flextensional 
actuator and produces displacement and sound amplification (Rolt, 1990, Nader et al., 2001_A, Nader et al., 2001_B, 
Silva et al., 2003).  

Flextensional piezoactuators analyzed in this work are shown in Figs.(2) and (3). These actuators are denominated 
f1a20827 and f1c0815, and they have a piezoceramic block as active element. In Figs. (2) and (3) are shown the 
approximately piezoceramic dimensions applied in flextensional actuators. Table 1 shows the physical dimensions of 
piezoceramics analyzed in this work to determine the damping coefficients. Directions assumed to ANSYSTM 
simulations are shown in Fig. (3). 

 



 

 
 
Figure 2. Flextenxional piezoactuator f1a20827. 
 

 
 
Figure 3. Flextensional piezoactuator f1c0815. 

 
Table 1. Piezoceramic block dimensions. 
 

  thickness width length 
ceramic 1 4.97 mm 13.90 mm 29.90 mm 
ceramic 2 2.95 mm 13.95 mm 29.95 mm 
ceramic 3 0.99 mm 13.95 mm 29.87 mm 

 
4.1 Electrical Admittance Analysis 

 
PZT5A piezoceramics used to build prototypes are initially analyzed by using the impedance analyzer (HP4194A) 

to determine their resonance frequencies and electrical admittance curves. These curves allowed us to determine the 
mechanical quality factor (Qm). Electrical admittance curves are acquired by HP4194A between 10 to 60 kHz, and they 
are compared with simulated curves calculated by ANSYSTM in the same frequency range, considering damping of 
piezoceramic, aluminum and epoxy resin. This frequency range was chosen due to bellow 10 kHz, for piezoceramics or 
piezoactuators, there are resonance frequencies, and besides 60 kHz is larger than first resonance frequency and less 
than other resonance frequencies. 

 
4.2 Finite Element Method 

 
Piezoceramic and flextensional actuators are modeled by finite element using the software ANSYS. Since the 

piezoceramic has a prismatic shape and it is symmetric, 2D FEM models are built with 1/4 of symmetry. Once the depth 
of piezoceramic is small in relation to their other dimensions the plane stress assumption should be adopted. This avoids 
the need of building a 3D FEM model, which is computationally expensive. However, when the electrical admittance is 
measured by using the impedance analyzer (HP4194A), piezoceramic and the entire actuator are free, and thus the plane 
stress assumption prevails. Therefore, for the electrical admittance calculations, a plane stress condition was assumed 
for the 2D model. A 1/4 symmetry model of flextensional piezoactuator is built considering the symmetry of the 
actuator with electrodes on both surfaces normal to the 3-direction (poling direction), as shown in Fig. (3). 

Material properties used in ANSYSTM of piezoceramic PZT5A, aluminum and epoxy resin are shown in Tab.(2). 
 



  

Table 2: Material Properties of PZT5A, aluminum and epoxy resing used in FEM. 
 

PZT5A  aluminum 
elastic constants (1010 N.m-2)  Young’s modulus (E) 71 x 109 N.m-2 
c11

E 12.1  density (ρ) 2700 kg.m-3 
c12

E 7.54  damping (βj) 15 x 10-8 
c13

E 7.52  Poisson’s ratio (σ) 0.33 
c33

E 11.1    
c44

E 2.11  epoxy resin 
c66

E 2.26  Young’s modulus (E) 4.25 x 109 N.m-2 
piezoelectric constants (C.m-2)  density (ρ) 1160 kg.m-3 
e31 -5.4  damping (βj) 40 x 10-8 
e33 15.8  Poisson’s ratio (σ) 0.38 
e51 12.3    
εS: dielectric constants     
εS

11/ε0 916    
εS

33/ε0 830    
density (ρ) 7750 kg.m-3    

 
In this work it is assumed the viscous damping, which it is related to vibration in a fluid medium. It is enough to 

simulate the physical piezoelectric transducer damped. Through these hypotheses, harmonic analysis are performed. 
Resonance frequencies and admittance curves are obtained for each piezoceramic and piezoactuator. 

 
5. Results 

 
5.1. Piezoceramic with 5 mm thickness 
 

From experimental analysis the 5 mm thickness piezoceramic density value was determined to be equal to ρ =7591 
kg.m-3, first resonance frequency to length mode shape (1-direction) is f0 = 46.6 kHz and mechanical quality factor has 
value equal to Qm=69. By using Eq.(11), it is calculated the damping for this resonance frequency (1-direction). This 
value is βj=4.9x10-8. Electrical admittance results (Y) obtained from experimental and numerical techniques are shown 
in Fig. (4a). In simulations by ANSYSTM was only applied βj to each material. The mass matrix multiplier (α) is 
considered null to this frequency range. 

 

 
(a)       (b) 

 
Figure 4. Electrical frequency response of piezoceramic 1 with 5 mm thickness. (a) electrical admittance and (b) 

electrical phase. 
 
From the electrical admittance curve [Fig. (4a)], it can be noticed that the experimental and simulated values up to 

the anti-resonance frequency (approximately 50 kHz) are close. Beyond this value there is an increase in the difference 
between experimental and simulated electrical admittance values and resonance frequency. It is possible due to the fact 
the coupling factor value (k31) measured (Holland et al., 1969, IEEE, 1987) to this piezoceramic shows a deviation of 
5.5% in relation to manufacturer catalog (manufacture 0.36, measured 0.34). By considering this deviation, 
experimental and simulated results show a good agreement. Thus, the value found for damping is satisfactory. 

Electrical phase curve (Φ) is also shown experimental and numerical results approximately equal. [Fig.(4b)]. 
However, numerical phase results, obtained by ANSYSTM, shown the phase between 180o and 0o. Therefore, 
experimental results obtained by using HP4191A always shown phase results between 90o and -90o. Then, the 
numerical phase curves showed in this work are displaced in -90o.  



 
 

5.2. Piezoceramic with 3 mm thickness 
 

From experimental analysis the 3 mm thickness piezoceramic density value was determined to be equal to ρ =7680 
kg.m-3, first resonance frequency to length mode shape (1-direction) is f0 = 46.4 kHz and mechanical quality factor has 
value equal to Qm=69. The damping coefficient value is βj=5.0x10-8. Electrical admittance results obtained from 
experimental and numerical techniques are shown in Fig.(5a). 
 

 
(a) (b) 

(b)  
Figure 5. Electrical frequency response of piezoceramic 2 with 3 mm thickness. (a) electrical admittance and (b) 

electrical phase. 
 
From the electrical admittace curve [Fig.(5a)], it can be noticed that the value found for damping is satisfactory. 

Electrical phase curve is also shown experimental and numerical results approximately equal [Fig.(5b)].  
 

5.3. Piezoceramic with 1 mm thickness 
 

Analyses of 1 mm thickness piezoceramic shown a low quality factor for first resonance (Qm = 50). Therefore, by 
comparing experimental and numerical results to electrical admittance curves and phase [Figs.(6a) and (6b)], it is 
possible to note that this value will can be less, as is shown in Figure. The piezoceramic density value was determined 
to be equal to ρ =7674 kg.m-3 and first resonance frequency to length mode shape (1-direction) is f0 = 45.7 kHz. The 
damping coefficient value is βj=7.0 x10-8. 
 

 
(a) (b) 

(b)  
Figure 6. Electrical frequency response of piezoceramic 3 with 1 mm thickness. (a) electrical admittance and (b) 

electrical phase. 
 

From the electrical admittance curve [Fig. (6a)], it can be noticed that the value found for damping is satisfactory. 
Electrical phase curve is also shown experimental and numerical results approximately equal [Fig.(6b)]. The deviation 
between experimental and numerical resonance frequency is due to loss and defects in physical piezoceramic. 

Through these three analyses, it is shown that damping hypothesis shows convergence to frequency range at low 
kHz operation. 

 



  

5.4. Flextensional piezoactuators 
 

By using these damping value in flextensional models, electrical admittance responses showed in Figs.(7a) and (7b) 
are obtained for flextensional f1a20827 and f1c0815, respectively. Notice in Figs.(7a) and (7b) have an agreement in 
first resonance frequency. However, second frequency mode to numerical results does not appear, or light appears. 
They were manufactures a lot of flextensional transducers and analyzed in other works (Silva et al. 2003, Nader et al., 
2003). In all cases there is a resonance frequency close to 50 kHz. The effect observed in this work will be analyzed in a 
future work. 

 

 
(a)      (b) 

Figure 7. Electrical frequency response of piezoactuators: (a)f1a20827 and (b) f1c0815 
 

6. Conclusions 
 
It is important to know a precise damping value of piezoelectric transducer components to obtain a more precision 

modeling. This worked showed that damping value for piezoelectric materials could be very well determined by 
combining numerical and experimental techniques. Analysis of piezoceramic was done by electrical admittance 
response, at low kHz, and the decaying displacement of piezoelectric transducers. From these analyses were possible to 
determine reasonable damping values for FEM simulations. 

As a future work, a method for determining the aluminum damping will be developed based on decaying 
displacement analysis during transient excitation by comparing laser interferometry results with simulated results. The 
non-present resonance frequency close to 50 kHz in numerical analysis will be analyzed in a future work. 
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