MERCOFRIO 2000 - CONGRESSO DE AR CONDICIONADO, REFRIGERAÇÃO, AQUECIMENTO E VENTILAÇÃO DO MERCOSUL

VAZÃO DE AR EXTERIOR E A QUALIDADE DO AR INTERIOR

Paulo Otto Beyer – pob@mecanica.ufrgs.br

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Mecânica Cx. P. 17819 – 90035-972 – Porto Alegre, RS, Brasil

Resumo. Um assunto do momento no exterior e no Brasil é a Qualidade do Ar Interior - QAI, ou Indoor Air Quality - IAQ e sua correlação com a Síndrome dos Edifícios Doentes (SED) ou Sick Building Syndrome (SBS).

Procura-se no momento a definição de medidas específicas referentes a padrões de qualidade do ar em ambientes fechados climatizados, no que diz respeito a definição de parâmetros físicos e composição química do ar de interiores, a identificação de poluentes de natureza física, química e biológica, suas tolerâncias e métodos de controle.

O presente trabalho preocupa-se em analisar os parâmetros de qualidade interna do ar recomendados na literatura internacional, a analisar o efeito da vazão de renovação de ar nos ambiente.

Palavras-chave: IAQ - Indoor Air Quality, SBS - Sick Building Syndrome, Vazão de ar exterior.

1. INTRODUÇÃO

Um assunto em discussão no exterior e no Brasil é a Qualidade do Ar Interior - QAI, ou Indoor Air Quality - IAQ e sua correlação com a Síndrome dos Edifícios Doentes (SED) ou Sick Building Syndrome (SBS).

Procura-se no momento a definição de medidas específicas referentes a padrões de qualidade do ar em ambientes fechados climatizados, no que diz respeito a definição de parâmetros físicos e composição química do ar de interiores, a identificação de poluentes de natureza física, química e biológica, suas tolerâncias e métodos de controle.

A Síndrome dos Edifícios Doentes consiste no surgimento de sintomas que são comuns à população em geral, mas que, numa situação temporal, pode ser relacionado a um edifício em particular. Um incremento substancial na prevalência dos níveis dos sintomas, antes relacionados, proporciona a relação entre o edifício e seus ocupantes, se 20% dos mesmos apresentarem os sintomas e estes desaparecerem com a retirada destas pessoas da edificação.

A legislação brasileira (Ministério da Saúde, 1998) em vigor exige a garantia de adequada renovação do ar de interior dos ambientes climatizados, com no mínimo 7,5 L/s/pessoa (27 m³/h/pessoa). Este valor também é o mínimo recomendado em ASHRAE (1999a).

Para mostrar a grande dependência que as pessoa tem da qualidade do ar ambiente, podemos colocar a Regra dos Três Quatros:

Uma pessoa pode ficar aproximadamente:

- 4 semanas sem comida,
- 4 dias sem água e
- 4 minutos sem ar.

Esta última afirmação mostra a grande dependência das pessoas do ar, continuamente passado pelo sistema respiratório. O problema é que o mesmo funciona como um filtro, retendo parte dos contaminantes presentes no ar.

2. SAÚDE E AMBIENTES INTERNOS

A qualidade do ar interior é muito dependente da qualidade do ar exterior, pois a principal forma de controlar a qualidade do ar interior é pela renovação do ar interno pela introdução de ar externo. Um estudo da NIOSH (National Institute for Occupational Safety and Health) em Carrier (1996) mostrou que a maioria dos problemas de QAI devem-se à inadequada ventilação, conforme figura abaixo.

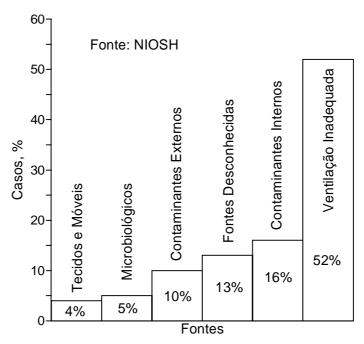


Fig.1 Fontes de Contaminação que causam Baixa Qualidade do Ar Interior

A qualidade físico-química recomendada para o ar interno pode ser visto na tabela abaixo (ASHRAE 1997):

Tab.1 Ar Padrão para Ambientes Internos

Contaminante	Concentração (ppm)	Período de medição
Dióxido de carbono	5.000	8 h
	9.000	15 min
Dióxido de enxofre	2	8 h
	5	15 min
Dióxido de nitrogênio	3	8 h
	5	15 min
Monóxido de carbono	35	8 h
	200	15 min
Ozônio	0,1	8 h
	0,3	15 min
Particulados	5 mg/m³ (sem asbesto, máx.1% sílica)	8 h

A concentração de 5000 ppm de dióxido de carbono consta em NIOSH REL (National Institute for Occupational Safety and Health - Recommended Exposure Limits) e ACGIH (American Conference of Governmental Industrial Hygienists).

Em relação às unidades correntes, ppm significa partes de contaminante em volume por milhão de partes de ar em volume, e mg/m^3 significa massa de contaminante por volume de ar. A relação ppm com mg/m^3 pode ser encontrada pela relação de gás perfeito pV=mRT:

$$ppm = \frac{8,314(mg/m^3)(273,15+t)}{Mp} \tag{1}$$

onde 8,314 é a constante universal dos gases, J/(K mol), t a temperatura da mistura, °C, M a massa molecular do contaminante, g/mol e p a pressão absoluta da mistura, kPa.

Os dados de concentração são normalmente requeridos a 25 °C e 101,325 kPa, e neste caso

$$ppm = \frac{24,46(mg/m^3)}{M}$$
 (2)

Também pode ser utilizada a unidade %, ou seja, porcentagem do contaminante em volume no ar. A conversão entre ppm e % é:

$$ppm = \% * \frac{1000000}{100} = \% * 10000 \tag{3}$$

A tabela abaixo apresenta alguns contaminantes do ar interno com suas possíveis fontes, conforme NRC (National Research Council) em ASHRAE (1997):

Tab. 2 Fontes e Possíveis Concentrações de Alguns Poluentes Internos

Poluente	Fontes	Concentração Possível	Locais
Asbestos	Anti-chamas,	< 10 ⁶ fibras/m ³	Casas, escolas,
	isolamentos		escritórios
Dióxido de carbono	Combustões, pessoas,	3000 mg/kg	Casas, escolas,
	animais	3600 mg/m^3	escritórios
		2000 ppm	
Dióxido de enxofre	Combustões	$20 \mu\mathrm{g/m}^3$	
Dióxido de nitrogênio	Combustões, secadores,	$200 \text{ a } 1000 \mu\text{g/m}^3$	Casas
	cigarros, motores		
Fibras sintéticas e	Roupas, tapetes,	-	Casas, escolas,
minerais	isolantes		escritórios
Formaldeído	Isolamentos, colas	0.05 a 1.0 mg/kg	Casas, escritórios
Monóxido de Carbono	Combustões	100 mg/kg	Escritórios, casas,
			carros, lojas
Organismos viáveis	Pessoas, animais,	750 ufc/m ³	Casas, hospitais,
	plantas, fungos,		escolas, escritórios
	bactérias,		
	condicionadores de ar		
Ozônio	Arcos elétricos,	20 a 200 μg/kg	Escritórios, aviões
	lâmpadas ultravioletas		
Partículas respiráveis	Combustões, cigarros,	$100 \text{ a } 500 \mu\text{g/m}^3$	Casas, escritórios,
	condensação de		carros, bares,
	voláteis, aerossóis,		restaurantes
	cocção		
Partículas suspensas	Combustões	$100 \mu\mathrm{g/m}^3$	Casas, escritórios,
sem fumantes			restaurantes
Radon	Alvenaria, solo	0.1 a 200 nCi/m ³	Casas, escritórios
Sulfato	Aquecedores a gás	$5 \mu g/m^3$	Casas, escritórios

Vapores orgânicos	Combustões, solventes,	-	Casas,	restaurantes,
	resinas, pesticidas,		escritórios,	, hospitais
	aerossóis			

Observa-se que a concentração de CO_2 da tabela 1 de 5000 ppm já está em 2000 ppm nesta última tabela.

Como outra fonte, a tabela abaixo mostra níveis de contaminantes aceitos e preocupantes segundo a OMS - Organização Mundial de Saúde (ou WHO - World Health Organization) constante em ASHRAE (1999a):

Tab. 3 - Níveis de Poluentes Internos segundo Organização Mundial da Saúde, mg/m³

Poluente	Concentrações	Concentrações	Concentrações	Notas
	encontradas	limites não	preocupantes	
		preocupantes		
Formaldeído	0.05-2	0.06	0.12	Tempos longos e
				curtos
CO_2	600-9000	1800	12000	Padrão japonês
	300-5000 ppm	1000 ppm	7000 ppm	1800 mg/m^3
O_3	0.04-0.4	0.05	0.08	
Asbestos	<10 fibras/m ³		10 ⁵ fibras/m ³	Exposição longa
Orgânicos				
Tolueno	0.015-0.07		375	TLV
Xyleno	0.01-0.05		435	TLV
Limoneno	0.01-0.1		560	TLV turpentino

Obs.: TLV = threshold limit value de ACGIH

Observa-se que o limite para o CO₂ nesta tabela é de 1000 ppm, proveniente de uma norma japonesa.

Em relação à poluentes gasosos gerais a tabela abaixo apresenta contaminantes prováveis e limites aceitos, conforme consta em ASTM Standard D 1605 e pode ser visto em ASHRAE (1999b):

Tab. 4 Características de Alguns Poluentes Gasosos

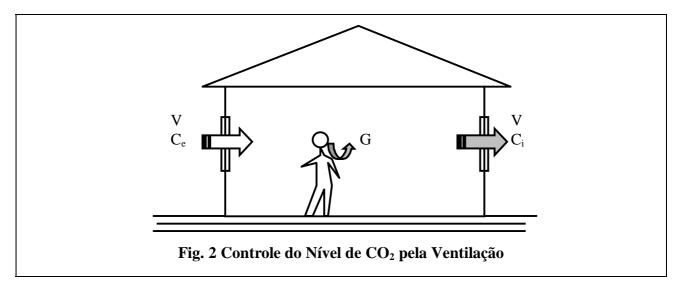
IDLH = Imediatamente Danoso à Vida e Saúde (Limite Tóxico)

TWA8 = Média Ponderada Temporal, não pode ser excedida em qualquer 8 h de medição em uma semana de 40 h (também conhecido por **TLV** - Threshold Limit Value)

M = Massa molecular relativa, **Dens.** = Densidade

Poluente	Concentração	Concentração aceitável, mg/m ³			Propriedades	
	IDLH	TWA8	Limite	Família	M	Dens.
			para odor			kg/m ³
Acetona	4800	2400	47	16	58	791
Ácido sulfúrico	80	1	1	4	98	1833
Amônia	350	38	33	5	17	7,72
						697
Benzeno	10000	5	15	19	78	2,68
						879
Cloreto de hidrogênio	140	7	12	4	37	1,64
						1190
Cloreto metílico	59500	1189	595	12	133	2,307
Clorofórmio	4800	240	1,5	11	119	1489

Dióxido de carbono	90000	9000	0	4	44	1,97
		5000 ppm				
Dióxido de enxofre	260	13	1,2	4	64	2,93
Disulfeto de carbono	1500	60	0,6	25	76	1260
Monóxido de carbono	1650	55	0	3	28	1,25
n-Heptano	17000	2000	2,4	7	100	3,4
						684
Sulfeto de hidrogênio	420	30	0,007	4	34	1,54
Tetracloreto de carbono	1800	60	130	11	154	1590
Tolueno	7600	760	8	19	92	867
Xileno	43500	435	2	19	106	867


Obs.: a: Densidades próximas de 1 para vapores à 1 atm e temperatura de 0°C ou saturação se maior que 0°C; b: Densidades próximas de 1000 para líquidos a 1 atm e 20 °C.

Observa-se que o dióxido de carbono na tabela é aceito em 5000 ppm ou 0,5%.

3. CÁLCULO DA NECESSIDADE FISIOLÓGICA MÍNIMA DO AR DE RENOVAÇÃO BASEADO NA CONCENTRAÇÃO DE ${\rm CO}_2$

A seguir analisa-se o cálculo da vazão de ventilação necessária pelo nível de CO_2 gerado pelas pessoas, junto com o consumo de O_2 e produção de CO_2 , função do nível de atividade.

Será chamado de C_e a concentração externa de CO_2 , igual à concentração de entrada, C_i a concentração interna, igual à concentração de saída, G a geração de CO_2 da pessoa, função da atividade, e V a vazão de ventilação de ar exterior para diluir o CO_2 gerado. O sistema pode ser visto na figura abaixo.

A equação para diluição de contaminantes pela ventilação é a seguinte:

$$Ci = Ce + G/V (4)$$

onde

Ci = Concentração interna

Ce = Concentração externa

G = Geração de CO₂ - função da atividade

V = Vazão de ventilação

ou isolando-se a vazão de ventilação vem:

$$V = G/(Ci - Ce)$$
 (5)

A geração de CO₂ de uma pessoa varia com a atividade, conforme pode ser visto na figura abaixo em ASHRAE 1999a:

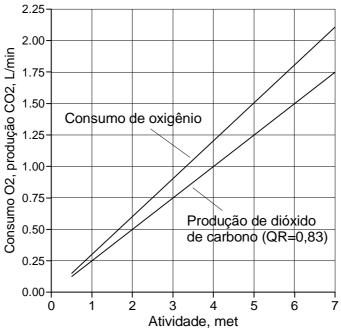


Fig. 3 Dados Metabólicos da Respiração

Na figura aparece o consumo de oxigênio e a produção de dióxido de carbono para um quociente de respiração (QR) igual à 0,83 (relação entre as vazões de O₂ e CO₂). Para o cálculo da vazão de ventilação é necessário a produção de CO₂ que pode ser calculada pela equação:

$$G = M/4 \tag{6}$$

onde G é a produção de CO_2 em L/min e M a atividade em met (1 met = 58,2 W/m²). A atividade pode ser vista na tabela abaixo (ASHRAE a):

Tab. 5 Geração de Calor Metabólico Típico para Várias Atividades

Atividade	met
Repouso	
Dormindo	0,7
Reclinado	0,8
Sentado, quieto	1,0
De pé, relaxado	1,2
Caminhando no plano	
0,9 m/s	2,0
1,2 m/s	2,6
1,8 m/s	3,8
Atividades de escritório	
Lendo sentado	1,0
Escrevendo	1,0
Digitando	1,1
Arquivando, sentado	1,2

Caminhando	1,7
Diversos	
Arrumando a casa	2,0 - 3,4
Trabalho mecânico	
leve	2,0 - 2,4
pesado	4,0
Atividades Lúdicas	
Dançar	2,4 - 4,4
Exercícios calistênicos	3,0 - 4,0
Tênis, simples	3,6 - 4,0
Basquetebol, futebol	5,0 - 7,6

A concentração interna aceita fica entre 0,1 e 0,5 %, ou de 1000 a 5000 ppm, conforme acima comentado. As normas tem convergido para uma indicação como valor ideal o mínimo das tabelas acima comentadas, ou 0,1% (1000 ppm). O ar padrão externo tem uma concentração de 0,03% de CO₂.

Como exemplo básico, para uma atividade de escritório, calor metabólico de 70 W/m^2 (1,2 met), a pessoa gera 0,3 L/min de CO_2 . Se a concentração externa for de 0,03% e a interna de 0,1%, tem-se:

$$V = 0.3 / (0.001 - 0.0003) = 428.5 \text{ L/min} = 7.15 \text{ L/s} = 25.7 \text{ m}^3/\text{h} \text{ (por pessoa)}$$

As normas tem convergido para este valor, inclusive a norma brasileira. É importante salientar que, com qualquer modificação na atividade ou concentração, estes valores mudam, conforme pode ser visto na figura abaixo:

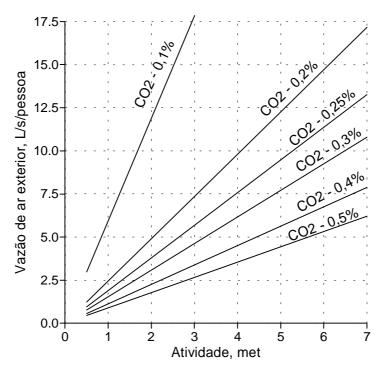


Fig. 4 - Necessidade de Ventilação

Historicamente estas taxas de ventilação tem mudado de valor, conforme pode ser visto na figura abaixo, conforme Janssen (1999):

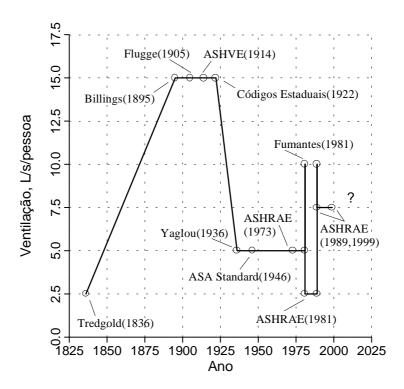


Fig. 5 - História da Taxa Mínima de Ventilação

Neste gráfico pode-se ver que a taxa mínima de ventilação iniciou com 2,5 L/s/pessoa, foi à um máximo de 15 L/s/pessoa, desceu à 5 L/s/pessoa, voltou à 2,5 L/s/pessoa (fumantes 10 L/s/pessoa) e atualmente as normas internacionais e nacionais estão convergindo para 7,5 L/s/pessoa.

Outro argumento utilizado para definir as taxas de ventilação é sua relação com a percepção de odores na sala para uma pessoa que entra nesta sala. Estudos feitos por Berg-Munch, Clausen e Fanger, Fanger e Berg-Munc e Cain et al, em Janssen (1999), mostram uma relação entre a vazão de ar exterior e a percepção de odores, que são os pontos presentes na figura abaixo. A partir dos pontos citados, foi ajustada a equação e curva presentes na figura.

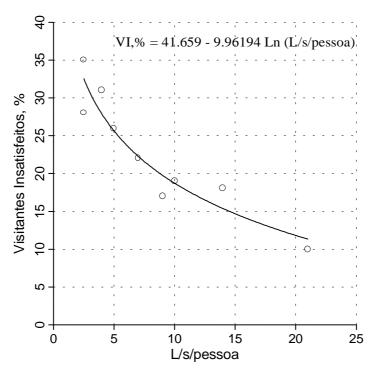


Fig. 6 - Aceitação do Odor

Esta equação média permite calcular uma previsão também média para a percentagem prevista de visitantes insatisfeitos que entram em uma sala, função da renovação de ar. Convém salientar que estas medições foram feitas nos EUA e Europa, para os padrões de exigência destes locais. Os resultados da equação podem ser vistos na tabela abaixo:

Tab. 6 - Percentagem prevista de visitantes insatisfeitos conforme vazão de ar exterior

Percentagem prevista de visitantes insatisfeitos	Vazão de ar exterior, L/s/pessoa
32,5	2,5
25,5	5,0
21,5	7,5

Observa-se que a diferença não é significativa.

As taxas acima discutidas significam uma quantidade de ar exterior a ser colocado no ambiente para cada pessoa presente neste ambiente. Uma questão importante então é saber quantas pessoas estarão presentes no ambiente. Certamente que esta pergunta é de difícil resposta, pois o número de pessoas normalmente é variável.

Pela recomendação das normas, a vazão de ventilação deve atender o número máximo de pessoas, mesmo ocorrendo este número em determinado instante ao longo do dia. Não seria mais lógico que a vazão de ventilação acompanhasse o número de pessoas presentes? Isto seria possível se a vazão de ventilação fosse definida e controlada pela concentração de CO₂ presente no ambiente, que é função do número real de pessoas e atividade, e não com uma taxa fixa de renovação de ar. Ter-se-ia uma economia de energia conforme pode ser visto na figura abaixo. A economia de energia é igual à diferença entre as áreas das duas curvas:

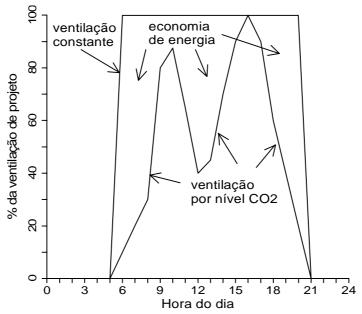


Fig. 7 Fluxos de Vazão de Ventilação

Além disso, outra forma de economizar energia é pelo uso de recuperadores de calor, sensível ou sensível e latente. Na figura abaixo pode-se ver a aplicação deste tipo de equipamento. O ar condicionado que está indo fora para renovação serve para pré-condicionar o ar novo que está entrando no ambiente, seja no inverno ou no verão. No verão é colocado fora ar frio e seco, que serve para resfriar e desumidificar o ar exterior. Os trocadores de calor latente utilizam materiais higroscópicos. No inverno, é colocado fora ar quente, que pode pré-aquecer o ar de renovação.

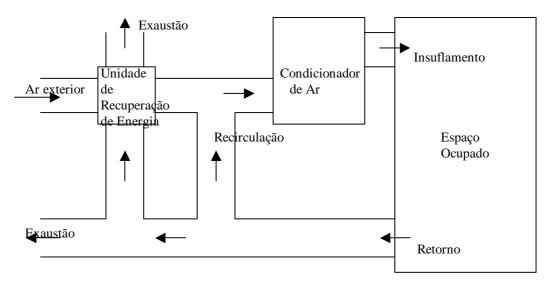


Fig. 8 Sistema de Ventilação com Recuperação de Energia

4. RENOVAÇÃO DO AR E CARGAS TÉRMICAS

Outro item a ser verificado é a influência das taxas de renovação de ar nas cargas térmicas de edificações. Para tanto foi calculado um shopping-center em Porto Alegre com 5749 m² e 1576 pessoas, variando-se a taxa de ar exterior entre 2,5, 5,0 e 7,5 L/s/pessoa. Os principais resultados das cargas térmicas estão nas próximas tabela e figura.

Tab. 7 Resultados para um Shopping-Center

L/s/pessoa	Vazão de ar exterior, L/s	Potência Máxima, TR
2,5	3.940	279
5,0	7.880	314
7,5	11.820	349

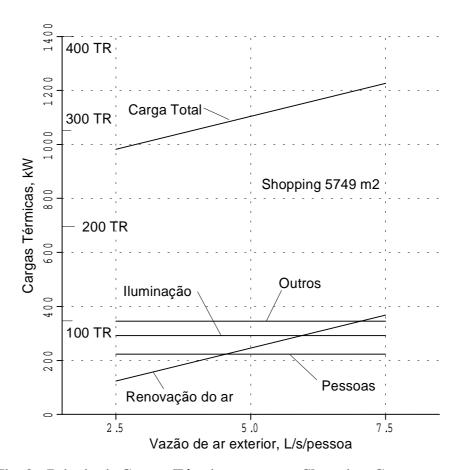


Fig. 9 - Principais Cargas Térmicas para um Shopping-Center

Pode-se ver claramente a influência da vazão de ar exterior na evolução da carga térmica deste ambiente.

5. CONCLUSÕES

A concentração interna aceita de CO₂ varia de 1000 a 5000 ppm, e a taxa adotada na legislação brasileira de 7,5 L/s/pessoa está procurando atender a concentração de 1000 ppm, citada por uma norma japonesa. Se esta concentração aceita aumentar, a taxa de renovação diminui.

Para a taxa de 7,5 L/s/pessoa, se aumentar o nível metabólico acima de 1,2 met, a concentração passa de 1000 ppm.

Outro argumento utilizado é a percepção de odores por visitante, cujos resultados não são tão expressivos.

Uma alternativa ponderável é não definir a vazão de ar exterior mas a concentração interna aceita de CO₂.

Deveria ser incentivada a utilização de recuperadores de calor sensível e latente.

A taxa de ar exterior tem marcante influência nas cargas térmicas.

Isto posto, a atual legislação define a reta horizontal com vazão de 7,5 L/s/pessoa constante, conforme pode ser visto na figura abaixo. Uma proposição deste trabalho, é a reta logo abaixo, onde a vazão de ar exterior e concentração de CO₂ serão função do nível de atividade dos ocupantes.

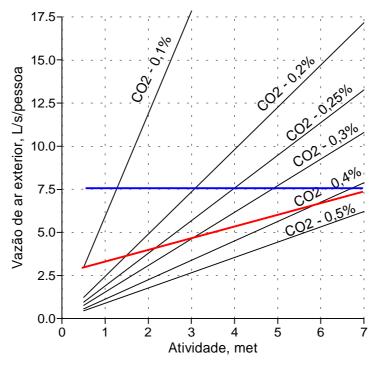


Fig. 10 - Necessidade de Ventilação Proposta

A necessidade de ventilação passa a obedecer a equação da reta

$$L/s/pess = 2,22 + 0,754met$$
 (7)

A concentração passa a obedecer a seguinte equação:

$$ppm = 1561met^{0.568} \tag{8}$$

Aplicando estas equações na tabela de metabolismo, tem-se:

Tab. 8 Taxa de Ventilação e Concentração de CO2 para Várias Atividades

Atividade	met	L/s/pessoa	ppm CO ₂
Repouso			
Dormindo	0,7	2,8	1275
Reclinado	0,8	2,8	1375
Sentado, quieto	1,0	3,0	1560
De pé, relaxado	1,2	3,1	1730
Caminhando no plano			
0,9 m/s	2,0	3,7	2315
1,2 m/s	2,6	4,2	2690
1,8 m/s	3,8	5,1	3335
Atividades de escritório			
Lendo sentado	1,0	3,0	1560
Escrevendo	1,0	3,0	1560
Digitando	1,1	3,1	1650
Arquivando, sentado	1,2	3,1	1730
Caminhando	1,7	3,5	2110
Diversos			

Arrumando a casa	2,0 - 3,4	3,7-4,8	2315-3130
Trabalho mecânico			
leve	2,0 - 2,4	3,7-4,0	2315-2570
pesado	4,0	5,2	3430
Atividades Lúdicas			
Dançar	2,4 - 4,4	4,0-5,5	2570-3625
Exercícios calistênicos	3,0 - 4,0	4,5-5,2	2915-3430
Tênis, simples	3,6 - 4,0	4,9-5,2	3235-3430
Basquetebol, futebol	5,0 - 7,6	6,0-8,0	3900-4945

Poder-se-ia ainda interpolar uma terceira reta entre as duas, que daria vazões maiores e concentrações menores.

6. **BIBLIOGRAFIA**

- ASHRAE 1999a, ASHRAE Standard 62-1999, Ventilation for Acceptable Indoor Air Quality, ASHRAE.
- ASHRAE 1999b, Handbook of Applications, ASHRAE
- ASHRAE 1997, Handbook of Fundamentals, ASHRAE
- Carrier, 1996 Indoor Air Quality, A Guide for Management, Carrier
- Janssen, J.E., 1999, The History of Ventilation and Temperature Control, ASHRAE Journal, October 1999, pp. 48-70.
- Ministério da Saúde, 1998 Portaria Nº 3.523, Regulamento Técnico Sanitário sobre Qualidade do Ar Interior