
A MODEL FOR STRAIN-TEMPERATURE LOOPS IN SHAPE MEMORY ALLOY 
ACTUATORS 
 
Maria Marony S. F. Nascimento 
José Sérgio da Rocha Neto 
Antonio Marcus Nogueira de Lima 
Departamento de Engenharia Elétrica 
Universidade Federal de Campina Grande 
Cep: 58109-970 
Campina Grande – PB        Brazil                   
Luis A. L. de Almeida 
Departamento de Engenharia Elétrica 
Universidade Federal da Bahia 
Salvador – BA        Brazil 
Carlos José de Araújo 
Departamento de Engenharia Mecânica 
Universidade Federal de Campina Grande 
Cep: 58109-970 
Campina Grande – PB        Brazil 
Carlos@dem.ufpb.br 
 
 
Abstract: In this paper, a hysteresis model, originally developed for magnetic hysteresis and adapted to thermal hysteresis in 
vanadium dioxide (VO2) thin films, is proposed to describe the hysteresis in the ε-T characteristics of a SMA actuator.  In 
order to determine the strain (ε) - Temperature (T) behavior of a Ti-Ni SMA wire actuator (78mm in length and 150µm in 
diameter) an experimental set-up was implemented. The SMA wire is loaded with a weight providing a constant uniaxial 
tensile stress and is heated electrically. In the absence of an accurated and reliable technique for measurement of the SMA 
wire temperature, such temperature is estimated from the electrical current using the static thermal equilibrium equation for 
the steady-state. External room temperature disturbances are greatly reduced by embedding the wire in a heat-insulating 
medium. The control of the heating electrical current through the wire and measurement of the steady-state wire deformation 
with an LVDT displacement sensor having a resolution of 5µm, was done using GPIB compatible instruments. The results of 
these measurements, for ε-T major loops and first order descending curves, are presented together with the data calculated 
with the proposed model. Model simulations have shown good agreement with the experimental data.  
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1. Introduction 
 

Shape memory alloys (SMA) have been considered one of the more interesting smart material systems, with a great 
potential for applications in some modern active structures, mainly as electrical or thermal actuator (Srinivasan and McFarland, 
2001). Previously strained SMA actuator recover its original shape when heated above a critical temperature. In the case of 
SMA wire actuators under uniaxial tensile mechanical load, this shape recovery corresponds to a contraction and the actuator 
provides a useful external mechanical work. However, the thermoelastic martensitic transformation at the origin of this shape 
memory effect (SME) is characterized by four transformation temperatures (Ms, Mf, As e Af, typically in raising order) 
describing a hysteresis loop between two crystalline structures (Otsuka and Wayman, 1998). Then, the trajectory of the actuator 
is nonlinear and accompanied by a hysteresis. Thus, the analysis, design and optimization of a SMA actuator are critically 
dependent on the availability of a strain (ε) – temperature (T) hysteresis model that can mathematically describe this 
characteristic including both major and minor loops. Ortin and Delaey (2002) present an overview of hysteresis phenomena in 
the martensitic transformation, and their relevance in the thermomechanical behaviour of shape-memory alloys. A great number 
of constitutive models have been based on phenomenological continuum mechanics and plasticity (Helm and Haupt, 2003; 
Aurichio and Lubliner, 1997; Aurichio et al., 1997; Aurichio and Sacco, 1997) and many others are based on a kinetic law 
governing the phase transformation behavior (Tanaka and Nagaki, 1982; Tanaka, 1986; Liang and Rogers, 1990; Brinson, 
1993; Boyd and Lagoudas, 1994). The former models are mathematically complex and generally multidimensional while the 
later are of easy implementation and have been successfully applied for the analysis and design of some SMA active structures. 
Comparisons of SMA constitutive models with assumed transformation kinematics has demonstrated differences and a more 
realistic performance of the Brinson model (Paiva and Savi, 1999).  For control purposes, Gorbet (1997) and Majima et al. 
(2001) proposed a model for phase transformation based on modification of the Preisach model. However, some recent results 
with Preisach models (Ktena et al., 2001 and 2002) have shown discrepancies attributed to the choice of hysteresis operators. 
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Additionally, sometimes the wiping-out and congruency properties (Mayergoyz, 1991) required for the application of the 
Preisach formalism are not observed in the ε - T SMA hysteresis and this model cannot be used (Nascimento, 2002).  

In this paper, it is proposed an adaptation of the Limiting Loop Proximity (L2P) hysteresis model, recently developed by 
Almeida et al. (2002) for magnetic hysteresis and later adapted to thermal hysteresis in VO2 thin films (Almeida et al., 2002), 
to describe hysteretic ε - T characteristics of a SMA actuator.  All parameters necessary for the modeling procedure was 
determined using an experimental set-up especially designed for this study. 

 
 

2. Modelling the εεεε - T hysteretic behavior 
 

Figure (1) shown a schematic representation of typical hysteresis in ε - T characteristics of a SMA wire actuator.  
Hysteresis trajectories corresponding to low temperatures excursions are usually confined inside the major limiting loop, which 
is the combination of the descending and ascending limiting curves. Based on the models developed by Almeida et al. (2002), 
the following function FL(T) for the ε(T) behavior is proposed 
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to describe the strain ε pertaining to the major descending and ascending limiting curves. In this equation T is the excitation 

temperature, ε0 is the saturation strain, εs is the hysteresis height, w is the hysteresis width, β is related with 
dT
dε

 at Tc, where Tc 

is the critical temperature at the center of the hysteresis curve. δ is an operator defined as 




=

.
sgn Tδ . The combination of 

the curves FL(T, δ = +1) and FL(T, δ = -1) describes the major hysteresis loop in the ε - T plane. 
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Using Eq. (1) to obtain the value of TL corresponding to ε = FL(TL , δ ) 
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Thus, Tp at (T, ε) as obtained from Eq. (2) is 
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In the beginning of a new trajectory at the reversal point (Tr, εr), the proximity function Tp is named Tpr, calculated as 

follow: 
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It was observed from experimental data that Tp exhibits almost the same functional dependence regardless of the reversal 

point (Tr, εr) at which the reversal curve starts. Thus, to describe Tp for any branch inside the major loop, the following 
functional dependence is proposed : 
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and P(x) is an arbitrary monotonically decreasing function, with P(0) = 1 and P(∞) = 0, called here the proximity function. 
Thus, for a hysteresis branch reversed at the point (Tr, εr) inside the major ε - T loop, the strain for any arbitrary point (T,ε) is 
expressed as 
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and the values of δ, Tr and Tpr changes only at the reversal points, and remain unchanged until the next reversal in dT/dt occurs. 
For the SMA actuator employed in this study, the following proximity function is proposed 
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where a and b are arbitrary constants and c is chosen such that P(∞) = 0. 
 
 
 
 
 
 
 



3. Experimental procedure 
 
3.1. Experimental set-up 

 
The SMA actuators used in this work are equiatomic Ni-Ti wires with 90mm in length and 150µm in diameter, supplied by 

Mondo-Tronics Inc. (Gilbertson, 2000). In order to determine the ε - T characteristic of the Ni-Ti SMA wire, an experimental 
platform illustrated in Fig. (2) was implemented to submit the SMA wire to several heating-cooling cycles. As shown in Fig. 
(2), the experimental set-up has three fundamental parts: a simple mechanical structure, a voltage/current converter and a data 
acquisition system. In the mechanical structure of the test bench, the SMA wire (8) is loaded with a constant weight (5) and 
electrically heated by a voltage/current converter. A linear differential transformer (LVDT (1)) having a resolution of 5µm is 
used to measure the displacement of the SMA wire. External room temperature disturbances are greatly reduced by embedding 
the wire in a heat-insulating medium. Figure (3) shows a picture of this experimental test bench. 

 

 
Figure 2. Mechanical structure of the testing bench and data acquisition system: (1) LVDT displacement sensor; (2), (3) 
mechanical grips; (4) guiding LVDT; (5) load (weight); (6) frame; (7) guiding rod; (8) SMA wire. 
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Figure 3. Picture of the test apparatus. (a) Entire view. (b) Zoom view of the SMA wire actuator. 

 
In the absence of an accurate and reliable technique for direct measurement of the SMA wire temperature it was estimated 

from the heat-transfer thermal equilibrium equation given by 
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where V, A and R are the volume, the surface area and the electrical resistance of the SMA wire, respectively. The specific mass 
ρ and the specific heat cp are intrinsic properties of the material and h is the convective heat transfer coefficient between the 
wire and its surroundings at temperature T∞. The steady-state value of the wire temperature, for a step current I when dT/dt = 0 
is 
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The control of the heating electrical current I through the wire and measurement of the steady-state wire deformation with 

an LVDT (1), was done using GPIB compatible instruments, as illustrated in Fig. (2). 
 

3.2. Estimation of the convective heat transfer coefficient (h) 
 

In some studies concerning simulation of electrical heating of SMA wires, the convective heat transfer coefficient (h) has 
been chosen from the literature. However, this is not an easy task, as demonstrated by the results of Brailovski et al. (1996). 
Additionally, Reynaerts and Van Brussel (1998) present a data collection for h which confirm the difficulty to choice this 
parameter. Thus, an identification procedure was employed to determine the h value to be used in Eq. (11). Considering that R 
and I are for the steady state in Eq. (10), the following identification problem is established  
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where N is the number of samples. For application of the parameter estimation process, Rn and Tn were determined 
experimentally with the TiNi wire maintained in an electrical furnace. These values were compared with Rn and In measured 
from the experimental platform showed in Fig. (3). Using the identification method proposed by Ljung (1999), Eq. (12) can be 
rewritten as 
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with B = hA, C = hAT∞ and y(x) = RnIn
2.  

 
 By applying the least squares method for the Eq. (13), the following values were identified: h = 88,2 W/m2.oC and T∞ = 

25,1oC.   
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4. Results and discussions 
 

To obtain the model parameters, the SMA wire was submitted to a time-varying current excitation, composed of various 
monotonic segments. The wire temperatures, for a current rate of 4,78 mA/min used in all experiments, was estimated by Eq. 
(11), as can be verified in Fig. (4) for major and minor loops. 

Figure 4. Current and temperature waveforms on the SMA w
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of β can be obtained by fitting both FL(T, δ  = +1) and FL(T, δ = -1) to experimental major descending and ascending curves, 
respectively. Once the values of ε0, εs, w, Tc and β have been determined, the value of a and b in P(x) can be obtained by fitting 
Eq. (8) to a first-order descending ε - T curve. A first-order descending curve is generated by first increasing the current to 
maximum value, and then reducing the temperature monotonically until it reaches some value I such that the strain ε  lies on the 
ascending major curve. Subsequently, the current is again increased monotonically to maximum value.  

For the SMA wire employed in this study, the values obtained for the five parameters are: εs = 4,8%, ε0 = -4,6%, β = 0,3oC-

1, Tc = 71,5oC, a = 5 and b = 1,028. For the estimated temperature using Eq. (11), the parameters are: h = 88 W/m2.oC, A = 
3,68x10-5 m2 and the value of R is the one measured during the experiments (Nascimento, 2002). Additionally, it was 
experimentally verified that hysteresis width (w) is a linear function of the applied stress (σ). From the w results obtained on 
Fig. (5b), it was confirmed the following relationship between w and σ : 
 

9492,470764,0)( +−= σσw                                                                                                                                        (12) 
 

Figure (6) presents the experimental ε - T curves (solid symbols) for 200MPa together with the respective simulated 
behavior (solid line) for a major loop and minor loops calculated from Eq. (8) incorporating Eq. (12). These results were 
obtained with the excitation waveforms described in Fig. (4). 
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results can be considered satisfactory. The discrepancies between the calculated and the experimental data can be attributed to 
limitations in the numerical implementation of the model and to the large asymmetry of ε - T curve. The model has potential to 
be applied for control purposes in smart structures. 
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