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Abstract. The robust design of compensators aiming disturbance rejection with time domain specifications is discussed in this paper
from a perspective of loop shaping. The constraints to provide robust disturbance rejection are derived as functions of the
disturbance reference model, which contains the associated time domain specifications. It is shown that the larger is the distance
between the nominal plant model and the reference model to be followed the more restrictive the design constraints are. The problem
can be posed as a model tracking compensator and the proposed procedure may reduce the conservativeness normally associated
with its design. The plant model is assumed subject to unstructured uncertainties and the design specifications are written in the usual
form of loop shape constraints. Hence techniques like H, or LQG/LTR can be applied as design tools. In order to illustrate the
application of the proposed methodology we consider a multivariable mixture tank as an example.
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1. Introduction

Nowadays most multivariable linear control design techniques are carried out in the frequency domain. Many textbooks contain
an exhaudtive presentation of the theme (Green, 1995; Helton, 1998; Skogestad, 1996; Skogestad, 1996). Nevertheess in many
practica Stuations part of the specifications is given in the time domain. The use of H, and Hy theories requires that specificationsin
the time domain be expressed in the frequency domain before they can be gpplied. For servo problems, time domain congraints are
intuitive. They are also quite natural in many regulatory problems. For SISO systems these specifications can dften be trandated into
the frequency domain, but thisis not the case for MIMO systemsin genera

Modd matching and 2D control are two approaches that can be used to indirectly handle time domain specifications to solve

servo problems and dso may be adapted to treet the disturbance rejection with time domain constraints. However, even when applied
to servo problems, the loop gain is normally made too high in order to make the input/output transfer matrix close enough to the
identity matrix so that the overall system behaves approximately as the reference mode containing the given time specifications.
The objective of the design approach presented in this paper is to adapt the Model matching and 2D control schemes deriving
conditions to guarantee robust disturbance rejection with a prescribed time domain behavior. Attention is restricted to the case where
the disturbances can be measured. In particular, we propose a design technique and argue that it may be less conservetive than
usualy.

Conditions to guarantee setpoint tracking over given frequency ranges within prescribed accuracy are well known and will be
omitted here. Although the conditions for non measured disturbance rejection and measurement error regjection are dso well known
they are included in this paper just for the sake of completeness since together with the measured disturbance rejection they form the
50 cdled regulatory problem.

The plant model is assumed subject to unstructured uncertainties and the design specifications are written in the usua form of
loop shape congtraints. Hence techniques like Hy or LQG/LTR (Athans, 1986; Doyle, 1981) can be applied as design tools.

In order to illustrate the gpplication of the proposed methodology we consider amultivariable mixture tank as an example.

The paper is structured as follows.

Section 2 contains a preliminary discussion on how the disturbance rejection problem with time domain specifications can be
posed as amodd tracking problem.

In section 3 the design conditions required for robust disturbance regjection with time domain specifications are written in both
the form of loop sengitivity constraints and in terms of constraints on the loop gain shape.

An andysis of the control magnitude associated to model following is performed in section 4.

A numerical exampleis presented in section 5 to illustrate the proposed methodol ogy.

Section 6 contains the conclusions of the paper.
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2. Preliminary Discussion

Consider the system represented in Fig. (1). P(S) and K(S) are respectively the plant and compensator transfer matrices.
The transfer matrix S(S) is afilter and will be called disturbancereferencemodd. d(S) isthe non measured disturbance reflected
a the plant output, T (S) is the measured disturbance reflected at the plant input, N(S) is the measurement error, I'(S) isthe
system input and Y(S) isthe system output. All signal and transf er matrices are assumed to have compatible dimensions.
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Figure 1. Control problem.

When there is no measured disturbance ( f (S) = 0), the design problem turns into the classical one and the onditionsto
guarantes setpoint tracking, non messured disturbance rejection and messurement error rejection over given frequency ranges within
prescribed accuracy are well known On the other hand, taking only the messured disturbance, i.e., for 1 (S) = d(S) = 0, the block
diagram in Hg. (1) becomes as shown in Fig. (2). This figure is equivaent to the one considered in reference (Jonckheere, 1999) in
order to solve an aircraft propulsion control problem.
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Figure 2. Modd tracking structue.

Notice that the control problem depicted in Fig. (2) is a two-degree of freedom problem. By simple block manipulation it
becomes the diagram in Fig. (3) — the 2D control with a pre-filter (Leonardi, 20023).
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Design aiming measured disturbance rejection with time domain specifications can thus be viewed as amodd matching problem

and in this case it can be reduced to meking the closecloop transfer matrix from V(S) to Y(S) doseto K™ *(S) in the frequency
range where the matching between S(S) and the transfer matrix from 1 (S) to Y(S) issought (Kwakernagk, 1996).

Figure 3. The 2-D control structure.



In reference (Macigowski, 1989) (see page 14) he writes about the choice of the pre-filter: "we can consider first the problem of
designing K (S) to obtain desired S(S) and T (S) , and subsequently design S(S) to give asuitable” transfer matrix from f (S)
to Y(S). A high loop gain iis required in order to get a dlosed-loop transfer matrix closeto K™ (S) and the choice of how highit is

made may giveriseto aconservative design if it istaken higher than necessary.
As proposed in (Leonardi, 2002b), the mode tracking problem is understood in this paper in the following sense. Welook for a
compensator K (S) such that the norm of thetransfer matrix from f (jw) to e(jw) (seefig. 2) be below some prescribed value

in agiven frequency range — this requirement will be called modd following Additionally we wish that the contributionsto the output
Y(jw) of both the non measured disturbance d( jW) and the measurement error N( jW) be bdow given vaues in given

frequency sets.
In what follows we adopt the perspective of a set membership for transfer matrices of the plant model considering, in particular,
the multiplicative representation of the modeling error. We assume that an upper bound is given for the spectra norm of the

multiplicative error metrix in the form of ascaar function €, (\/\a (Doyle, 1981).
3. Loop Shaping

In what follows the symbol " >H represents the Euclidean norm of complex vectors. S [ 4 » Shin [ 4 and S o [ 4 denote the

i-th, the minimumand the maximum singular vaues of [ 4 , respectively.

3.1. Nominal Plant M odel

Assume that the plant dynamics are given by their nominal mode. Then, for the systems represented in Fig. (3), thefollowing
set of equations hold:

y(s) = S(s)d() + S(s)P(s)(I + K(8)S(s)) (9) - S(SP(K (8) n(s), )
&(s) = S(s)d(s) + f(s) + S(s)n(s), @
u(s) = - S(IK(9) d(s)+ ()1 +K(9)S(s) f(5)- SK(S) n(S)- ®

where §(S) = (I + P(S)K(S))'1 isthe loop sensitivity matrix.
At this point, since we are obvioudy assuming that S(S) isstable, it should be clear that system stability is determined solely
by the dosed-loopcontaining P(S) and K (S) . Becausethisisadlassica situation, stability is not addressed in the paper.

3.1. 1. Measured Disturbance Rejection

Assume that @ >0 (typicdly a,; <<1) is a given number which expresses the desired accuracy of the rejection of
measured disturbance in a given set of frequendies W, in the sense that [l€(jW)||/] f (iW)|| £a , (Wi W) Typically
W, :{WT R:w EWfJl for agiven W . Assuming that d(S) =n(S) =0, to accomplish model following we get the
following condition from Eq. (2):

S el S(W)] £

a wi W)
s . [P(Iw)- S(wW)] ‘ “

Hence, as it should be expected, the sensitivity must decrease as the distance’ between the plant and the disturbance reference
model increases. The same occurs as @ decreases. Nevertheless, depending on the specific problem at hand, this condition may be

not so redtrictive and the sensitivity may be not necessarily low.

! Distanceis obvi oudy understood here as measured by the spectral norm of the difference of the two transfer matrices.



When the right-hand side of (4) is much smdler than 1, this condition can be rewritten approximately as

S e PUW) - SGW] 1

f

S mn P(W)K (jw)] 2 W,). 5

Similarly as above, this condition shows that the loop gain should increase with both the distance between P and S and the
inverseofa ; .

3.1. 2. Non Measured Disturbance Rejection

Suppose that W, = {WT R:w£w, } is a given frequency set where the non measured disturbance d(S) predominantly
has its energy. Assume dso that T (S) =0 and N(S) =0. For agiven a4 >0 (typicaly a4 <<1) we express the non
measured disturbancerejection condition as

MEad Wi W,). ©

|d(iw)]
From Eq. (2) we then get the following well-known sufficient condition:
s __[S(iw)]£a, Wl w,), @

which leadsto the following approximate condition (DaCruz, 1996):
. . 3 1 N
S m[POWIK (W] = T W) ®
d

when a4 <<1.
3.1. 3. Measurement Error Rejection

Suppose that Wn = {WT R:w3 Wn} isagiven frequency set where the measurement error predominantly has its energy.

Assume dso that  f(S) =0 and d(S) =0. For agiven @, >0 (typicaly a, <<1) we express the measurement error
rejection condition as

oy =% 1 ©

From Eqg. (1) we then get the condition of measurement error rejection:

S alTUW) £, Wi W,), (10
where
T(s) = S(s)P(9K (s). (1)

Alternatively, from Eqg. (1) it follows the following approximate form (Da Cruz, 1996):

SmaPUWK (W] Ea, Wi W,). (12



whena , <<1.

3.2 Modd Uncertainties

First of dl, recall that for the multiplicative model error adopted the stability robustness condition is given by (Doyle, 1981)
S malT (IW)] < &, W) ("W). 13
Assuming that €, (\I\a <lfowl W, E W, , then conditions (4) and (7) above modiify respectively to (Green, 1995):

ag [l' €y (W)] A

S mlS0W e Sy NG T W) e
ad
S ma[S(IW)]£2,[1- 6, W) WT W,). (15)

Assuming that & ,, << 1, condition (10) can be rewritten in the following approximate form (DaCruz, 1996):

. a ~
S mae T (W) ey MW (16)

As expected the effect of model uncertainty isto make the constraints on S ad T more restrictive.

From Eq. (1) we can seethat S(S) P(S)(I + K(S)S(S)) has no arbitrary dynamics at high frequencies where, in generd,
P(s), S(S) and K(S) exhibit low gains. Hence, the overal transfer matrix is approximately equal to P(S). In view of this the
value of W, is not arbitrary but related to both P(S) and S(S). This means that the model following condition (14) does not

necessarily implies model matching. This is the reason why we call the procedure mode tracking. Simulations carried out by now
indicate it is reasonable to expect nice matching up to one decade above the reference mode bandwidth. In generd this is enough to
enaure good modd following.

It should be emphasized that (14)-(16) together with (13) are the key conditions to design robust compensators in order to
achieve modd tracking.

To close this section recall that the conditions for robust design can aso be expressed in terms of the loop gain in the usud way
(Doyle, 1981).

4. Control Magnitude Analysisfor M odel Following

In this section we redtrict the analysis to the nominal plant.
From Eq. (3) it is straightforward to see that

u(s)- f(s) =K(s)I + PK (9] '[S(s)- P(s)]f(9) (17)

Assumethat P, S and @ aresuchthat S max[P(jW)' S(jw)]/af >>1 for Wi W; . Thusif condition (5) holds,
itfollowsthatS . [P(jw)K (jw)]>> 1. in this case Eq, (18) leads to

u(jw) - f(jw) @P(jw)*[S(jw)- P(jw)] f(jw) (19)

if weassumethat both P and K aresguareand P™% exists
From Eq. (19) it then follows immediately that



JuCiw) - £ (jw)|
g || (Gw)|

@ o [P (W)[S(iw) - P(jw)]] 19)

This equation shows that the worst-case relative increment of the control magnitude is approximately the same as the relative
distance between both the plant and the disturbance reference models. Hence disturbance reference models that are distant from the
plant modd require alarge control magnitude to be followed. Thisisin accordance with condition (14) which shows that the larger is
the distance between the plant and the disturbance reference model s the more restrictive the condition of mode! followingis.

5. Numerical Example

In order to illustrate the application of the proposed methodology we consider the stirred tank of reference (Kwakernask, 1970).
Itsnomind linearized state model is given by
e- 001 0 u
gX(t) + u(t)
e ) 755J

6001 Ou
y= go 1u X(t)

X(t) =

(20)

Since the main contribution of this work focus on the disturbance rejection with time domain specifications, other design
specifications are omitted in this example. Besides, as model uncertainties turns the design congtraints just more redtrictive, they are
omitted in this instance and may be considered included in the design specifications.

Congder as control system specifications that disturbance at both control channels shdl have its influence on the output
rgected asiif filtered by a second order system

0.25s .
S. = = =12
() s*+0.7s+0.25 (=12, @)

within a tolerance of 10% (i.e, & ; = 0.1) in the frequency range that extends up to one decade above the reference modd

bandwidth.
From the time domain spexifications we thus have

S) 0 u
S ll( ’
9780 s.of “

The Hy mixedsenstivity framework will be used to obtain K(S) (Green, 1995; Helton,1998; Skogestad, 1996;

Skogestad, 1996).
Tosmplify we assume that model uncertainties have dready been taken into account in the definition of the weighting matrix
Wi(9)=104P(9) - SE)]. @

Once the plant P(S) isin the right-hand side of (4) its input variables may be scaled in such away asto get it dose to the
identity in low frequencies. In this case condition (4) can be rewritten as

a;

o
S [ SCW]E - —TPGW)S, (jw)- S(w)]

wi w,), (24)

where S, is a square non-singular matrix with compatible dimensions”.

ZObvioudy, S, isapart of the compensator.



For smplicity Su isconsidered here as a constant matrix and equd to the plant inverse at low frequencies, namely,
S, =limP*(s).
, =lim P (s) 24)

Notice that scaing the plant input variables does not change the multiplicative modeling error. Hence both performance and
stability robustness conditions are not affected. Fgure (4) shows the singular value Bode plots of matrices relevant for the model

following design. W, (S) isthe weighting matrix for the mixed-sensitivity procedure.
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Figure 4. Bode plotsfor Mode Following.
Notice that S ; [W, (jw)] is situated 2008 above S o [P(jW) - S(jW)] .

With the sake of illustration, the time response of the closed-oop system and the control variables have been evauated for the
modd following design.
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Figure 5. Closed-loop time response.



Two unit steps disturbances applied at instants 10 sec. and 30 sec. with positive and negative Sgns, respectively, have been
conddered. Smulation results have been plotted in Fig. (5). Asit can be seen, the process outputs follow closdly the corresponding
ones of the disturbance reference model. The contral time history is plotted in Fig. (6).
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Figure 6. Control time history.
6. Conclusions

This work discussed the robust control design for the rejection of measured disturbance with time domain specifications. The
model tracking problem has been posed as anatural way of dedling with time domain specificationsin afrequency design context.

It has been shown that the modd following condition depends directly on the distance between the reference modd and the plant
nomina modd - the larger the distance between both models the more restrictive the conditionis.

It has been shown that the relative increase in the control magnitude to atain mode following is gpproximately the same asthe
relative distance between the plant and the disturbance reference models. Hence, as expected, the control magnitude increases with the
digtance between the nominal and disturbance reference models.

Since the disturbance reference modd S(S) is an explicit part of the compensator, small adjustments may generally be done
after the design has been completed. This possibility can be useful in practical applications where fine tuning is required during
control systems startup.

The mixed sengtivity formulation of the Hy control theory has been used in a numerica example to illustrate the application of
the methodology. Nevertheless, since the design conditions are ultimately expressed as congtraints on Bode Diagrams of the system,
any loop-shaping technique could be equally used.
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