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ABSTRACT  

In this paper a new high order theory for functionally graded (FG) shells based on the expansion of the 3-D 

equations of elasticity for functionally graded materials (FGMs)  into Fourier series in terms of Legendre’s polynomials 

is presented. Starting from the 3-D equations of elasticity, the stress and strain tensors, the displacement, traction and 

body force vectors are expanded into Fourier series in terms of Legendre’s polynomials in the thickness coordinate.  In 

the same way the material parameters that describe the functionally graded material properties are also expanded into 

Fourier series. All equations of the linear elasticity including Hooke’s law are transformed into the corresponding 

equations for the Fourier series expansion coefficients. Then a system of differential equations in terms of the 

displacements and the boundary conditions for the Fourier series expansion coefficients are obtained. In particular the 

first and second order approximations of the exact shell theory are considered in more details. The obtained boundary-

value problems are solved by the finite element method (FEM) with COMSOL Multiphysics and MATLAB software. 

Numerical results are presented and discussed. 

 

 
Keywords: FGMs shell, plate, rod , Legendre polynomials, FEM, power-law material graduation. 

 

1 INTRODUCTION 

Resent development of micro-electro-mechanical and nano-electro-mechanical technologies 

extends the field of application of the classical or non-classical theories of plates and shells towards 

the new thin-walled structures. The classical elasticity can be extended to the micro- and nano-scale 

by implementation of the theory of elasticity taking into account the physical phenomenon that can 

occur in such structures and devises [1, 2, 7, 11, 34].    

Classical theories are based on well-known physical hypothesis; they are very popular among 

an engineering community because of their relative simplicity and physical clarity. Numerous 

books and monographs have been written in the subject, among other one can refer to [15, 19, 21, 

36] But unfortunately classical theories have some shortcomings and logical contradictions such as 

their proximity and inaccuracy and as result in some cases not good   agreement with results 

obtained with 3-D approach and experiments. Therefore there is demand in developing new more 

accurate theories.  

We can mention at list two approaches to development of the theories of thin-walled 

structures.  One consists in improvement of the classical physical hypothesis and development more 

accurate theories. In beams theory is well known model that take into account transversal 

deformations developed by Timoshenko and extended to the plate theory by Mindlin [18]. This 
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theory was extended and applied to shells of arbitrary geometry in numerous publications and refer 

to as Timoshenko’s theory that take into account in-plane shear deformations and rotation of the 

elements perpendicular to the middle surface of the shell [13, 21, 35].  

The second approach consists in expansion of the stress-strain field components into 

polynomials series in term of thickness. It was proposed by Cauchy and Poisson and that time was 

not popular. Significant  extension and development of that method was done by Kil'chevskii [14]. 

Vekua has used Legendre’s polynomials for the expansion of the equations of elasticity and 

reduction of the 3-D problem to 2-D one [37]. Such an approach has significant advantage because 

of Legendre’s polynomials is orthogonal and as result obtained equations are simpler. This 

approach was extended and applied to dynamical problems [8] and thermoelasticity [23], composite 

and laminate shells [24].   

The approach developed in [8, 13, 23, 24, 37] has been applied to the plates and shells 

thermoelastic contact problems when mechanical and thermal conditions are changed during 

deformation in our previous publications [12, 41-50, 56- 58]. The mathematical formulation, 

differential equations and contact conditions for the cases of plates and cylindrical shells first time 

has been reported in [41, 47-49, 57, 58]. In more general form with extension to nonstationary 

processes and calculation all coefficients of the equations and contact and boundary conditions it 

was presented in [42, 43]. Then the approach was further developed to contact of plates and shells 

with rigid bodies though heat conducting layer [44, 45], thermoelasticity of the laminated 

composite materials with possibility of delamination and mechanical and thermal contact in 

temperature field in [44, 49, 50], the pencil-thin nuclear fuel rods modeling in [46] and some other 

engineering problems in [47-50, 57].  

Bibliography related to different aspects of the theory and applications of the thin-walled 

structures contain several thousand publications, for references one can see review papers [20, 25]. 

For trend and recent development in the shells theory and its applications one can refer among other 

to books [1, 28, 30].     

Functionally graded materials (FGM) are heterogeneous materials in which the elastic 

properties change from one surface to the other, gradually and continuously to achieve a required 

function [33, 35]. They attract attention especially because of their distinctive material properties, 

which vary continuously in one (or more) direction(s), in the case of plates and shells usually in the 

thickness direction [30]. FGM have been presented as an alternative to laminated composite 

materials that show a mismatch in properties at material interfaces. This material discontinuity in 

laminated composite materials leads to large inters laminar stresses and the possibility of initiation 

and propagation of cracks [28]. This problem is reduced in FGM because of the gradual change in 

mechanical properties as a function of position through the composite laminate.  

The FG thin-walled structures, such as plates and shells, have numerous applications, 

especially in reactor vessels, turbines and many other applications in aerospace engineering [30]. 

Cylindrical shells have found many applications in industry [16, 32]. They are often used as load 

bearing structures for aircrafts, ships and buildings. The study of the stress-strain state of FG 

cylindrical shells is an important aspect in the successful applications of the cylindrical shells. 

Various theoretical models of FG plates and shells have been developed last decades [3- 6, 9, 10, 

17, 26, 27, 29, 30, 38-40]. Most of the proposed models of FG plates and shells are based on the 

Kirchhoff-Love, Timoshenko-Mindlin [21, 22, 28] hypotheses or used more complicated high order 

theories such as the third-order shear deformation plate theory. Mathematically rigorous and taking 

into account mechanical properties important for engineering applications approach to creation high 

order hierarchical models of plates and shells is based on expansion of the 3-D equations of 

elasticity in Legendre polynomials series in term of thickness. Such an approach have been used for 

development various theories of isotropic [13, 37], anisotropic [23, 44], and functionally graded 

[51, 53, 54, 59] plates and shells. 
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In this paper we are developing new theory for FG shell based on expansion of the 3-D 

equations of elasticity for FGMs into Fourier series in terms of Legendre polynomials. More 

specifically, we expanded functions that describe functionally graded relations into Fourier series in 

terms of Legendre polynomials and find Hook’s law that related Fourier coefficients for expansions 

of stress and strain. Then using developed in our previous publications technic we find system of 

differential equations and boundary conditions for Fourier coefficients. Cases of the first and 

second approximations have been considered in more details. Numerical examples are presented.       

2 3-D FORMULATION  

 Let us consider a linear a linear elastic body, which occupy an open in 3-D Euclidian space 

simply connected bounded domain 
3[ , ]V h h= Ω× − ∈R  with a smooth boundary V∂ . We assume 

that elastic body is FG isotropic shell of arbitrary geometry with 2h thickness. Boundary of the shell 

can be presented in the form V S
+ −∂ = ∪Ω ∪Ω . Here  Ω is the middle surface of the shell, ∂Ω is its 

boundary, Ω+
 and Ω-

 are the outer sides and [ , ]S h h= Ω× −  is a sheer side. 

Stress-strain state of the elastic body is defined by stress ( , )
ij

tσ x  and strain ( , )
ij

tε x  tensors 

and displacements ( , )
i

u tx , traction ( , )
i

p tx , and body forces ( , )
i

b tx  vectors respectively. These 

quantities are not independent, they are related by equations of linear elasticity.  

For convenience we introduce orthogonal system of coordinates 1x , 2x , 3x , such that position 

vector of arbitrary point is equal to 1 2 3( , , )
i i

x x x x=R e  . Unit orthogonal basic vectors and their 

derivatives with respect to space coordinates are equal to 

1
,

ki

i ij k

i i j
H x x

∂∂
= = Γ

∂ ∂

eR
e e                                                      (1) 

where iH  are Lame coefficients, k

ijΓ  are Christoffel symbols. They are calculated by the equations 

i

i i i

H
x x x

∂ ∂ ∂
= = ⋅

∂ ∂ ∂

R R R
                                                   (2) 

1 1

2

j k i jk i i k
ij ik jk ik ij

i j i k i j k

H H H HH H H

H x H H x x x
δ δ δ δ

 ∂ ∂∂ ∂
Γ = − + + −  ∂ ∂ ∂ ∂ 

                       (3) 

From the last equation follows that 0k

ijΓ =  for i j k≠ ≠  and  

1 1
,     for    k ki k

ii ik

k k i i

H H
i k

H x H x

∂ ∂
Γ = − Γ = − ≠

∂ ∂
                               (4) 

In the case if displacements and their gradients are small the following kinematic Cauchy relations 

take place  

1 1 1

2

j ki

ij ij k

j j i i

uu
u

H x H x
ε

 ∂∂
= + + Γ  ∂ ∂ 

                                                  (5) 

Equations of motion have the form 

2

2

1 ij ij k jik i
ik ki i

j j k i

u
b

H x H H t

σ σ σ
ρ

∂ ∂
+ Γ + Γ + =

∂ ∂
                                        (6) 
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Stress and strain tensors are related by generalized Hook’s law, which for general anisotropic 

case has the form  

       ( ) ( ) ( )ij ijkl

klcσ ε=x x x ,                                                        (7) 

and for isotropic  

( ) ( ) 2 ( )ijkl ij kl il jk
c g g g gλ µ= +x x x                                           (8) 

Here λ and µ are Lame constants, which we present in the form 

( )
( )

( )
2 1

E
µ

ν
=

+

x
x , 

( ) ( ) ( )
( ) 2 ( )

( )
1 1 2 1 2

Eν µ
λ

ν ν ν
= =

+ − −

x x
x                            (9) 

For convenience we transform above equations of elasticity taking into account that the radius 

vector )(xR of any point in domain V, occupied by material points of shell may be presented as  

3( ) ( ) ( )xα α= +R x r x n x                                             (10) 

where )( αxr is the radius vector of the points located on the middle surface of shell, )( αxn is a unit 

vector normal to the  middle  surface.         

Also we consider that ),( 21 xx=αx are curvilinear coordinates associated with main curvatures 

of the middle surface of the shell. In this specific system of coordinates the 3-D equations of 

elasticity (5) - (7) can be simplified.  

The equations of equilibrium have the form 

2

132 11 1 12 1 2 1
1 2 12 13 1 2 1 22 1 2 1 1 2 2

1 2 3 2 1

2

232 21 1 22 2 1 2
1 2 21 23 1 2 2 11 1 2 2 1 2 2

1 2 3 1 2

2 31 1 32 1

1 2

( ) ( )
,

( ) ( )
,

( ) ( ) (

A A A A u
A A A A k A A b A A

x x x x x t

A A A A u
A A A A k A A b A A

x x x x x t

A A A

x x

σσ σ
σ σ σ ρ

σσ σ
σ σ σ ρ

σ σ

∂∂ ∂ ∂ ∂ ∂
+ + + + − + =

∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂
+ + + + − + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ +

∂ ∂

2

2 33 3
11 1 2 1 22 1 2 2 1 2 3 1 2 2

3

)A u
A A k A A k A A b A A

x t

σ
σ σ ρ

∂
− − + =

∂ ∂

     (11) 

The Cauchy relations have the form 

1 1
11 2 1 3

1 1 1 2 2

1 1u A
u k u

A x A A x
ε

∂ ∂
= + +

∂ ∂
, 2 2

22 1 2 3

2 2 2 1 1

1 1u A
u k u

A x A A x
ε

∂ ∂
= + +

∂ ∂
, 

3
33

3

u

x
ε

∂
=

∂
, 1 2 2 1

12 2 1

2 2 1 1 1 1 2 2

1 1 1 1u A u A
u u

A x A x A x A x
ε

   ∂ ∂ ∂ ∂
= − + −   

∂ ∂ ∂ ∂   
,                  (12)                          

31
13 1 1

3 1 1

1 uu
k u

x A x
ε

∂∂
= − +

∂ ∂
, 32

23 2 2

3 2 2

1 uu
k u

x A x
ε

∂∂
= − +

∂ ∂
. 

Here 1 2
1 2

( , )
( , )

x x
A x x

x
α

α

∂
=

∂

r
 are coefficients of the first quadratic form of a surface, 1 2( , )k x xα  are it 

main curvatures. We also take into account that shell is relatively thin and therefore  

3

1 1
,1 1

H A
k x H A

H x A x

β β
α α α

α α α α

∂ ∂
= + ≈ → ≈

∂ ∂
                            (13) 

The generalized Hook’s law have the form 
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( ) ( ) ( )ij ijkl klcσ ε=x x x ,    ( ) ( ) ( )( )ijkl ij kl ik jl il kjc λ δ δ µ δ δ δ δ= + +x x x .              (14) 

Substituting the kinematic relations (12) into Hooke’s law (14) and then into the equations of 

equilibrium (11) we obtain a system of differential equations in the terms of the displacements as 

( , ) ( , ) ( , ) ( , [0, ], ),ij j i it u t b tL u V tt Tρ ∀ ∈ ∀ =+ = ∈ ℑx x x x xɺɺ                         (15) 

where ( ) ( ) ( )0 0

ij ijkl k l ijL E c E L= =∂ ∂x x x , 
0

ijL  is a differential operator that corresponds to the 

homogeneous case, upper points are partial derivatives with respect to time t . 

For mathematically correct formulation of the dynamical problem of elasticity we have to 

formulate initial and boundary conditions. We consider the mixed boundary conditions in the form  

 ( , )  ( , )  ,     , 

( , )  ( , ) ( ) [ ( , )] ( , ) ,   ,  

i i u

i ij j ij j i p

u t t V t

p t t n P u t t V t

φ

σ ψ

= ∀ ∈∂ ∀ ∈ℑ

= = = ∀ ∈∂ ∀ ∈ℑ

x x x

x x x x x x
                (16) 

The differential operator :
ij j i

P u p→  is referred to as the stress operator.  It transforms the 

displacements into the tractions. For homogeneous anisotropic and isotropic media they have the 

forms  

( )    and    
ij ikjl k l ij ij n i j j i

P c n P n nλδ µ= ∂ = ∂ + ∂ + ∂                         (17) 

respectively. Here 
in   are the components of the outward unit normal vector, 

n i in∂ = ∂  is the 

derivative in the direction of the vector )(xn  normal to the surface
pV∂ . 

Initial conditions consist of assignment of the displacements and velocity distribution in the 

initial moment of time. They can be written in the form  

0 0

0 0( , ) ( )         and      ( , ) ( ),
i i i i

u t u u t v V= = ∀ ∈x x x x xɺ               (18) 

These equations will be used for the derivation of the 2-D equations for shells and plates using 

Fourier series in terms of Legendre’s polynomials expansion.   

3 2-D FORMULATION  

We expand the stress-strain parameters into the Legendre polynomials series along the 

coordinate 3x . Such expansion can be done because of any function ( )f p , which is defined in 

domain 1 1p− ≤ ≤  and satisfies Dirichlet’s conditions (continuous, monotonous, and having finite 

set of discontinuity points), can be expanded into Legendre’s series according formulas 

0

1

1

2 1
( )    where ( )  ( )

2
( )

k k n k

k

f p f
k

a P p a P p dpp
∞

= −

+
= =∑ ∫                          (19)  

Any function of more than one independent variable can also be expanded into Legendre’s series 

with respect to for example, variable 3 [ 1,1]x ∈ − , but first the new normalized variable 

3 / [ 1,1]x hω = ∈ −  has to be introduced. With taking into account (19) we have    

( ) ( ) ( ) ( )

( ) ( )

0 0

00

( ) ,, , , ,

, , ( , ) ( , ) ( )

( ) ,

( ) ,

k k

i i k ij ij k

k k

k

i

k

i kj ij k i

k k

u u P P

P p

t t t t

t t t p t P

α α

α α

ω σ σ ω

ε ε ω ω

∞ ∞

= =

∞

=

∞

=

=

=

=

=

∑ ∑

∑ ∑x x

x x x x

x x

                    (20) 
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where Legendre’s polynomials coefficients have the form  

( ) ( ) ( ) ( )

( ) ( )

3 3 3 3

3 33 3

2 1 2 1
, ( ) , ( )

2 2

2 1
, ( )

, , , , , ,

2 1
, , , ( , ) ( , , ) ( )

22

k k

i i k ij ij k

h h

k

ij ij

h h

h h

k

i ik

hh

k

k k
u u x P dx x P dx

h
t t t t

k
t t p t p

h

k
x P dx x t P dx

h h

α α α α

α α α α

ω σ σ ω

ε ε ω ω
−

− −

−

+ +
= =

+
=

+
=

∫

∫ ∫

∫

x x

x x x x

x x

   (21) 

The following relations take place for the derivatives with respect to time   

( ) ( ) ( )

( ) ( ) ( )

33

2

3

2

3

2 1
,, ,

, ,

,
2

2 1
, ,

2

h

k

t i k t i

h

h

k

t i k t i

h

k
u t P dx u t

h

k
u t P dx

x

x u t
h

α α

α α

ω

ω

−

−

+
∂ = ∂

+
∂ = ∂

∫

∫

x x

x x

                              (22) 

and for the derivatives with respect to coordinates αx   

( )
( )

( )

( )
( )

( )

3

3

3

3

, ,2 1

2

, ,2 1

2

,

,

kh

i i

k

h

kh
ij ij

k

h

u t u tk
P dx

h x x

t tk
P dx

h

x

x

x x

α

α

α

α

α α

α

α

ω

σ ∂σ
ω

−

−

∂ ∂+
=

∂ ∂

∂+
=

∂ ∂

∫

∫

x x

x x

                            (23) 

respectively. 

Integration of the derivatives with respect to coordinates 3x  gives us  

 

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( )

3

3

3

3

3 3 3

3

,2 1
,

2

,2 1 2 1
, 1 , ,

2

h

i

k

h

h
k

k

i

k i i

h

i

k

i

u tk
P dx t

h x

tk k
P dx t t t

h x h

u α

α α α

ω

σ
σ σ σω

−

+ −

−

∂+
=

∂

∂+ +  = − − −
 ∂

∫

∫

x

x

x

x x x

        (24) 

where 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 3

1 3

3 1 2 3 3

2 1
,

2 1

, , ,

, , .,

k k k

i i i

k k k

i i i

k
u u u

h

k
A A

h

t t t

t t t

α α α

α α ασ σ σ

+ +

− −

+
= + +…

+
= + +…

x x x

x x x

                             (25) 

Now substituting stress tensor from (20) into the equations of motion (11), multiplying 

obtained relations by ( )
k

P ω  and integrating over interval [ , ]h h− with respect to 3x  we obtain 2-D 

equations of motion in the form   

 

( ) ( )

( ) ( )

( ) ( )

2 11 1 12 1 2
12 13 1 2 1 22 13 1 2 1

1 2 2 1

2 21 1 22 2 2
12 23 1 2 2 11 23 1 2 2

1 2

2

1 1

2 3

1 2 1

2

1 2 2

1 1 32

11 1 2 1 1

1 2

22

,

,

k

k k

k k k k k

k k

k k k k k

t

k

t

k

k

k

k

A A
A A u

A A

A A
A A k A A f

x x x x

A A A A
A A k A A f

x x x x

A A
A A k A

u

A
x x

ρ ∂

ρ ∂

σ σ
σ σ σ σ

σ σ
σ σ σ σ

σ σ
σ σ

∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂

∂ ∂
+ − −

∂ ∂
2

2 3 1 22 33 2 31 .k k k

t
A Ak A uA f ρ ∂σ− + =

     (26) 
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where   

( ) ( ) ( ) ( )( )3 3

2 1
( 1)k k k

i i i i

k
f b

h
α α α ασ σ+ −+

= + − −x x x x                                      (27) 

In the same way can be found the 2-D kinematic Cauchy relations (12) 

1 1 2 2
11 2 1 3 22 1 2 3

1 1 1 2 2 2 2 1 2 1

1 2 2 1
12 2 1

2 2 1 1 1 1 2 2

3 3
13 1 2 2 3

2 2

1 1 23 2 33

1 1

1 1 1 1

1 1 1 1
,

1 1
.

, ,

, ,

k k
k k k k k k

k k
k k k

k
k k

k k k k k k

u A u A
u k u u k u

A x A A x A x A A x

u A u A
u u

A x A x A x A x

u u
u uk u k u

A x A x
u

ε ε

ε

ε ε ε+

∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂

   ∂ ∂ ∂ ∂
= − + −   

∂ ∂ ∂ ∂   

∂ ∂

∂ ∂
+= − = − =

           (28) 

In order to transform Hooke’s law into 2-D form we expand also Young’s modulus ( )E x  into 

series of Legendre’s polynomials  

( ) ( ) ( ) ( )1 3 1 1 3 31
1

2 1
( ), , .( )

2

h

r

k

h

r k
r

k k
E E x P x E x E x x P dx

h
ω

∞

−
= −

+
= =∑ ∫x                  (29) 

Substituting this expansion and the expansions for the stress and strain tensors in Hooke’s law 

(14) we obtain 2-D Hooke’s law for the series expansion coefficients of Legendre’s polynomials  

( ) ( ) ( )0

1 1 1

1

n nrm m

ij ijkl kl

r

r

m

x c E x xσ ε
∞ ∞

=

= ∈∑∑                                           (30) 

where  
1

3 3 3 3

1

( ) ( ) ( )
n

n m

mr

r
P x P x P x dx

−

=∈ ∫                                                    (31) 

For any specific index combination ( ,  and )n r m  the coefficients nrm∈  can be easily 

calculated. Their calculations are simplified because nrm∈  are fully symmetric with respect to their 

indices and many of them are equal to zero. The following formula shows how to calculate 

coefficients nrm∈       

 

0      for 0   and                 

for  

0   for 0                               

  

(2 1) / 2   

0 for  and odd  and  

0    for  odd                       

0   and  

    

0 f

 
nrm

n r m

n r

n r

m

n r m m n r

m

n r m

= ≠

= =

= =

+
∈ =

= > +

+ +

or   even and    n r m m n r










+ + > +

                    (32) 

In the above relations (26) - (32) the following orthogonality property of the Legendre’s 

polynomials has been used 

( ) ( ) 3

2
   for 

   2 1

0           for 

h

n m

h

h
n m

P P dx n

n m

ω ω
−


=

= +
 ≠

∫                              (33) 

In order to find 2-D differential equations in form of displacements we substitute the 

kinematic Cauchy relations (28) into Hooke’s law for FG body (30) and  substituting these 
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equations in the equations of equilibrium  (26) gives us the 2-D equations in displacements. This 

system of equations contains an infinite number of equations which are 2-D, they can be written in 

the form   

( )( , ) ( , ) ( , ),t t tρ⋅ ⋅ + =x x xE L u f uɺɺ                                                          (34) 

where 

 

00 01 00 01 0 0

10 11 10 11 1 1 0
, , , , .

0

ij ij ij ij j j nm

nm

ij ij ij ij j j ij nm

E E L L u f
E

E E L L u f E
E

= = = = =E L u f

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

    (35) 

Here nm

ijL  are differential operators that correspond to homogeneous elastic shells, and nrm rmn
E E∈=  

are coefficients that characterize the inhomogeneous properties of the shell.  

Now instead of the finite 3-D system of the differential equations in displacements (15) we 

have an infinite system of 2-D differential equations for coefficients of the Legendre’s polynomial 

series expansion.  In order to simplify the problem approximate theory has to be developed and 

only finite number of members has to be taken into account in the expansion (20) and in all above 

relations. For example if we consider n -order approximate shell theory, only 1n +  members in the 

expansion (20) are taken into account 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

, , , , , ,( ) , ( ) , ( ).k k k

i i k ij ij k ij i

n n n

j k

k k k

t t tu u P P t Pt tα α αω σ σ ω ε ε ω
= = =

= = =∑ ∑ ∑x x x x x x        (36) 

In this case we consider that 0k

iu = , 0k

ijσ =  and 0
k

ijε =  for 0k <  and for k n> . Order of the 

system of differential equations depends on assumption regarding thickness distribution of the 

stress-strain parameters of the shell.  

4 FIRST-ORDER THEORY  

In the case if only the first two terms of the Legendre polynomials series is considered in the 

expansion (20) we have the first approximation the shell theory which in isotropic case usually refer 

as Vekua’s shell theory. In this case the stress-strain parameters, which describe the state of the 

shell, can be presented in the form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

, , , ,

, ,  , ,

, , , ,

, ,  , .  

ij ij ij

i i i

ij ij ij

i i i

t t P t P

u t u t P u t P

t t P t P

p t p t P p t P

α α

α

α α

ν

α α

σ σ ω σ ω

ω ω

ε ε ω ε ω

ω ω

= +

= +

= +

= +

x

x x

x

x

x x

x

x x

x x

                             (37) 

where coefficients of the expansion are 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

3 3 3 3 3

3 3 3 3 3

3 3 3 3

0 1

0 1

0 1

3

0

1 3
, ,

2 2
, , , , ,

, , , , ,

, , , ,

1 3
, ,

2 2

1 3
, ,

2 2

1
,

2

,

,

i i i i

h h

ij ij ij ij

h h

ij ij

h h

h h

ij i

h

j

h h

i i

h

h

h

u u x dx u u x x dx
h h

x dx x x dx
h h

x dx x x dx

t t t t

h h

p p x

t t t t

t t t

t
h

t

α α α α

α α α α

α α α α

α α

ε ε ε ε

σ σ σ σ

− −

− −

− −

−

= =

= =

= =

=

∫ ∫

∫ ∫

∫ ∫

∫

x x x x

x x x x

x x x x

x x( ) ( ) ( )1

3 3 3 3 3

3

2
, , ,,,

i

h

h

i
t p td tx p x x dx

h
α α

−

= ∫x x

             (38) 

The equations of motion (26) in this case have the form  

 

( ) ( )

( ) ( )

( ) ( )

0 0

0 0 0 0 02 11 1 12 01 2
12 13 1 2 1 22 13 1 2 1

1 2 2 1

2 21 1 22 02 2
12 23 1 2 2 11 23 1 2 2

1 2 1 1

2 31 1 32

11 1 2 1 1

1 2 1

0 0

0 0 0 0 0

1 2 2

0 0

2

1 2

0 0

22

,

,

A A A A
A A k A A f

x x x x

A A A A
A A k A A f

x x x x

A A
A A k A A k

x x

A A u

A A u

σ σ
σ σ σ σ

σ σ
σ σ σ σ

σ σ
σ

ρ

σ

ρ
∂ ∂ ∂ ∂

+ + + − − + =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂

∂ ∂
+ − −

∂ ∂

ɺɺ

ɺɺ

( ) ( )

( ) ( )

( )

0 0

2 3 1 2 3

1 1

1 1 1 1 1

1 2

0

33 1 2

2 11 1 12 11 2
12 13 1 2 1 22 13 1 2 1

1 2 2 1

2 21 1 22 12 2
12 23 1 2 2 1

1

1 1

1

1 23 1 2 2

1 2 1 1

2 31 1 3

1

1 1 1 1

1 2 2

1

.

,

,

A A f

A A A A
A A k A A f

x x x x

A

A A u

A A u

A A u
A A A

A A k A A f
x x x x

A A

x

σ

σ σ
σ σ σ σ

σ σ
σ σ σ

ρ

ρ

σ

ρ

σ

σ

− + =

∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂

∂ ∂
+

∂

ɺɺ

ɺɺ

ɺɺ

( )1

1 1 1 1

22 2

2 1

11 1 2 1 1 2 33 3 1 21 2

2

3 .A A k A A k A A A uf A
x

σ σ ρσ− − − + =
∂

ɺɺ

       (39)  

The kinematic Cauchy relations (28) have the form  

0 0
0 0 0 0 0 01 1 2 2
11 2 1 3 22 1 2 3

1 1 1 2 2 2 2 1 2 1

0 0
0 0 01 2 2 1
12 2 1

2 2 1 1 1 1 2 2

0 0
0 0 0 0 03 3
13 1 1 23 2 33

1 1

1 1

1 2 2

2 2

, ,

1 1

1 1

,

1 1

1 1 1 1
,

1 1
,

u A u A
u k u u k u

A x A A x A x A A x

u A u A
u u

A x A x A x A x

u u
k u k u

A x A x
u u

h h

ε ε

ε

ε ε ε

∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂

   ∂ ∂ ∂ ∂
= − + −   

∂ ∂ ∂ ∂   

∂ ∂
= − = − =

∂
+ +

∂
1 1

1 1 1 1 1 11 1 2 2
11 2 1 3 22 1 2 3

1 1 1 2 2 2 2 1 2 1

1 1
1 1 11 2 2 1
12 2 1

2 2 1 1 1 1 2 2

1 1

1

3

2

2 2

1 1 1 1 13 3
13 1 1 23 2 33

1 1

1

, ,

, ,

.

1 1 1 1

1 1 1 1
,

1 1
.0

u A u A
u k u u k u

A x A A x A x A A x

u A u A
u u

A x A x A x A x

u u
k u k

A

h

u
A x

u

x

ε ε

ε

ε ε ε

∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂

   ∂ ∂ ∂ ∂
= − + −   

∂ ∂ ∂ ∂   

∂ ∂
= − = − =

∂ ∂

           (40) 

 The generalized Hooke’s law for FG material (30) in this case has the form  
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( )
( )

0 000 0 0 001 0 1 010 1 0 011 1 1

1 100 0 0 101 0 1 110 1 0 110 1

0

1 1

ijkl

ijkl

ij kl kl kl kl

ij kl kl kl kl

E E E E

Ec E E E

cσ ε ε ε ε

σ ε ε ε ε

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

= + + +

= + + +
                    (41) 

where  

000 001 010 011 100 101 110 1112 2 2
2 , 0 , 0 , , 0 , , , 0 .

3 3 3
∈ ∈ ∈ ∈ ∈= = = = = =∈ ∈= =∈                      (42) 

Hence the generalized Hooke’s law (41) takes the form 

0 00 0 0 1 1 1 1 0 0 12 2 2
2 ,

3 3 3
ij kl kijkl l ij kl klijklc cE E E Eσ ε ε σ ε ε

   
= + = +   

   
                        (43) 

Substitution of the kinematic Cauchy relations (40) into the generalized Hooke’s law (43) and 

the result to the  equations of motion (39) gives us the 2-D equations in displacements for the first-

order FG shell theory in the form (34), but now it contains only six equations and the corresponding 

matrixes and vectors have the form   

 

00 01 00 01 0 0

10 11 10 11 1 1
, , , .

ij ij ij ij j j

ij ij ij ij j j

E E L L u f

E E L L u f
= = = =E L u f                                    (44) 

Differential operators that appear in the equations (44) for shells of arbitrary geometry are 

presented in [].  

5 SECOND-ORDER THEORY  

In the second order approximation only the first three series terms of the Legendre’s 

polynomials have to be taken into account. In this case the stress and strain state of the shell, can be 

represented in the form 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

, , , , ,

, ,  , , ,

, , , , ,

, ,  , , .  

ij ij ij ij

i i i i

ij ij ij ij

i i i i

t t P t P t P

u t u t P u t P u t P

t t P t P t P

p t p t P p t P p t P

α α α

α

α α α

α α α

ν ν

σ σ ω σ ω σ ω

ω ω ω

ε ε ω ε ω ε ω

ω ω ω

= + +

= + +

= + +

= + +

x

x x x

x

x

x x x

x

x x x

x x x

            (45) 

The Legendre’s polynomials coefficients in (45) can be calculated using (21). The equations 

of motions and Cauchy relations can be calculated from (26) and  (28) respectively. 

The generalized Hooke’s law for FG material (30) with taking into account   

000 001 002 010 011 012 020 021 022

100 101 102 110 111 112 120 121 122

200 201 202 210 211 212 220 221 222

2 2
2 , 0 , 0 , 0 , , 0 , 0 , 0 , ,

3 5

2 2 4 4
0 , , 0 , , 0 , , 0 , , 0 ,

3 3 15 15

2 4 2 4
0 , 0 , , 0 , , 0 , , 0 ,

5 15 5

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

= = = = = = = = =

= = = = = = = = =

= = ∈ ∈ ∈ ∈ ∈= = = = = = = .
35

      (46) 

in this case has the form  
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0 0 0 1 1 2 2

1 1 0 0 1 2 1 1 2

2 2 0 1 1

0

0

0 2 20 2

2 2
2 ,

3 5

2 2 4 4
,

3 3 15 15

2 4 2 4
.

5 15 5 35

ij kl kl kl

ij kl kl kl kl

ij kl kl kl

ijkl

ijkl

ijkl kl

E E E

E E E E

E E E E

c

c

c

σ ε ε ε

σ ε ε ε ε

σ ε ε ε ε

 
= + + 

 

 
= + + + 

 

 
= + + + 

 

                             (47) 

In the second-order theory the system of equations for the displacements has the same form as 

(34), but it contains only nine equations  and the corresponding matrixes and vector can be written 

as   

 

00 01 02 00 01 02 0 0

10 11 12 10 11 12 1 1

20 21 22 20 21 22 2 2

, , , .

ij ij ij ij ij ij j j

ij ij ij ij ij ij j j

ij ij ij ij ij ij j j

E E E L L L u f

E E E L L L u f

E E E L L L u f

= = = =E L u f                              (48) 

Differential operators that appear in the equations (48) for shells of arbitrary geometry are 

presented in [36].  

6 AXISYMMETRIC CYLINDRICAL SHELL  

All equations for the case of axisymmetric cylindrical shell can be obtained from general 

equations presented here. In this case components of the stress-strain state do not depend of 

coordinate 2x  and have the form 

11 13 11 13 1

22 22

31 33 31 33 3

0 0

0 0 , 0 0 , 0

0 0

ij ij i

u

u

u

σ σ ε ε

σ σ ε ε

σ σ ε ε

= = =                  (49) 

and can be represented in the form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 3 3

0

1 1 1 3 3

0

1 1 1 3 3

0

1 1

0

2 1
( ) , , ,

,

( )
2

2 1
( ) , , ( )

2

2 1
( ) , , ( )

2

2 1
( ) ,

,

2

k k

i i k i i k

k h

k k

ij ij k ij ij k

k h

k k

ij i

h

j k ij ij k

k h

k k

i i k i

k

h

h

h

h

k
u u x P u x u x x P dx

h

k
x P x x x P dx

h

k
x P x x x P dx

h

k
pp x P p x

h

ω ω

σ σ ω σ σ ω

ε ε ω ε ε ω

ω

∞

= −

∞

= −

∞

= −

∞

= −

+
= =

+
= =

+
= =

+
= =

∑ ∫

∑ ∫

∑ ∫

∑ ∫

x

x

x

x ( )1 3 3( ) .,
i k

p x x P dxω

              (50) 

In order to obtain high order 1-D differential equations for axisymmetric cylindrical shell we 

have to assign in all above equations 1 2 1 21, , 0, 1/A A R k k k R= = = = = , where R is a radius of the 

shell. 

 

6.1 First-order theory 

In the first order approximation theory only the first two series terms of the Legendre’s 

polynomials have to be taken into account. In the homogeneous case it is usually referred to as the 
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Vekua’s theory of shells.   In this case the stress and strain state of the shell, can be expressed in the 

form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 1

1 0 1 1

0 1

1 0 1 1

0 1

1 0 1 1

0 1

1 0 1 1

,

,

,

.

ij ij ij

ij ij ij

i i i

i i i

x P x P

x P x P

p p x P p x P

b b x P b x P

σ σ ω σ ω

ε ε ω ε ω

ω ω

ω ω

= +

= +

= +

= +

x

x

x

x

                                    (51) 

The system of equations for the displacements has the same form as (34), but it contains only 

four equations  and the corresponding matrixes and vectors have the form   

0 1

00 00 01 0 0

11 13 13 1 10 1
00 00 01 01 0 0

31 33 31 33 3 3

10 11 11 1 1
1 0 13 11 13 1 1

10 10 11 11 1 1

31 33 31 33 3 3

1 0

2
2 0 0

3
02

0 2 0
3

, , , .
2 2 0

0 0
3 3

2 2
0 0

3 3

E E

L L L u f
E E

L L L L u f

L L L u f
E E

L L L L u f

E E

= = = =E L u f                 (52) 

Most of the operators nm

ijL  are differential operators and they are given by  

 

( )

( )

( )

0 12 0
0 01 1 01 13 31
3 11 1 13 32

1 1 1

2 0 00 1
00 0 00 0 01 01 13 31 1
31 1 33 3 31 33 32

1

00 0 00

11 1 13

1 1

0 2
10 0 10 0 13

11 1 13 3 1

1

11

11

, , 0, ,

, , , ,

3
0,

2

,

2

2

u uu
u L u L u

x R x x

u uu u
L u L u L L u

R x x R

L u L
h

x

u u
L u L u u

h h

Rh x

R

L

λ

λ µ
µ

µ

λ
λ µ

λ
λ µ

λ µ

∂ ∂∂
= = =

∂ ∂ ∂

∂∂ ∂
= − =

= +

+− = = −
∂ ∂ ∂

∂ ∂
= = =− +

∂

( )10 10 1

31 33

1 11
1 11 1 11 13 31
1 13 3 13 32 2

1 1 1

2 10 1
0 0 0 11 1 11 1 31 1
1 3 3 31 1 33 3 2 2 2

1 1 1

3

3
, , ,

3 3 1 3
, 2 ., ,

u u
u L u L u

x h R x R x

uu u R
u u u L u L u

h x h R x x
L u

h
L

R

λ
λ µ

µ λ λ

λ λ
µ

∂ ∂
−

= − =

= =
∂ ∂ ∂

∂∂ ∂  
= − = − − 

∂ ∂ 
−

∂ 
+

     (53) 

Components of strain and stress tensors can be calculated using relations  

1 1

3 1

0 00
0 0 03 31
11 22 33 13

1 1

1 11
1 1 1 13 31
11 22 33 13

1 1

1 1
, , ,,

, , 0 ,,

k
u u

h h

u uu

x R x

u uu

x R x

ε ε ε ε

ε ε ε ε

∂∂
= = = =

∂ ∂

∂∂
= = = =

∂ ∂

+

                      (54) 

0 0 0 1 1 1 1 00 00 12 2 2
2 , ,

3 3 3
ij kl klijkl ij lij lk k klE Ec E Ecσ ε ε σ ε ε

   
= + = +   

   
                (55) 

and (51). Here  

( )0 0 0
δ δ δ δ δ δ

ijkl ij kl ik jl il jk
c λ µ= + +                                         (56) 
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6.2 Second-order theory 

In the second order approximation only the first three series terms of the Legendre’s 

polynomials have to be taken into account. In this case the stress and strain state of the shell, can be 

represented in the form 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2

1 0 1 1 1 2

0 1 2

1 0 1 1 1 2

0 1 2

1 0 1 1 1 2

0 1 2

1 0 1 1 1 2

,

,

,

.

ij ij ij ij

ij ij ij ij

i i i i

i i i i

x P x P x P

x P x P x P

u u x P u x P u x P

p p x P p x P p x P

σ σ ω σ ω σ ω

ε ε ω ε ω ε ω

ω ω ω

ω ω ω

= + +

= + +

= + +

= + +

x

x

x

x

                            (57) 

The system of equations for the displacements has the same form as (34), but it contains only 

four equations  and the corresponding matrixes and vectors have the form   

0 1 2

0 1 2

1 0 2 1

1 0 2 1

2 1 0 2

2 1 0 2

2 2
2 0 0 0

3 5

2 2
0 2 0 0

3 5

2 2 4 4
0 0 0

3 3 15 15
,

2 2 4 4
0 0 0

3 3 15 15

2 4 2 4
0 0 0

5 15 5 35

2 4 2 4
0 0 0

5 15 5 35

E E E

E E E

E E E E

E E E E

E E E E

E E E E

+

=

+

+

+

E    (58) 

   
00 00 01 0 0

11 13 13 1 1

00 00 01 01 0 0

31 33 31 33 3 3

10 11 11 12 1 1

11 11 13 13 1 1

10 10 11 11 12 1 1

31 33 31 33 33 3 3

21 22 22 2 2

13 11 13 1 1

21 21 22 22 2 2

31 33 31 33 3 3

0 0 0

0 0

0 0
, , .

0

0 0 0

0 0

L L L u f

L L L L u f

L L L L u f

L L L L L u f

L L L u f

L L L L u f

= = =L u f                              (59) 

Here again most of the operators nm

ijL  are differential operators and they have the form  

( )
2 0

1

2

00 0

1

1

11 2
x

L u
u

λ µ
∂

= +
∂

 , 
0

0 3
3

1

00

13L
u

u
R x

λ ∂
=

∂
,

01 1

11 1 0L u = , 
1

01 1 3
13 3

1

u
L

xh
u

λ ∂
=

∂
, 02 2

11 1 0L u = , 02 2

12 2 0L u = , 

0
00 0 1
31 1

1

u
L u

R x

λ ∂
= −

∂
,  ( )

02 0
00 0 32
33 3 2

1

2
uu

L u
x R

λ µµ
∂

= −
∂

+ , 
1

01 1 1
31 1

1

u
L

xh
u

µ ∂
=

∂
, 01 1 1

33 3 3L u u
Rh

λ
= − , 02 2

31 1 0L u = , 

02 2

33 3 0L u = , 

10 0

11 1 0L u =  , 
0

10 0 2
13 3

1

3 u
L u

h x

µ
−

∂
=

∂
, ( )

2 1
1 11
1 1

1

1 2

1

1 2

1

2
3u

u u
x h

L λ µ
µ

+
∂

= −
∂

, 
1 1

11 1 3 2
13 3 1

1 1

u u
L u k

R x x

λ
µ

∂ ∂
= +

∂ ∂
, 
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12 2

11 1 0L u = , 
2

12 2 3
13 3

1

3 u
L u

h x

λ ∂
=

∂
,                                             (60) 

10

31

0
0 1
1

1

3

x
L

u
u

h

λ
= −

∂

∂
, 0 010

33 3 3

3
L u u

Rh

λ
= − ,
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Components of strain and stress tensors can be calculated using relations 
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and (57). 

7 RESULTS AND DISCUSSIONS  

We consider here the case of relatively thick axisymmetric cylindrical shells. Therefore we 

will keep three members in polynomial expansion (57). In this case we will get the second order 

approximation equations for functionally graded shells. For this case system of equations for 

displacements has the form as (34), and corresponding matrixes and vector have the form (59), 

which together with corresponding boundary conditions can be used for the stress-strain calculation 

for the second approximation shell theory.  

Material properties of an FGM are the functions of volume fractions and they are managed by a 

volume fraction. When the shell is considered to consist of two materials with Young’s modulus 1E  

and 2E respectively, the effective Young’s modulus 3( )E x  given by the following power-law 

expression 
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 ( 0)n ≥ .                                  (63) 

Substituting function  (63) into equation (29) we obtain expressions for the Legendre 

polynomials coefficients for the effective Young’s modulus 
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E E E

n n n nn n
= = =

+ − − −
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+ + + ++ +
,   

( )E E n h
E

n n

2

2

2 1

2 3+ +
=

−
.   (64) 

For simplicity in this study we consider dimensionless coordinates 1 1x Lξ =  and 3 3x hξ =  

have been introduced. Calculations have been done for Young’s modulus equal to 1 1 PaE =  and 

1 2 2E E =  and for Poison ratio 0.3ν =  respectively, other parameters are 0.25R L= , 0.25h R=  

and 0.2n = . Numerical calculations have been done using commercial software COMSOL 

Multiphysics and MATLAB. Results of calculations are presented on Fig. 1–2. 

Fig. 1 shows the Legendre polynomials coefficients for the displacements distribution versus 

the normalized length for the second approximation theory. These coefficients are FEM solutions of 

the systems of differential equations (34) with matrix operators (58)-(59).  

 
Fig.1. Coefficients of Legendre’s polynomials for the displacements for second order 

approximation. 

Fig. 2 shows displacements and stresses distribution versus normalized length and thickness 

for second approximation theory calculated using equations (62) ans (57). 
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Fig.2. Displacements and stresses versus the normalized length and thickness for second order 

approximation. 

 

8 CONCLUSION 

In this paper a high order theory for FG  shells has been developed. The proposed approach is 

based on the expansion of the axisymmetric equations of elasticity for FGMs into Fourier series in 

terms of Legendre’s polynomials. Starting from the axisymmetric equations of elasticity, the stress 

and strain tensors, the displacement, traction and body force vectors and the material parameters of 

FGMs have been expanded into Fourier series in terms of Legendre’s polynomials in the thickness 

coordinate. Thereby all equations of elasticity including Hooke’s law have been transformed to the 

corresponding equations for the series expansion coefficients. The system of differential equations 

in terms of the displacements and the boundary conditions for the expansion coefficients has been 

obtained. The first and second order approximations of the exact shell theory have been considered 

in more details. All necessary equations and their expansion coefficients have been derived 

explicitly and the corresponding boundary-value problems have been formulated. For the numerical 

solution of the formulated problems the FEM implemented in the commercial software COMSOL 

Multiphysics and MATLAB have been used. For the validation of the proposed approximate shell 

theory a comparison with the results obtained using the exact equations of elasticity has been made. 
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The influence of the material graduation parameters on the stress-strain state of the FG cylindrical 

shell has been studied.     
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