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Abstract. The aim of this paper is to design and evaluate the performance of a feedback Hy controller to suppress vibration of a
flexible cantilever beam provided with strain actuator and sensor. The infinite-dimensional model is used to represent the flexible
beam structure and it is controlled using a collocated piezoelectric PZT actuator-PVDF sensor pair bonded to the beam surface.
For control design purposes, the infinite-dimensional model is simplified by removing higher modes which lie out of the bandwidth
of interest. The truncation can considerably perturb the zeros of the truncated model. For outline this problem, this paper applies
the method of minimizing the effect of removed higher order modes on the low-frequency dynamics of the truncated model by adding
a zero freguency term to the low order model of the system. This corrected model is then used to design the Hy robust controller in a
way that minimizes the effect of disturbances over the entire beam. The recent approach for the control of flexible structures -
spatial Hy control framework - is used to construct the controller that guarantees a level of disturbance rejection over the entire
structure. The final process of this approach is reduced to an ordinary Hy control problem that, in turn, is solved using standard
software (Robust Matlab® Toolbox). The final controller is numerically implemented and the results illustrate the robust control
performance of a cantilever beam type structure.
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1. Introduction

A single piezoelectric element called a self-sensing actuator combines actuator and sensing capabilities for
collocated control (Dosh et al, 1992). The use of piezoelectric actuator/sensor pairs has been widely used in many
vibration control applications of flexible structures (Dimitriadis et al, 1991; Fuller et a, 1996).

Piezoelectricity was discovered in 1880 by the French scientists Pierre and Paul-Jacques Curie. The piezoelectric
effect is observed in many crystalline materials, which strain when exposed to a voltage and produce a voltage when
strained. In other words, these materials are capable of transforming mechanical energy into electrical energy and vice
versa. Piezoelectric actuators and sensors are bonded to flexible structures such as beams and plates, forming the so-
called smart structures.

Different methodologies have been used for modeling smart structures, however the most promising technique is
the finite element method, as first presented for piezo-mechanical systems by Allik and Hughes (1970). Later this
formulation was extended for different structural elements. Crawley and de Luis (1987) studied the modeling of one-
dimensional piezoelectric patches embedded into the body of beams and formulated the moment generated by a voltage
applied to the piezoceramics. Tzou and Tzeng (1990) presented a piezoelectric finite element approach aiming at
applications devoted to distributed dynamic measurement and control of advanced structures. The assumed modes
approach or infinite-dimensional model has been extensively used throughout the literature to model the dynamics of
distributed systems such as flexible beams and plates (Meirovitch, 1997). This approach is used in this paper for
modeling the flexible beam.

In control design problems, one is often interested in designing a controller for a particular frequency range. In such
situations, it is common practice to remove the modes that correspond to frequencies that lie out of the bandwidth of
interest and keep only the modes that directly contribute to the low frequency dynamics of the system. Moheimani
(1999) suggested that the effect of higher frequency modes on the low frequency dynamics of the system can be
captured by adding a zero frequency term to the truncated model to account for the compliance of the ignored modes.
Such model can then be used in designing Spatial Controllers as noted in Halim and Moheimani (2002).

The concept of Spatial Control is concerned with using the spatia information embedded in the dynamical models
of structures. If a controller is designed with aview to minimizing structural vibrations at a limited number of points, it
could have negative effects on the vibration profile of the rest of the structure. In this paper, a recent design
methodology (Hallim and Moheimani, 2002), the so-called Spatial Hy Control approach is presented. The idea behind
this technique is to first formulate the problem as a spatial Hy minimization problem and then design a controller that
minimizes cost functions similar to the ones arising in the standard Hy control problems. However, in this design, the
elastic deflection or the total energy of the entire structure is to be minimized. The resultant spatial controller is of the
same dimensions as that of the dynamical system.

To demonstrate the proposed controller, an S SO (Single Input, Single Output) Spatial Hy controller is designed for
a piezoelectric laminate cantilever beam to suppress the vibration of the first three five modes of the structure.
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2. Electro-mechanical model of a beam containing piezoelectric sensors and actuators

In this section, a model for a piezoelectric laminate beam with an actuator-sensor pair is obtained by using modal
analysis techniques.

Figure 1 (a) shows a flexible structure with an attached piezoelectric actuator-sensor pair. The piezoelectric patch
on the upper side of the beam is used as an actuator, while the film on the bottom side serves as a sensor. The voltage
that is applied to the actuator patch is represented by V,(t) and the voltage that is induced to the sensor film is
represented by V(t) (see Fig. 1- b).

Consider a homogeneous Euler-Bernoulli beam (dimensions: Ly, by, hy) as shown in Fig. 1 (a)-(b). The piezoelectric
actuator and sensor have dimensions of (X — Xa1) ~ ba ™ hy @and (xe— Xg) ~ bs ™ hg, respectively (see Fig. 1 - b). The
beam transverse deflection at point x and timet is denoted by w(x,t), assuming the beam as a one-dimensional system.
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Figure 1. (a) Flexible cantilever beam containing piezo-sensor and actuator and (b) Geometrical properties of the
piezoel ectric elements.
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A model of the structure is obtained through a modal analysis procedure. This approach finds a solution to the
partial differential equation which describes the dynamics of the flexible structure:
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where, 1y, A, Ep and I, represent density, cross-sectiona area, Young's modulus of elasticity, and moment of inertia
about the neutral axis of the beam, respectively.

2.1. Actuator Dynamics
Thetotal distributed load q(x,t) generated by the piezoel ectric actuator when it is deformed is given by:

12R(x
q(x.t) =M, ﬂxﬁ ) 2)

where Ris the generalized location function expressed as.
R(x):H(x— xl)- H(x— xz) (2.1
and the H is the Heaviside function (H) given by (Soutas and Inman, 1999):
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The bending moment acting on the beam (denoted by My,) is given by (Baz and Poh, 1988):
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where dg; is the electric charge constant, E, is the Young's modulus and h, is the thickness of the PZT patch as shown

inFig. 1 (b).
The evaluation of Eq. (3) through Egs. (3.1) and (3.2) gives the following expression:
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where C, is a constant which depends on the geometry of the composite system:
1
Ca = E Ead31ba (hb + ha)

The boundary conditions for the cantilever beam in Fig. 1 (a) are:

w(0,t)=0
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(4)

©)

(6)

To use the assumed mode technique, the function w(xt) is expanded as an infinite series as follows (Meirovitch,

1997):
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where f ; (X) are the eigenfunctions satisfying the ordinary differential equations resulting from the substitution of Eqg.

(7) into Eq. (1) and (6), and h;(t) are the temporal functions.

The mode shapes for clamped-free boundary conditions, Eq. (6), are assumed to be expressed as (Meirovitch,

1997):
f(x)=C;[sin(b; x)- sinh(b;x)+a (cos(b; x)- cosh(b; x))]
where the following equations define a; and b;, respectively:

_ cos{bj Ly, ) + cosh(b; L)
a; =— -
sin(b;L,)- sinh(b;L,)

1+ cos(bi Lb)cos(bi Lb) =0
and the constant C; is determined by the condition expressed by the following expression:
L
Qbf 2(x)dx =1

Substituting Egs. (7) and (2) into (1) yields:
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where (. ) denotes time derivativesand ( * ) represents space derivatives.
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Pre-multiplying Eq. (10) by Qbf /(x)dx, thei-th equation, will be given by:
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Substituting Egs. (9) and (2.1) in Eq. (11), it is possible to obtain:
i, (t)+Wn|h| ( ) ka |_f i' (XaZ)' f i' (Xal)J Va(t) (12)
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The natura frequencies wy; are determined by using Egs. (12.1) and (8):
E, I
wg = r;’ A: b;* (12.3)
Modal damping (z;) can be included in Eq. (12), asfollows:
1, (t)+ 2z witi (t) +wih; (t) = ka k i (Xa)- 15 (Xal)JVa(t) (13)
Now, by taking the Laplace transform of Eq. (13), the transfer function of this system is obtained:
w(x, s) - $ kafi(x)k (xa2)- 1 i'(xal)]
a > 5 (14)
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This equation describes the elastic deflection of the flexible beam due to a voltage applied to the actuating
piezoelectric.

2.2. Sensor Dynamics

The net forcing of the beam is equivalent to two equal and opposite moments applied to the beam at the endpoints
of the actuator, as shown in Fig. 2. Due to the piezoel ectric effect, a strain-induced voltage appearsin the sensors.
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Figure 2. Piezoelectric distributed sensor-actuator-beam configuration and associated strain distribution.

The electric charge distribution gg(t), i.e., the charge per unit area, is given by (Pota and Alberts, 1995):

kZ
s (x t)——e (x,t) (15)
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where ks, is the electromechanical coupling factor and gs; is the piezoelectric voltage constant in the X direction. Using
Hooke's law for the beam deflection in the X direction (see Fig. 2), the expression for the strain in the sensor patch is
obtained as (Fuller et al, 1996):
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The total charge accumulated on the sensing layer can be found by integrating gs(x,t) over the entire length of the
piezoel ectric element (Pota and Alberts, 1995):
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Substituting Eq. (7) into (17), yields:
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where ks is given by:
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The piezoelectric sensor is similar to an electric capacitor and the voltage across the two layers is given by the
following formula:

_ Q)
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where C; is the capacitance per unit area of the piezoelectric sensor and by (xS2 - xsl) is the surface area of the

piezoel ectric element.
Substituting Eg. (18) in Eq. (21), yields:
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Taking the Laplace transform of Egs. (22) and (13), the expression for V(s) in terms of the input voltage V4(s) is
obtained:

Vs(s)
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This equation is the transfer function of the circuit, i.e., the relation between the voltage applied to the actuator and
the voltage induced in the piezoel ectric sensor.

3. Taking into account out of bandwidth modes

As an infinite number of modes are taken into account in the above formulation, Egs. (14) and (23) represent
infinite-dimensional transfer functions.

In atypical control design scenario, the designer is often interested only in a particular bandwidth. Therefore, an
approximate model of the system that best represents its dynamics in the prescribed frequency range is needed. A
natural choice in this case is to smply ignore the modes which correspond to the frequencies that lie outside of the
bandwidth of interest. Equation (23) is rewritten by limiting the number of modes considered to N.

Vald _o(9=4 (24)
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where F; isgiven by:

Fi =ksk tf (xe2)- 4 (Xsl)”_f (Xa2)- fi‘(xal)] (24.1)

The drawback of this approach is that the truncated higher order modes may contribute to the low frequency
dynamics in the form of distorting zero locations. Moheimani (1999) suggests a way of dealing with this problem. The
idea is to allow for a constant feed through term in Eq. (24) to account for the compliance of omitted higher order
modes of Eqg. (23). That is, to approximate Eq. (24) or G(s) by:

G(s)=G(s)+ K, (25)

where K. is a constant that considers the effect of dynamical responses of higher order modes.



Moheimani (1999) found the optimal value of K. so that the effect of higher order modes on the low frequency
dynamicsis minimized in some measure. The optimal value of K. was found to be:
N
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where w, represents the cut-off frequency chosen to lie within theinterval: w, T Wy, Wy.)-

In practice, afinite number of modes (N;) is used to calculate the feed through term. So, K. in Eq. (26) is calculated
from i =N+1 to N, with N, ischosen so that the neglected dynamics in the model can be compensated sufficiently.
However, choosing alarge enough N, is quite reasonable asiits effect diminisheswhen N; ® ¥ since the contribution
of higher frequency modes is decreasing.

Similarly, Eq. (14) can be rewritten as:
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To this end, the analysis given here ignores the effect of modal dampings. However, it is a difficult exercise to
determine these values during the modeling phase if the modal analysisisto be used.

4. Spatial Hy control of a flexible beam containing piezoelectric elements

This section is concerned with the problem of spatial Hy control for flexible structures. Consider atypical system of
aflexible cantilever beam such as the one shown in Fig. 3. The system consists of only one piezoelectric actuator-sensor
pair. Here, the purpose of the controller is to reduce the effect of disturbance d(t) on the entire structure, using
piezoel ectric elements.
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Figure 3. Typical feedback controller implementation for rejection of unwanted disturbance forces.

The problem of the elastic deflection (w) suppression in a flexible structure is the standard Hy control problem, as
defined in (Doyle and Stein, 1981). The model of aflexible structure has two inputs (a disturbance d and a control V,)
and two outputs (a deformation vector w that should be minimized, and a measurement V, ). The state space equations,

describing the structure with feedback controller can be obtained by using Eq. (13) and the corrected models for Egs.
(14) and (23) (Egs. 25 and 27):

d(t) = Aq(t)+ Bid(t) + B, V, (t) (28)

w(x,t) = C; (x)at)+ D1z (xVa t) (29)

V,(t)=C,q(t)+ Dy dt) (30)
where;
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Then, the Spatial Control problem isto design a controller:
X (t) = Ao () + BV, (t) (31)
V, (t)=Cyx, (t)+ Dy Vs (1) (32)
such that the closed-loop system minimizes the spatial cost (Halim and Moheimani, 2002):
N \
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where g is called the disturbance attenuation factor (Doyle and Stein, 1981).

Here Q(x) is a spatial weighting function that emphasizes the subset of A over which disturbance rejection is of
importance. It should be clear that the spatial Hy controller design to meet the performance index (33) a level of
disturbance rejection over the entire A in an average sense while emphasizing a subset of A defined by Q(x). Inthis
particular application, Q(x) = 1. In other words, the entire beam is weighted equally.

Condition (33) guarantees that a level of disturbance attenuation less than g will be achieved over the entire
structure in an average sense.

It can be shown by the method in (Halim and Moheimani, 2002) that the above problem is equivalent to a standard
Hy control problem for the following system:

4(t)= Aq(t)+ Bid(t)+ B, V4 (t) (34)
w(t) = P(t)+QV,(t) (35)
Vs (t) = C,qt) + D, d(t) (36)

where [P Q Q]:G. Here, C isany matrix that satisfies:



676 g hbinle. ) Dl @

Based on (37) and using the orthogonality property in (9), the matrices P and Q can be obtained:
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Hence, the system in (34)-(36) can be solved using a standard Hy control technique (Doyle and Stein, 1981). The
spatia Hy controller can be regarded as a controller that reduces structural vibration in a spatially averaged sense.

It can be observed that the Hy control problem associated with the system described in (34)-(36) is nonsingular.
This is due to the existence of feed through terms from the disturbance to the measured output and from the control
signal to the performance output.

Designing a Hy controller for the system (34)-(36) may result in avery high gain controller (Halim and Moheimani,
2002). This could be attributed to the fact that the term Q in (35) does not represent a physical weight on the control
signal. Rather, it represents the effect of truncated modes on the in-bandwidth dynamics of the system, which is
important in ensuring the robustness of the close-loop system. This problem can be fixed by introducing aweight on the
control signal. This can be achieved by rewritten (34)-(36) as:

dt) = Adlt)+ B,d(t) + B, Va (1) (40)
)= & )+ e 1) (@
V(t) = C,q(t) + D, d(t) (42)

where Ris aweighting matrix with compatible dimensions.

The matrix R serves as a weighting factor to balance the controller effort with respect to the degree of vibration
reduction that can be achieved. Setting R with smaller value might lead to higher vibration reduction but at the expense
of a higher controller gain. In practice, one has to make a compromise between the level of vibration reduction an
controller gain by choosing a suitable R. The scalar R can then be determined to find a controller with sufficient
damping properties and robustness. Matlab n -Analysis and Synthesis Toolbox was used to calculated the spatial Hy

controller based on the system in (40)-(42).

5. Numerical Simulations
In order to evaluate the proposed control methodology, a flexible cantilever aluminium beam type structure
containing one set of sensor/actuator PVDF/PZT ceramic piezoelectric elements symmetrically bonded to both sides of

the beam is considered (see Fig. 3). The characteristics of the numerical model® (dimensions and material properties)
arelistedin Table 1.

Table 1. Characteristics of the piezo-structure.

Piezoelectric

Properties Units Sensor Actuator Beam
E (Young's modulus) Gpa 2 69 65
r (density) Kg/n? 1780 7700 2711
da: (Charge constant) mv 23102 | -179"10%| -
ga: (Voltage constant) mV/N 216°10° | 10 10° ----
ka1 (coupling coef.) 0.12 0.34 -
b (width) m” 10° 10 20 30
h (thickness) m’ 10° 0.205 0.254 3
L (Length) m” 10° 30 50 700

! The damping ratio (z ) of 0.3% was assumed for all the modes.



The PZT actuator patch and PVDF sensor film were attached to the beam surface at optimal location points
(X2 = 0.0 m; X5 = 0.0 M), as presented in (Abreu et al, 2003).

In this paper, a S SO controller is designed for the purpose of controlling only the first five vibration modes of the
beam (Egs. 28-30). Hence, the model is truncated to include only the first five bending modes. The effect of out of
bandwidth modes has to be taken into consideration to correct the locations of the in bandwidth zeros (Moheimani,
1999) of the truncated model as discussed in Section 3. Using Eq. (26), the feed through term is then cal cul ated:

D, =K. =-6.16"10"2 (43)

where N; = 200.
Assuming xg = 0.10 m (see Fig. 3), arobust controller (Egs. 31 and 32) is designed to minimize the Hy norm of the
transfer function (see Eqg. 33) from the disturbance input to a particular point along the beam (x = 0.3). Using Eq.

(27.1), where K, =1.32" 10°8, Egs. (28)-(30) are then evaluated to illustrate the performance of the proposed controller

to reduce the transversal vibrations in this specific point (where g =7.18" 10" 7). The Fig. 4 shows the Hy norm of the
close-loop system as afunction of the beam length.
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Figure 4. The Hy norm of the disturbance to various locations along the beam.

This controller does not guarantee disturbance reduction at other locations along the beam. One approach to
attenuating the disturbance more evenly along the beam is to increase the number of error outputs in Eg. (29).
Therefore, a new controller is designed for a single input (V,), multiple output system (w). To illustrate this approach,
we assume that:

x={03 0.6} (44)
which results C; matrix having two rows. As before, the Fig. 5 shows the corresponding Hy norm as a function of the
beam position (whereg =1.86" 10°°).
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Figure 5. The Hy norm of the disturbance to various locations along the beam.



The specia interest in this moment is the problem of guaranteeing alevel of disturbance attenuation over the entire
beam. As explained in section 4, the spatial controller can be obtained by using Egs. (34)-(36). Figure 6 shows the

numerical result of the Hy norm as a function of the beam position (where g =1.18" 10°°).
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Figure 6. The Hy norm of the disturbance to various locations along the beam.

Figure 6 clearly demonstrates the effect of the proposed spatial Hy controller in reducing the vibration of the
beam. It is obvious that the Hy norm of the entire beam has been reduced by the action of the controller in a more
uniform manner (see Figs. 4 and 5). The Figs. 4 and 5 shows the effectiveness of the controller in local reduction of the
Hy norm, especialy at and around x = 0.3 and x = 0.6. This is expected since the purpose of this controller is to
minimize vibration at these points. Comparing Figs. 4 and 5 and Fig. 6, it can be concluded that the spatial Hy norm as
it minimizes the vibration throughout the entire structure, i.e., the spatial Hy controller reduces structural vibration in an
average sense.

6. Conclusions

A spatial Hy controller was design and numerically implemented on a flexible beam type structure containing
piezoelectric sensors and actuators. It was observed that such a controller resulted in suppression of transverse
vibrations of the entire structure by minimizing the spatial Hy norm of the closed-loop system. The controller was
obtained by solving a standard Hy control problem for a finite-dimensional system. Feed through terms were added to
correct the locations of in bandwidth zeros of the system. It was shown that the spatial Hy control has an advantage over
the local reduction in minimizing structural vibration of the entire structure. The spatial Hy control minimizes the Hy
norm of the entire structure more uniformly, while the other Hy control minimizes the Hy norm more locally. It is
important to say that the methodology presented in this paper can be extended to more sophisticated structures, such as
thin plates. The methodology presented here can then be extended to explicitly allow for the residual uncertainty
description in dealing with robustness issue. This work and the experimental tests however, are relegated to the future.
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