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Abstract. This paper shows an  electromagnetic system, which aims at the simulation of loads through the torque control. The
system is made of a disk, which rotates into a magnetic field, driven by the machine under test. The intensity of the magnetic field by
a continuous current through which one can control the torque. The conventional (PID) and optimal (LQG) controlling techniques
are used in a plant of linear model. The compensated system is analyzed through simulation where one can observe if the aims of the
design are reached. Experimental results with PID and LQG controllers are shown.
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1. Introduction

The magnetic coupling systems can be used to control the torque or the speed in loads such as sluice gates, slat
conveyors and wire drawing in the textile industry. Depending on the system configuration, it can simulate loads to
determine the mechanics characteristics of the driving motor. The variation of the torque in this kind of coupling is done
by an electric current applied to a coil. This coil creates a magnetic field  that induces an electric current to a disk or
drum (depending on the equipment configuration), which interacts with the applied magnetic field and generates the
necessary torque. In order to make sure that the applied torque remains steady and independent  from external
disturbances as: speed variation of the driving motor; voltage variation and magnetic field variation caused by the
heating of the disk due to induced currents, it is necessary to use a control system.

In the 60’s, when the space-age technology became more competitive between United States of America and the
Soviet Union, it was necessary to design  machines that could fulfill certain criteria of the design, because, when their
technology was based on the conventional control theory, it was not enough to  solve the problems. This challenge has
motivated the development of researches using techniques based on optimal theoretical control  which began  in  1940
with Wiener, as it is referred to by (Skogestad and Postlethwait, 1996). As a result of these researches there appeared
the design procedure denominated LQG “Linear Quadratic Gausssiam”, as an alternative design technique, that has
contributed to the development of the aircraft engineering.

This work has as objective to analyze the design of an electromagnetic dynamometer control using the LQG
technique. First the dynamic model of the system is described, secondly the LQG technique is presented, and, finally,
the controller is designed. Simulated and experimental results of the system performance are presented, and it also
includes a comparative analysis with the conventional controller (PID), which was design through  Ziegler and Nichols’
in 1942.

2. System and Plant Description

The electromagnetic dynamometer, made by Equacional, consists of a metallic disk driven by an electric induction
asynchronous  motor, as shown in Fig. (1). A  group of four coils  produces a transverse magnetic flow on the surface of
the disk and it induces currents that create a torque that works in an opposite way to that of the motor torque. This brake
torque depends on the magnetic flow generated by the coils; therefore, it is related to the voltage applied on them.

The controller was improved in the computer program Lab View installed in a computer Pentium 650 mHz. The
interface between the computer and the system is done through an input and output data acquisition board, made by
Quatech, model daq.801 and the computer program Lab View.  Fig. (2) shows a block diagram  of  the control system.
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Figure 1. Photographs of the plant.

Figure 2. Block diagram of the system.

The torque sensor consists of a steel bar with four resistance strain gauge set up in bridge as shown in Fig. (3).

    

Figure 3. Torque sensor: a) mechanical assembly;  b) electrical assembly.

The control variable (output of the computer), that varies between 0 and 5 V,  is  amplified  to supply the coils. The
output signal of the bridge is amplified and filtered by the signal conditioning circuit to provide an appropriate voltage
(torque), for the computer. The controller, compares the values of the torque with the reference value, and it makes the
necessary correction to reduce error.

3. Mathematical Modeling of  System

To obtain the mathematical model of system an input step was used to identify the plant (output voltage of the
computer equal to 3.4 V) and a sample time of 50 ms, in open loop. Fig. (4a) shows a response curve in open loop, in
the time.

Using the response curve identified, the transfer-function was determined through a parametric identification model
BJ (Box Jekins model), (Ljung, 1987), inserted in the MATLAB. Fig. (4b) shows the response curves of the real system
and simulated system.

The validation of the identification can be done if we compare a model response curve with an experimental
response curve. An adjustment of parameters (syntony) should be done when the lining up of the curves is not
considered satisfactory (Aguirre, 2000). Was not necessary to apply it in this case because of the similarity between the
two curves as shown in Fig. (4b).

In this case, the model was used to represent the plant . Eq. (1) gives the identified transfer-function.
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Figure 4. Response curves in open loop of the system: a) experimental; b) experimental and model.

4.  PID Controller Design

The conventional controller design (PID), by Ziegler/Nichols techniques, is done with root locus diagram of the
plant (Fig. 5). The crossing point with imaginary axis gives the gain km and oscillation frequency  ωm.

According to Fig. (5) we got km = 0.31 and ωm = 13.72 rd/s. With these values it is possible to determine  the
controller parameters PID. These values are determined from the following equations:

Kp = 0,6km,                Kd = πKp/4ωm,                      Ki = Kp ωm/π                                                                                (2)

Figure 5. Root locus diagram.

Using the relation  given by  Eq. (2), we have the following values to the parameters: Kp = 0.18, Kd = 0.011 e Ki =
0.81. These values can be adjusted to meet some performance criteria expected for the system, according to Shahian and
Hassull (1993).

5.  LQG Controller Design

This technique is based on the stochastic optimum control and it was introduced in the 60’s taking into
consideration the linear system plant in the state space form to determine a control law to minimize previous values of a
quadratic performance index through  the state feedback. Considering that both, the states and output are affected by
Gaussiam white noises, of null average and  not correlated with one another (Cruz, 1996), the LQG regulator has the
structure shown in Fig. (6). The equations that define the problem are:

xwBuAxx Γ++=&                                                                                                                                                     (3)



       HvBux̂Ax̂ ++=&                                                                                                                                                       (4)

       y = Cx                                                                                                                                                                          (5)
       ey = y + Φwy                                                                                                                                                                  (6)

       v = -ey – Cx                                                                                                                                                                 (7)

       u = - G x̂                                                                                                                                                                      (8)

Figure 6. Block diagram of the controller and plant.

The x̂ variable is estimated by the states x of the plant, they are determined by Riccati equation form:

0PBPBRQPAPA t1t =−++ −                                                                                                                                  (9)

wherein the R matrix is positive defined and the  Q matrix is positive semi-defined to meet the specification of the
design. To begin the design, the Q matrix can be selected as equal to:

C.CQ t=                                                                                                                                                                 (10)

The G gain matrix is determined from the following equation:

PBRG t-1=                                                                                                                                                              (11)

Then, we have a linear quadratic regulator  LQR  with feedback  of  the states in the controllers. This solution
requires that the pair (A, B) should be controllable.

The H matrix is determined by similar form,  but it must be considered that noises wx in the states and wy in the
output of the plant  are Gaussiam white noises,  of  null average and  not correlated with one another (Shahian and
Hassul, 1993), as been:

0(t)]E[w   e   0(t)]E[w yx ==                                                                                                                                   (12)

      )-(tQ)](t(t)wE[w oxx τδ=τ+                                                                                                                                   (13)

      τ=τ+  e t   todopara  0)](t(t)wE[w xx                                                                                                                   (14)

0)](t(t)wE[w)t(R)](t(t)wE[w yxoyy =τ+τ−δ=τ+                                                                                             (15)

This problem consists in determining an optimum estimator so that the estimate error x-xex ˆ= is minimized.
This requires that the pair (A, C) is observable.

 )x̂cH(yBux̂Ax̂ −++=&                                                                                                                                           (16)
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The Ψ matrix  is determined from the following Riccati equation:
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wherein the Qo matrix is positive semi-defined and Ro matrix is positive.

To begin the calculation, firstly we consider Qo = I,  Γ  = B, and vary Ro until that H matrix, that minimize the error
becomes satisfactory. In the direct way (Fig. 6) the relation between ey and u is: u(s) = K(s).ey, being K(s) the transfer-
matrix of the controller, that is given by:

HHC)BGA-G(SIK(s) -1++=                                                                                                                                (19)

To a reference-input yr ≠ 0, it is suggested that in Fig. (6), the estimates states x̂ are replaced by z variable, that
have the same dimensions of x  of the nominal model. Making a similarity transformation of the form z-x=Ω , the
states equations of the system is defined in Eqs. (5,6,7,8,9 e 10) and can be written like that:
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The stability of the nominal system consists of assuring that: Re [ λi (A –BG)] < 0 and  Re [ λi (A –HC)] < 0.
As the mathematical model of the dynamometer is of 5th order and of the type zero, for LQG controller  design it is

necessary to introduce an integrator in the input of the system so that the  same  has null error for an input step type.
In this way, the design is developed considering the original model to which of the integrator was added. Fig. (7)

shows the LQG controller Gc(s) in series with a pure integrator and the original system Gp(s). After the Gc(s) controller
design, the integrator is removed of the original system and incorporated to the controller design.

Figure 7. Block diagram of the LQG controller in series with the original system Gp(s).

The gain matrices G and H can be determined apart due to the separation principle (Cruz, 1996; Shahian and
Hassul, 1993). In this design the H matrix  was determined by considering a reference input yr =0, and the noises wx
and wy  were generated in the MATLAB so the result was white Gaussiam with spectral density Qo = 1 e  Ro = 0.01.
The state penalty  matrix Q and control R were considered equal to  I  (identity matrix)  and [1], respectively.  In this
design  Γ = [0 0 0 0 0 1]t  and  Φ  = [1], was considered.

The gain matrix  G  was  determined  considering  a  reference input  step  yr  equal  to  4 Nm  maintaining  Qo   and
Ro constant  and  the  noises wx  and wy  were  ignored. The best result  to  the  gain G matrix  was obtained  considering
Q =0.8xCi

t xCi   e   R=0.1. Ci = [0 0 0 0 292000 0] is the output  transfer-function  matrix of  the original  model to which
a pure integrator was added. With  theses  values  we  obtained the  transfer-function of the LQG  controller that is given
 by Eq. (22).
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6. Results Obtained from Simulation of the PID and LQG  Controllers

The simulation was done into MATLAB without adjustment of the parameters obtained in the design of the PID
and LQG  controllers. Fig. (8) shows the simulation response curves with a step input of amplitude equal to 4 Nm.

It was verified in Fig. (8) that the PID controller is very oscillatory and the LQG  presented a small overshoot with
smaller settling time .



7. Experimental Results

To implement the controllers in the Lab View program it is necessary to transform the transfer-function (Eq. 1) to
discrete form (Hemerly, 1996). Using the MATLAB  program  was  obtained  the  transfer-function  to the PID and
LQG controllers in the discrete form were obtained  (Eq. 23 and 24), respectively. In this transformation a sample time
of 50 ms was used.
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Figure. 8 Simulated response curves of the PID and LQG controllers.
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The response curves to a step of 4 Nm, to the PID and LQG controllers, are shown in Fig. (9a). The same way that
was done in the simulation, the experimental results were obtained without making adjustment in the parameters. To
verify the behavior of the controllers to a certain torque range, trials were carried out  with a sequence of references, as
is shown in Fig. (9b).

Is observed in Fig. (9a) that the LQG controller presented an overshoot of 9%  and the PID wasn’t presenting that,
but the settling time  was bigger. Fig. (9b) shows the response curves to several reference step, wherein it is observed
that the response of the controllers are slower as soon as the reference step decrease and the overshoot of the LQG
controller decrease and it is null starting from 2.5 Nm.
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                                                           a)                                                                               b)
Figure 9. Experimental response curves  for step input: a) 4 Nm; b) 1.4, 2.0, 2.5, 3.0, 3.5 e 4.0 Nm.

This happened because the plant is nonlinear, as shows Fig. (10a), and the techniques used in the identication and
design of the controllers are used in linear systems.

To verify the robustness of the controllers, and the motor was turned off  a pre-determined period of time and
turned on soon after for a period of time  enough for the  system to stabilize. The result is shown in Fig. (10b).  In this
case it was verified that the response of the system to the PID and LQG controllers were practically the same ones.
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                                                                 a)                                                                         b)
Figure 10. a) Torque x voltage in the coils  curve; b) response to the disturbance curve.

8. Conclusions

The simulated response to the PID controller with the obtained parameters using the Ziegler/Nichols technique was
very oscillatory and the experimental response didn’t  show any overshoot. The LQG controller instead shows
overshoot but the settling time  was smaller in all references. The step response curves presented different performance
to different reference values, mainly in the settling time for the two controllers, due to the nonlinear characteristics of
the plant. This behavior was already expected because the used techniques are for linear systems, where the best
performance of the controllers is verified in small closed region around   the identification point was done. It is also
observed that the performance of the PID controller improved when  adjustment in its parameters, but the purpose of the
comparison was to implement the controllers with the parameters of the design, since that adjustment for LQG
controller is very laborious due to the great number of variables. Although the PID controller has presented a step
inferior response, its robustness for a disturbance was similar.
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