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ABSTRACT 

Optimization of real structural systems considering uncertainties is a demanding task, as large FE models have 
to be solved thousands or millions of times. As a result, most applications found in the literature either: a. consider only 
small FE models; b. disregard nonlinearities in structural response; c. include limited number of design variables; d. 
solve only for local instead of global minima or e. disregard the expected consequences of failure. This last 
simplification is less obvious, but it allows known shortcuts to be adopted, reducing significantly the computational 
burden. The investigation reported in this paper advances simultaneously in areas b. to e. above. The article discusses 
the challenges in solving real structural optimization problems, taking into account the expected consequences of 
failure, and looking for the global optimum. The positional finite element method is used to obtain robust nonlinear 
structural responses, considering large displacements and material yielding. Structural reliability analysis is used to 
quantify probabilities of failure, given the inherent uncertainties in loads and resistance of structural materials. A hybrid 
BFGS-PSO algorithm is employed to efficiently solve the resulting global optimization problem. Artificial Neural 
Networks are used as surrogates for the objective function, significantly reducing the computational burden, but with no 
compromises in the quality of results. A challenging example is presented, involving the optimization of a steel-frame 
power-line transmission tower subject to random wind loads. 
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1 INTRODUCTION 

Optimization of real structural engineering systems is a demanding task. Modelling the 
structural behaviour of real structures requires numerical models (e.g., FEM) of many degrees of 
freedom, which are computationally expensive to evaluate. Optimizing such structures requires 
hundreds to thousands of structural response evaluations. And the resulting optimal structures must 
be robust with respect to the uncertainties inherently present in loads and in the strength of 
structural materials. 

In a competitive environment, structural systems have to be designed taking into account not 
just their functionality, but also expected construction and operational costs, and their capacity to 
generate profits. This capacity can be adversely affected by the costs of failure. Expected costs of 
failure  quantitatively represent the different risks that construction and operation of a given facility 
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imply to the owner, to users, to employees, to the general public and/or to the environment. 
Uncertainty implies risk, and the possibility of undesirable structural responses.  

In monetary terms, risk (or the expected cost of failure) is given by the product of failure 
costs by  failure probabilities. Failure probabilities and failure consequences can be directly affected 
by structural design. 

In structural engineering, economy and safety are generally considered to be competing goals. 
To the conventional structural engineer, increasing safety implies greater costs, and reducing costs 
may compromise safety. Hence, designing structural systems would involve a trade-off between 
safety and economy. In common engineering practice, this trade-off is addressed subjectively. 
When using structural design codes, the trade-off has already been decided by a code committee, 
which specifies safety coefficients to be used in design, and basic safety measures to be adopted in 
construction and operation. In deterministic structural optimization, this trade-off is completely 
neglected, because failure probabilities are not quantified. In classical [1-8] Reliability-Based 
Design Optimization (RBDO) the trade-off between safety and economy is also not addressed, 
because failure probabilities are constraints and not design variables. Robust design optimization [9, 
10] searches for designs which are less sensitive to the existing uncertainties, but safety-economy 
tradeoffs are also not addressed. 

However, when expected costs of failure are included in the design equation [11-21], one 
realizes that economy and safety are not competing goals. Safety is just another design variable 
which directly affects expected costs of failure. Since failure probabilities and consequences of 
failure are directly affected by structural design, optimum (minimum cost) design can only be 
achieved by quantifying uncertainties, probabilities of failure and costs of failure. In other words, 
optimum (minimum cost) design can only be achieved by quantifying expected costs of failure, and 
by treating safety as a design variable. This is called structural risk optimization herein and in a few 
other references [19- 21].  

Optimization of real structural engineering systems is a demanding task... Even more 
demanding is the optimization of real structural engineering systems in consideration of the several 
sources of uncertainty which may affect system performance. Quantifying failure probabilities due 
to these uncertainties involves structural reliability analyses, which require repetitive solutions of 
the "deterministic" numerical FE models. When Monte Carlo simulation is used, these may reach 
thousands to millions for a single reliability analysis. Special subset simulation schemes have been 
devised for solving optimization problems under uncertainty, but these are only effective for 
reduced numbers of design variables. When the efficient FORM method is used for reliability 
analysis, still hundreds to thousands structural responses may be needed for each reliability analysis. 
When FORM is used, a nested optimization problem is obtained [1-8]. For classical RBDO 
problems, where failure probabilities are constraints and not design variables, a number of 
approaches have been proposed to avoid the nested optimization loops [1-8]. However, these 
shortcuts do not apply to risk optimization problems. 

The authors are not aware of any similar shortcuts to solving structural risk optimization 
problems. Hence, each trial in a risk optimization solution requires at least one complete reliability 
analysis, which represents hundreds to thousands of structural response evaluations.  

Moreover, it was found [20] that risk optimization problems possess many local minima. 
Hence, local optimization algorithms can at best improve a given initial design. Finding the (global) 
optimum design demands global optimization algorithms. This significantly increases the 
difficulties, as global optimization algorithms require many times more objective function 
evaluations than local optimization algorithms. Each objective function evaluation in risk 
optimization leads to a complete reliability analysis, which requires many structural (mechanical) 
response evaluations. Hence, the increase in computational cost is compounding. In this article, a 
special hybrid BFGS-PSO algorithm [22] is used to solve the global optimization problem. As 
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direct solution of this problem is very expensive, Artificial Neural Networks (ANN) are used as 
surrogate models for the objective function, in order to reduce the computational burden.  

Another compounding difficulty arises when using global optimization algorithms to solve 
structural optimization problems. Local algorithms search for a better solution in a vicinity of a 
given initial design, which is normally a feasible and well-behaved design. Global optimization 
algorithms, on the other hand, have to test designs that are scattered all over the design space. 
Hence, it is easy to arrive at weird structural configurations, which would make no sense to a 
structural designer, but which end up being tested by the optimization algorithm. Weird designs can 
even belong to the failure domain, that is, they are more likely to fail than not. These weird designs 
can lead to numerical instabilities and convergence difficulties for both the non-linear (FE) 
mechanical models and for the reliability analysis algorithms.  

In the present article, the positional finite element method [23-28]  is used to compute non-
linear structural responses. The positional FE method is a robust numerical analysis method, as it 
allows computing large displacements under material non-linearities. In the positional FEM, the 
displaced configuration is the primary unknown: displacements and rotations are evaluated 
afterwards. Equilibrium equations are evaluated in the displaced configuration. Material points are 
located by configuration-change functions and their gradients. Non-linear Cauchy-Green 
deformation measures are used, as well as their energy conjugate. Second-order Piola-Kirchhoff 
stress tensors are considered. With these stress-strain measures, the Saint Venant-Kirchhoff 
constitutive tensor is obtained. Stationarity of the total potential energy is used to arrive at the 
equilibrium equations. The Newton-Raphson method is used to solve the non-linear equations, with 
a consistent tangent stiffness matrix.  

 The article is laid out as follows. In Section 2, the risk optimization problem is formulated. 
Section 3 describes two different Artificial Neural Networks, which are used as surrogates to aid the 
solution of global risk optimization problems, as described in Section 4. Section 5 presents results 
for an application problem, involving the optimization of a power-line tower subject to random 
wind loads. Concluding remarks are presented in Section 6. 

 

2 THE FORMULATION: RISK OPTIMIZATION PROBLEM 

2.1 Structural reliability 

 Let X and d be vectors of structural system parameters. Vector X represents all random or 
uncertain system parameters, and includes geometric characteristics, resistance properties of 
materials or structural members, and loads. Some of these parameters are random in nature; others 
cannot be quantified deterministically due to uncertainty. Vector d contains all deterministic design 
parameters, like nominal member dimensions, partial safety factors, design life, parameters of 
inspection and maintenance programs, etc. Vector d may also include some parameters of random 
variables in X; for instance, the mean of a random variable may be a design parameter. 

The existence of uncertainty implies risk, that is, the possibility of undesirable structural 
responses. The boundary between desirable and undesirable structural responses is given by limit 
state functions g(X,d), such that: 
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Each limit state describes one possible failure mode of the structure, either in terms of 
serviceability or ultimate capacity. The probability of undesirable structural response, or probability 
of failure, is given by: 

   
 

 
f

f

Ω

Ω  fP P f d      X

d

d X d x x                           (2) 

 
where fX(x) is the joint probability density function of random vector X. The probabilities of failure 
for individual limit states and for system failure can be evaluated using traditional structural 
reliability methods such as FORM, SORM and Monte Carlo simulation. 
 In the risk optimization problem, reliability analyses have to be repeated thousands of times. 
Hence, the algorithm used for reliability analysis has to be very efficient. In this paper, the First 
Order Reliability Method (FORM) is used, which is reasonably accurate and quite efficient. 
Importantly, the efficiency of FORM is equivalent for structural configurations leading to large or 
to very small failure probabilities. These different structural configurations have to be tested in 
global risk optimization.  
 In the FORM method, Eq. (2) is solved by means of a mapping from the space of the 
original random vector X to the so-called standard Gaussian space: 
 

    1;     ,  ( [ ], )T g g T  uu x u d u d                           (3) 

 
where all components of vector u are independent and identically distributed standard Gaussian 
random variables. This mapping can be accomplished by means of the Nataf or Rosenblatt 
transformations. In the standard Gaussian space, the joint probability density fU(u) is rotationally 
symmetric: hence, the point u* on the limit state function gu(u,d)=0 which is closest to the origin 
represents the most probable failure point, also known as the design point. Hence, the design point 
search can be cast as a constrained optimization problem: 
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From Eq. (4), β=||u*|| is the so-called Hasofer-Lind reliability index, which comes to be the 

distance between u* and the origin of the standard space. FORM hence consists in finding the 
design point u* and approximating the original limit state function gu(u) by a tangent hyper-surface 
at the design point. The first-order approximation of the failure probability becomes:   

 

        ( )  , 0  ΦfP P g    ud U d                            (5) 

 
Many algorithms can be used for solving the constrained optimization problem of Eq. (4) in 

order to find the design point. The iHLRF algorithm is used in this paper. 
 

2.2 Risk optimization problem 

The life-cycle cost of a structural system subject to uncertainties can be decomposed in an 
initial or construction cost, cost of operation, cost of inspections and maintenance, cost of disposal 
and expected costs of failure (Cexpected) The expected cost of failure, or failure risk, is given by the 
product of failure cost (Cfailure) by a failure probability [20]: 
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        expected failureC C ( )fPd d d                           (6)  

 
Failure costs include the costs of repairing or replacing damaged structural members, 

removing a collapsed structure, rebuilding it, cost of unavailability (downtime), cost of 
compensation for injury or death of employees or general users, penalties for environmental 
damage, etc. All failure consequences have to be expressed in terms of monetary units, which in 
some cases involves considering past compensation. 

 For each structural component or system failure mode, there is a corresponding failure cost 
term. The total (life-cycle) expected cost of a structural system becomes: 
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Any change in d that affects cost terms is likely to affect the expected cost of failure. Changes 

in d which reduce costs may result in increased failure probabilities, hence increased expected costs 
of failure. Reduction in expected failure costs can be achieved by targeted changes in d, which 
generally increase costs. This compromise between safety and cost is typical of structural systems.  

 A proper point of compromise between safety and cost can be found by solving the so-
called risk optimization problem: 

      *
total expectedarg min[C : ] d d d S                           (8) 

 
where S={dmin≤d≤ dmax } is a set of restrictions on the design variables.  

Risk optimization can be achieved by controlling failure probabilities and/or the costs of 
failure. Although failure costs are constant, it is important to note that the present formulation does 
allow for a trade-off between "competing" failure modes with distinct failure costs. Hence, service 
and ultimate limit states, with their intrinsically different costs of failure, are readily accounted for 
in the risk optimization formulation.  

 

3 ARTIFICIAL NEURAL NETWORK SURROGATE MODELS 

3.1 Surrogate models 

 Surrogate models can be used to aid the solution of computationally expensive problems. 
Surrogate models are applied in many problems of engineering and science. Surrogate models do 
not (necessarily) bear any physical (or mechanical) relation to the actual problem, but they 
represent structural response in a simplified way, by means of some functional relationship which is 
less expensive to compute.  

 Limited information on the actual structural response is obtained by computing the solution 
of the most accurate (numerical) model, at carefully selected points. From these computations, 
surrogate models are constructed, and used to conduct problem solution further.  

 Different types of meta-models can be employed in solution of structural engineering 
problems. The performance of meta-models depends on the nature of the problem being solved, as 
well as on the choice of points were the "exact" solution is computed.  

 In this article, artificial neural networks meta-models are employed in the solution of a real 
problem of structural optimization under uncertainty. 
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3.2 Artificial Neural Networks (ANN) 

Artificial neural networks are computational models build based on a simplified analogy to 
the behavior of the human brain. Information is processed by small processing units (the neurons) 
which communicate with each other by means of weighted connections (synapses).  

 Different networks can be constructed by choos-ing different numbers of neuron layers and 
the type and number of neurons in each layer. Given a set of input-output data, the network is 
trained: the weight of the various neuron connections is adjusted in order for the network to 
reproduce the input-output data as accurately as possible. Each iteration in this training is called an 
epoch. Hence, by means of this training, the connection weights are stored and the network 
becomes able to predict the response for other input points not present in the training set.  

 It is common procedure to separate input-output data in two groups: training and validation 
data. The validation process consists in verifying network error for the validation points, for which 
the exact response is known. Validation is used between epochs, in order to halt the training process 
if the network error starts to increase due to overfitting. Separation of the input-output data in 
training and validation sets reduces the amount of information available for training the network, 
but helps to avoid problems of overfitting. In the present implementation, 10% of the available 
input-output information was employed in the validation set (the validation data is always randomly 
selected).  

 Some input-output information can also be separated to be used as test set, in order to verify 
the networks predicting capacity at the end of training. However, in the present application the 
network is updated in an interactive manner; hence no testing set was used.  

 Two types of ANN were implemented in this article: Multi-layer Perceptron or MLP and 
Radial Basis Function or RBF. MLP is generally better to represent the global response, whereas 
RBF generally yields better local approximations. Details of these two neural networks are 
presented in the sequence.  

 
3.3 Multi-Layer Perceptron ANN 

The Multi-Layer Perceptron (MLP) is a type of feed-forward artificial neural network, built 
with one entry layer (one neuron for each input parameter), one output layer (one neuron for each 
output parameter) and an arbitrary number of intermediate (hidden) layers. 

 Multilayer feed-forward networks with as few as a single hidden layer can approximate any 
arbitrary function and its derivatives through an appropriate choice of activation functions and 
number of neurons in each layer. Hence, in the present implementation only one hidden layer was 
employed. The number of neurons (n2) in this layer follows the Kolmogorov-Nielsen theorem: 

 
       2n 2 n m 1                              (9) 

 
where m is the number of optimization variables and  is the number of random variables of the 
problem. Hence, the number of neurons in the hidden layer is equal to twice the number of input 
parameters plus one. As the only output parameter is the value of the objective function, the output 
layer contains a single neuron. 

 The type of neuron in each layer is defined by the chosen activation functions. Linear 
activation functions were used for the input and output layers, and tangent-sigmoid neurons were 
chosen for the  hidden layer. In feed-forward networks, data is transmitted from the input layer to 
the output layer. Input data is first processed by the neurons in the input layer. Each neuron receives 
one element of the input vector and transmits an impulse to all neurons of the next layer. As the 
activation function of the input layer is linear, input values are simply passed on to the neurons in 
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the next layer. In the passage, each value is multiplied by a given weight, which characterizes the 
connection between neurons of the layers; hence a weighted sum is passed to the hidden layer 
neurons. A bias factor is added to the weighted sum which allows, for instance,  a neuron to be 
activated even when a null value is passed to it. The resulting value is processed by the activation 
function of the neuron, returning a value between -1 and +1 (case of the tangent sigmoid function), 
which is transmitted to the output neuron. The output neuron adds its own bias to the weighted sum 
he receives and returns the output value for the input data provided to the network. The weights 
which characterize the connection between the neurons and the bias of each neuron are the network 
parameters to be determined when the network is trained.  

 Let wij
(k) be the weight between neuron i of layer k and neuron j of layer k-1, θi

(k) be the bias 
factor of neuron i of layer k, and yexp be a vector of input data. Then, the output of a three-layer 
MLP network with nk neurons in the kth layer is, for this case: 

 

   
2 1n n

net (3) (3) (2) (2) exp
1 i1 i ji j

i 1 j 1

y θ w tansig θ w y
 

  
         

                          (10) 

 
where ynet is the network output and tansig(.) is the tangent sigmoid function.  

 In this paper the MLP network is trained by using the so-called Levenberg-Marquardt 
method,  a modification of the Gauss-Newton method based on the least squares method for 
nonlinear models. Like quasi-Newton methods, this method was designed to approach second-order 
training speed using an approximation of the Hessian matrix, without calculation of the Hessian 
matrix itself. The parameters of the ANN are adjusted in the opposite direction to the gradient of the 
error function, in an attempt to decrease this error at each iteration (epoch). 

 
3.4 Radial Basis Function ANN 

 Radial Basis Function networks (RBF) are always formed by three neuron layers: input, 
intermediary and output layers. RBF are also feed-forward networks: information is transmitted 
from the neurons in one layer to all neurons in the next layer. In RBF, each neuron in the 
intermediate layer has a radial basis function as its activation function, whereas neurons on other 
layers have linear activation functions. The Gaussian activation function is frequently adopted in 
the literature and is also adopted in the present study.  

 Let wij
(3) be the weight between neuron 1 of layer 3 and neuron i of layer 2, cci and σi be the 

central value and the standard deviation of the ith neuron of the intermediate layer, and yexp be a 
vector of input data. Then, the output of an RBF network with nk neurons in the kth layer is:  

 

     
2 1n n

2net (3) (3) exp
1 i1 j i2

i 1 j 1i

1
y θ w exp y cc

σ 

 
     

 
                      (11) 

 
where cci and σi, as well as weights wi1

(3)  and bias θ1
(3) are the network parameters to be 

determined during training.  
The number of neurons in the input and output layers are determined by the dimensions of the 

input and output vectors, respectively. The number of neurons in the intermediate layer is flexible, 
and it was chosen in such a way as to result in nearly the same number of network parameters of the 
MLP network. Hence, the computational cost for each training epoch is equivalent for both 
networks. The number of training epochs, however, is controlled by the validation test, and can be 
different for each network. In choosing the number of neurons in the intermediate layer, the size of 
the training data set was also considered, in order to avoid overfitting. Hence, the number of 
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neurons in the intermediate layer of the RBF network was set as the smallest value between 3/4 of 
total dataset size and 5/6 of the size of the training data set. The main objective was to avoid having 
more neurons than data points. 

Training of a RBF network is made in two stages: first, the centers and standard deviations of 
the radial basis functions are found, in such a way that each neuron is trained to represent a given 
region of the design space; then, the weights and bias are found, calibrating the network output and 
reducing its prediction error.  

 In the present article, several training methods were attempted: system of linear equations, 
generalized delta rule, among others. Good results were obtained with training of the intermediate 
layer using the k-means clustering method; weights and bias were adjusted using the Levenberg-
Marquardt method. 

 

4 HYBRID PARTICLE SWARM ALGORITHM 

In this article, a hybrid BFGS - Particle Swarm Optimization (PSO) algorithm is used to find 
the global optimum. The hybrid algorithm is constructed in such a way as to combine the 
robustness of PSO in finding the global minimum, with the efficiency of the BFGS algorithm in 
finding the local minimum, once the region of the global minimum is identified. Hence, the search 
starts with the PSO algorithm, and the region where the global minimum is located is identified. A 
transition strategy is used to stop the heuristic algorithm and proceed with the local optimization. 
The detailed algorithm is described in Beck & Gomes [20]. However, in that article the Powel 
method is used as a local optimizer; in the current implementation, the BFGS method is used as 
local optimization algorithm. 

There are different ways in which a surrogate model can be employed in order to aid solution 
of an optimization problem. For instance, the surrogate model can be used to replace the 
mechanical response of the structure or it can be used to replace the objective function. Many 
authors choose the first option, but in this work, surrogate models are used directly to represent the 
objective function (Eq. 7). When using surrogate models to approximate the mechanical response, 
the approximation error can be propagated in evaluation of the objective function; as a result, one 
has no control of the error in the objective function. Using surrogate models to approximate the 
objective function directly, one has a proper estimate of the error in the objective function. 
Moreover, the computational cost of training the networks is justified by the fact that each call to 
the surrogate objective function avoids several calls to the mechanical model. Recall that the 
parameters of a surrogate model for the objective function, in risk optimization problems, are the 
optimization variables d and the random variables X. 

The size of the ANN training data set is an important variable, which was found to 
significantly affect accuracy and efficiency of the response. The size of the data set must be pre-
defined by the user, and basically depends on the complexity of the model being represented (more 
complex models requiring larger data sets). The size of the training data set is independent of the 
PSO population size. 

Some authors choose to use the surrogate model only after the first heuristic/global 
optimization iteration is complete. In this paper, once the first 100 data points are obtained, the 
network is trained and the error is evaluated. If the estimated error is below the acceptable value 
(0.05), the network is ready to be used by the algorithm: objective function evaluations are replaced 
by evaluations of the neural network surrogates. Hence, the network can be employed even in the 
first PSO iteration.  

For updating the position of each particle, objective functions can be evaluated in three ways: 
using one of the two surrogate model approximations or the "exact" objective function. If the ANN 
error is below the acceptable value, than the objective function approximation at the new position is 
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the solution provided by the network presenting the smallest (estimated) validation error. If the new 
objective function value is smaller than the current value for that particle (particle solution is 
improving), than the surrogate solution is dismissed and the "exact" objective function is evaluated. 
If not, than the surrogate solution is accepted. This increases accuracy of the network surrogate, as 
the network will be re-trained using exact solutions which are likely closer to local or global 
optima. This also increases robustness of the optimization algorithm, as it avoids a particle to be 
influenced by a solution which was evaluated only through the surrogate model. In addition, a small 
percentage (20% in this paper) of the candidate solutions are randomly selected to be evaluated in 
exact form.  

Training of the neural networks is made iteratively, during the search for the global optimum. 
For each new set of ten exactly computed data points, the networks are re-trained, increasing the 
size of the training set. Once the user-specified (maximum) training set size is achieved, the ten 
worst data points from the training set are discarded, and replaced by the ten new points. However, 
new data points are only included in the training set if their objective function values are smaller 
than the objective function values of the existing training set. This warrants that the surrogate 
models will have better accuracy at the regions of interest (close to local or global minima). For the 
initial training, one hundred training epochs are allowed; for the remaining trainings only five 
epochs are allowed. However, training can be interrupted earlier, by force of the validation process. 

Since the output range of the tangent-sigmoid function is [-1 1], output data has to be mapped 
to match output range of the physical problem. In this paper, the normalizing mapping procedure 
for minima and maxima was used. Validation and training errors were evaluated in transformed 
space, as the root-mean square errors for the respective samples. The acceptable validation error 
was set to 0.05. 

Neural networks are used in the following to aid solution of global optimization problems. 
Some local optimization problems are also solved, using the BFGS algorithm; for these problems 
no networks are used. 

 

5 EXAMPLE: POWERLINE TOWER SUBJECT TO RANDOM WIND LOADS  

5.1 Problem definition and limit state 

 The problem considered herein is based on a problem solved by Hansen & Vanderplaats 
[29]. A steel frame transmission line tower is optimized with respect to its configuration (nodal 
positions) and member size (cross-sectional area). Hansen & Vanderplaats [29] considered only the 
loads originating from the weight of the cables. However, one of the largest sources of uncertainty 
in the behavior of such towers arises from random wind loads. Hence, random wind loads are 
incorporated in the current analysis. 

In ref. [29] the mechanical problem was modeled using truss elements, with restrictions in 
terms of tensile stresses or Euler buckling stresses. In the present paper, beam elements with L-
shaped cross sections are used. A positional finite element formulation is employed, which allows 
physical and geometrical non-linearities to be considered. The beam elements used have three 
nodes: two extreme and a central node and 3 d.o.f. per node. The material is assumed elastic-
perfectly plastic, and the limit state function for tower collapse is obtained from the load-
displacement diagram (Figure 1). The limit state function must be robust with respect to the 
different structural configurations that are tested by the global optimization algorithm, and must 
take into account the non-linear behavior before failure. The FE algorithm which was used had no 
special capabilities to find the limit load from the load-displacement diagram. Hence, the "collapse" 
failure criterion was written in terms of the angle of the load-displacement curve: 
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       o, 75g atan
L

     
x d              (12) 

 
where Δδ is an increment in mean displacement (between nodes 17 and 22), measured in cm, and 
ΔL is an  increment in the non-dimensional load factor, which is calculated from mean loads. In 
Figure 1 it can be observed that this does not quite correspond to the collapse load, but it is a robust 
criterion which takes into account the non-linear behavior before collapse. For critical angles larger 
than 75o, numerical difficulties were encountered.  
 

 

Figure 1: Load-displacement diagram for the tower (load factor x tip displacement). 

 
5.2 Desing variables and random variables 

The finite element model of the tower contains 47 beam elements and 69 nodes, with 207 
total number of degrees of freedom. This particular FE model is not too expensive to evaluate, but it 
is a proper model to solve the proposed real structural engineering problem. Optimization variables 
are the x and y coordinates of the nodes, and the cross-sectional areas of the elements. The nodes 
holding the cables are fixed; hence their coordinates are not optimization variables. Moreover, 
tower symmetry is considered in definition of the optimization variables, since the direction of the 
wind action is arbitrary. Hence, the problem contains 44 optimization variables and m=dim[d]=44. 

As mentioned, solving global optimization problems presents an extra difficulty which is the 
evaluation of (FE) responses for structural configurations which are far from conventional. This 
concern must be balanced with the necessity of imposing the least restrictions possible, in order to 
render the obtained solution a true global optimum. Our concern for imposing the least restrictive 
bounds on the design variables, but still rendering the numerical  models tractable, resulted in the 
following bounds for the optimization variables: 50% less and 25% more for the cross-sectional 
areas and  ±20 cm for the nodal coordinates (with reference to the initial configuration).  

Another particularity of applying heuristic methods for the solution of real engineering 
problems (large number of design variables and high computational cost) is that it is impossible to 
cover the whole design space, due to processing time limits, convergence problems and numerical 
instabilities. Hence, initialization methods different to the usual are required. In this study, PSO 
particles were initialized by applying random perturbations within the bounds for each of the design 
variables. This way, different structural configurations are tested, but none of them too far from 
conventional design configurations.  
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5.3 Objective functions and preliminary results 

The problem was solved in several steps, in order to provide the best possible initial 
configuration for the more demanding optimizations tasks. Hence, the problem was first solved 
with the objective function of minimizing volume of steel (Cini), starting with the optimal 
configuration of ref. [29]: 

    Vanderplaats
1

( ) ( ) $;   ( )
elemn

ini i ref ini
i

C V C C


  d d d                     (13) 

 
where Vi is volume of the ith element, ρ is steel density and $ is the unit cost of material. The initial, 
reference cost (Cref) was assumed as the cost of steel for the Vanderplaats [29] configuration. The 
cost of one kg of steel was assumed as one monetary unit. This first problem was solved using only 
the BFGS algorithm (BFGS_DET), and using a safety coefficient of two for the critical 
displacement.  

 For the risk optimization problem, the objective function is the minimization of total 
expected costs. This includes initial costs and expected costs of failure (Cef) which is evaluated as: 

 

     efC ( ) 100 2 ( ) ( )ref ref ini fC C C P  d d d                     (14) 

 
where Cini is the initial cost (of re-building the failed tower), the cost of removal of the failed tower 
is 2Cref and the penalty for interruption of energy supply is 100Cref. The initial cost is a function of 
the optimization variables (nodal coordinates and cross-sectional areas). The total expected cost is 
given as: 

     et ef iniC ( ) C ( ) C ( ) d d d                         (15) 

 
The second optimization problem is solved only using the BFGS method (BFGS_RISK).  
Starting from the solution of the local deterministic optimization problem (BFGS_DET), four 

global optimization runs where obtained, all using the hybrid (PSSB) algorithm and: 
1. no surrogate models (PSSB_noSUR); 
2. the RBF surrogate model only (PSSB_RBF); 
3. the MLP surrogate model only (PSSB_MLP); 
4. both surrogate models (PSSB_SURR). 

 
5.4 Overview of results 

The solutions to the local deterministic (BFGS_DET), local risk (BFGS_RISK) and global 
structural optimizations are compared Table 1. In Tables 1, the abbreviations are as follows: value 
of objective function (OBJ_F), number of calls to mechanical model (NC_ME) and computation 
time (TIME) in seconds. 

The local deterministic optimal configuration has a steel mass of 837 kg, a failure probability 
of 8.91 10-4, and total expected cost of 914 monetary units (m.u.), as shown in Table 1. This 
configuration was used as starting point for all the other optimization analyses.  

The optimum results for the local risk optimization problem (BFGS_RISK) are also shown in 
Table 1. In comparison with the local deterministic solution, the risk optimization optimum has 
wider columns but narrower braces and battens. The total expected cost for the optimum risk 
optimization solution is 799 m.u., hence 5% less than for the deterministic volume minimization 
problem.  
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Table 1. Results for local and global risk optimization  

analyses, with and without ANN surrogates.    _______________________________________________________ 
     OBJ_F  NC_ME  TIME (sec) 
   BFGS_DET 837  479  15 
   BFGS_RISK 799  21,034  625 
   PSSB_noSUR*  726(  -9%)† 96,648  14,276 
   PSSB_MLP* 712(-11%)† 64,854(-33%) ד   11,475(-20%) ד   
   PSSB_RBF* 716(-10%)† 67,110(-31%) ד     7,120(-50%) ד   
   PSSB_SURR* 730(  -9%)† 62,379(-35%) ד     8,770(-39%) ד   
   _______________________________________________________ 
   *Mean values for three runs. 
   † reduction with respect to BFGS_RISK solution; 
 .reduction with respect to PSSB_noSUR solution ד   
 

It can be observed in Table 1 that results for the global risk optimization analysis are 9% 
better than results for the local risk optimization, in terms of objective function value. This result by 
itself justifies use of global optimization algorithms. However, this improvement comes at a 
significant increase in computational cost. In the global solution, the number of calls to the 
mechanical model increased 359% and the computation time increased 2184% with respect to the 
local risk optimization solution. The computation time increases much more than the number of 
calls to the mechanical model because each non-linear finite element solution requires several load 
steps for convergence of the Newton-Raphson algorithm. Moreover, the global PSO search tests 
weird structural configurations, which take more Newton-Raphson interactions for convergence 
than more conventional structural configurations. The challenge of using ANN surrogates for the 
objective function response is to obtain the same reduction in objective function but at a fraction of 
the computational cost of the direct solution using no surrogates. 

The optimum structural configuration for the PSSB_noSUR solution is presented in Figure 2. 
 

 

Figure 2: Optimum structural configuration for global risk optimization solution (PSSB_noSUR). 
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5.5 Results using ANN surrogates with 150 training points 

Results for the three global risk optimization runs using ANN surrogates were found to be 
dependent on the size of the training data sets of the surrogate models. Clearly, more training points 
add to the accuracy of the surrogate model representation, but could also lead to worst performance, 
since the training process becomes more involved. Hence, the ideal size of the training data set does 
not depend only on the complexity of the system response being modelled, but also on the 
computational cost of the exact numerical solution. A complete investigation of the response 
dependency with respect to the size of the training data set will be subject of future research. In this 
paper, results are presented for ANN with 150 training points. Results presented herein are the 
mean values for three runs of each algorithm.  

Table 1 summarizes results obtained for the global optimization analysis using ANN 
surrogates with 150 training points. It can be readily observed that the solutions using the ANN 
surrogates is more efficient than the original global risk optimization solution with no surrogates. 
The objective function values are around 10% less than results for the local solution, but 
computational costs are much smaller. In comparison to the global solution with no surrogates, the 
third column of Table 1 lists the number of mechanical model calls and the percentage of calls 
avoided by use of surrogate models, w.r.t. the PSSB_soSUR solution. It is observed that the 
reduction is not drastic, but significant. There is also an associated reduction in the computation 
time, although this gain does not vary linearly with the reduction in mechanical model calls. This is 
due to the computational cost of training the different networks, but also to the fact that not all calls 
to the mechanical model have the same computational cost. The gain in terms of mechanical model 
calls is considered more significant than the reduction in computation time because the finite 
element model of the tower is not too expensive, and the FE computation cost is not much smaller 
than the costs for training and evaluating the neural networks. 

Use of a combination of two surrogate models resulted in a slight gain in performance 
(reduction of mechanical model calls), when compared to the isolated MLP and RBF networks. 
However, the reduction in objective function value was not as large for the combined network use. 

The optimum structural configuration for the PSSB_SUR solution is presented in Figure 3. 
 

 

Figure 3: Optimum structural configuration for global risk optimization solution (PSSB_SURR). 
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6 CONCLUDING REMARKS 

This article has addressed some challenges in solving real structural optimization problems in 
consideration of uncertainties. The investigation proposed to advance in four areas often 
(individually) neglected in the published literature: a. incorporation of geometrical and material 
nonlinearities in structural response; b.  consideration of a proper number of design variables; c. 
solution for the global minima and d. consideration of the expected consequences of failure. These 
areas, in combination with large FE models, characterize the scope of real structural engineering 
optimization problems. 

The article presented a practical problem of optimization of a steel frame transmission line 
tower subject to random wind loads. With respect to the objectives listed above, the total number of 
d.o.f. was not very large, but still sufficient to illustrate the challenges to solving a real structural 
optimization problem under uncertainties.  

It was shown that, when uncertainties are relevant, optimum (minimum cost) design can only 
be achieved by considering the expected consequences of failure. This has been called risk 
optimization. It was argued that risk optimization problems present multiple local minima, hence 
global optimization algorithms become necessary. Indeed, the risk optimization problem was first 
solved using a local optimization algorithm. Starting from this local optimum, the objective 
function was reduced by another 10% by solving the global optimization problem. The 
computational cost, however, increased dramatically.  

Artificial Neural Networks were employed as surrogates for the objective function, 
significantly reducing the computational effort. Reductions of the order of 23 to 31% were obtained 
in the required number of mechanical model calls by using RBF networks. MLP networks led to 
larger reductions, between 33 and 48%. Using a combination of both networks led to reductions 
between 35 and 43% in the required number of mechanical model calls. These reductions in 
computational effort caused no prejudice to global optimum objective function values. 

It was observed that the performance of ANN surrogates is highly dependent on the size of 
training data sets. A throughout investigation of these effects will be the subject of future research. 
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