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ABSTRACT 

Combining the static approach of limit analysis and the periodic homogenization theory, the present paper is 
concerned with the assessment of the strength properties of steel fiber reinforced concrete (FRC). The macroscopic 
strength criterion for FRC can be theoretically obtained from the knowledge of the strength properties of the individual 
constituents, namely, concrete matrix and fibers. Adopting a Drucker-Prager failure condition for the concrete matrix 
and assuming a simplified geometrical model for fiber orientations and length, an approximate static-based model is 
formulated for the overall strength properties. Explicit analytical expressions have been derived emphasizing the 
reinforcing contribution of fiber addition. Additionally, numerical solutions are computed by means of finite element 
tool implementing an elastoplastic step-by-step algorithm. The main objective of the numerical approach is twofold: 
qualify the relevance of the analytical results and investigate the influence of real fiber morphology on the composite 
strength properties. 
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1 INTRODUCTION 

Evaluating the strength properties of materials remains fundamental concern in material and 
structural engineering, either for appropriate material use or for correct consideration in projects, 
design and verification stages. The strength capacities are classically characterized by the strength 
convex which defines the set of admissible stresses. Its determination is an important issue in 
material modeling. 

As for most conventional materials, the concrete strength and behavior under multiaxial stress 
states have been experimentally and theoretically studied for several decades. These characteristics 
are mainly influenced by the physical and mechanical properties of aggregate and cement paste. In 
the case of fiber reinforced concrete (FRC), there are few experimental and analytical studies aimed 



IV International Symposium on Solid Mechanics - MecSol 2013 
April 18 - 19, 2013 - Porto Alegre - Brazil 

 

 
2 
 

at establishing its behavior under complex stress states. Experimental studies performed by [1-5] 
sought to evaluate the steel FRC (SFRC) behavior under biaxial compression. These studies showed 
that the reinforced concrete has a failure curve distinct than the concrete matrix and the increase in 
the biaxial compression strength due to the fibers addition can reveal quite significant. In parallel to 
these experimental studies, the works of [6-8] were devoted to characterize the SFRC strength using 
empirical models, which allow estimating the strength of the concrete matrix reinforced by short 
fibers. 

The limit analysis theory provides powerful tools for the assessment of the strength capacities 
of heterogeneous materials. Unlike elastoplastic analyses, application of limit analysis theorems 
leads to a straightforward approach to limit stress states of a structure since it does not involve a 
step by step analysis along the whole loading process. Limit analysis reasoning applied in the 
context of homogenization provides an appropriate framework for the formulation of macroscopic 
strength properties of a heterogeneous medium [9,10]. 

In this context, the purpose of this study is twofold. First, it formulates a simplified setting for 
analytical assessment of the homogenized strength properties of SFRC. Second, it presents finite 
element solutions obtained from elastoplastic step-by-step calculations that allow for assessing the 
accuracy of the simplified analytical predictions. 

 

2 MACROSCOPIC STRENGTH DOMAIN 

The aim of this section is to describe a simplified setting for fibers orientation and length that 
provides a periodic approximation of the SFRC microstructure. Then, combining the static 
approach of limit analysis and homogenization of periodic media, an approximate model for 
strength properties of SFRC is determined. 

 
2.1 Matrix reinforced by long fibers in three direction 

The determination of the macroscopic strength domain homG  of a heterogeneous medium 
results from the resolution of a limit analysis problem defined on the representative elementary 
volume (REV) of the considered composite [9,10]. It requires solely the knowledge of the strength 
properties of the individual constituents (i.e., the matrix, fibers and fiber/matrix interface), together 
with the description of geometry, orientation and volume fraction of each constituent. 

SFRC is a heterogeneous medium with random microstructure (Figure 1(a)) formed by a 
cementitious matrix and an isotropic distribution of short fibers. The strength properties of this kind 
of composite are expected to be isotropic. In what follows, f  will refer to the volume fraction of 
fiber, l  to the length of fiber and d  to the diameter of fiber. The parameter /l d  is the aspect ratio 
of fibers. 

 

 

Figure 1: Representative elementary volume of SFRC and simplified periodic cell. 



IV International Symposium on Solid Mechanics - MecSol 2013 
April 18 - 19, 2013 - Porto Alegre - Brazil 

 

 
3 
 

 
In the subsequent analysis, fundamental assumptions related to the geometry and orientation 

of fiber are introduced. More precisely, the approach is based on the heuristic consideration that the 
macroscopic strength domain of SFRC can be evaluated by approximating the microstructure of 
SFRC by means of a fictitious periodic medium. The latter is defined by the concrete matrix 
reinforced by a discrete distribution of long fibers arranged following p  orientations of the space 
as sketched in Figure 1(b). Clearly enough, the higher is the number of fiber orientations p , the 

better is the estimate of homG . In particular, the obtained strength domain will tend to isotropy when 
increasing the value of p . However, in such a simplified model disregards a priori the effect of 
fiber aspect ratio on the strength properties of SFRC. 

The calibration of the model, that is the correlation between the characteristics of the 
simplified geometrical model and those of SFRC, remains a crucial issue. In other words, what 
values of the strength parameters or volume fraction should be attributed to a given fiber set 
following the corresponding orientation. Mechanical properties of fiber reinforced composite, such 
as elastic or strength properties, are expected to depend on the aspect ratio of fibers and to tend 
toward asymptotic value as the aspect ratio increases [11]. The influence of the aspect ratio /l d  on 
the composite strength properties can be evaluated from experimental data or numerical 
simulations. Since the effect of the aspect ratio is disregarded in the simplified approach, 
comparison of experimental or numerical results with the prediction of the analytical model 
developed in the sequel should theoretically provide guidelines for the calibration of the simplified 
model. 

 
2.2 Macroscopic strength domain of a Matrix reinforced by long fibers 

The situation depicted in Figure 1(b) refers to a periodic microstructure. The latter is 
completely described by the unit cell A . The determination of the macroscopic strength domain 

homG  of the periodic heterogeneous material reduces to solving a limit analysis problem defined on 
the aforementioned unit cell: 

 

          hom
0, 0, ,

( ) , ( ) 1,m m f f

div n n antiperiodic
G such that

x G x x G x f p

 σ = σ ⋅ = Σ = σ σ⋅Σ∈ ⇔ ∃σ 
σ ∈ ∀ ∈ σ ∈ ∀ ∈ =

� �
� �� �

A� A�
  (1) 

 
where Σ  and σ  represent respectively the macroscopic and microscopic stress fields. m

A� and f
A� 

are the geometric domains occupied respectively by the matrix and fiber {1, , }f p∈ … . mG  

(respectively, fG ) denotes the material strength domain at the current point mx ∈A  (respectively, 
f
A�). Tensor σ� �� �� �  represents the jump of σ  when crossing any possible stress discontinuity 

surface with local normal n . In this case (Eq. (1)), it is being considered perfect bonding at the 
fiber/matrix interface, which is equivalent to consider the material of the fiber/matrix interface with 
infinite strength. 

A static estimate of convex homG  can by derived by considering a piecewise homogeneous 
stress field complying with the required equilibrium and strength conditions, similarly to the 
approach proposed in de [12]. This stress distribution provides a lower bound estimate hom

sG  of 
homG , defined as 
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                    hom
1

f

{1, , }

p
m f

f ff hom
fs

m mm f f
f f

e e
G G

G and e e G f p

=

 
Σ = σ + σ ⊗ 

= ⊂ 
 σ ∈ σ + σ ⊗ ∈ ∀ ∈ 

∑

…

  (2) 

 
In the above equation, the unit vector fe  defines the orientation of fiber number {1, , }f p∈ …  

and the parameter f f  is the volume fraction of the fiber oriented following fe , i.e., ff /f= A� A�. 

The quantity 
p

f
f 1

f f
=

=∑  represents the total reinforcement volume fraction. 

In the particular situation of small reinforcement fraction, defined by ff 1<< , and the strength 

properties of fibers much higher than the matrix, i.e. f mG >> G , [12] showed the following 
fundamental result: 

 

                                  hom hom
1

, [ , ]

p
m

f ff
fs

m m
f f f

e e
G G

G

=

− +

 
Σ = σ + σ ⊗ 

=  
 σ ∈ σ ∈ σ σ 

∑
≃

ɶ ɶ

  (3) 

 
where ff f f

+ +σ = σɶ  and ff f f
− −σ = σɶ  represent respectively the fiber uniaxial tensile and compressive 

strengths per unit transverse area. Parameters f
+σ  and f

−σ  are respectively the tensile and 

compressive strengths of fiber constitutive material. 
In what follows, we shall restrict the study to the particular situation in which the SFRC is 

modeled by means of concrete matrix reinforced by a tri-directional array ( 3p = ) of mutually 
orthogonal fibers, oriented following the axes of a reference frame Oxyz . It is emphasized that the 

approximation hom hom
sG G≃  given in Eq. (3) holds for the case of SFRC. Indeed, the amount of 

steel fibers is in practice very small ( 5%f < ), and the strength of steel can be considered as 
sufficiently higher than that of concrete. 

Geometrically, the strength domain homG  for the composite reinforced by a tri-directional 
array of mutually perpendicular fibers can be interpreted in the space 

{ }6 , , , , ,xx yy zz xy xz yz= Σ Σ Σ Σ Σ Σℝ  of macroscopic stresses as the convex envelope of eight domains 

obtained by translating the matrix strength domain by algebraic distances x xf −σ  and x xf +σ  along the 

xxΣ -axis, y yf −σ  and y yf +σ  along the yyΣ -axis and z zf −σ  and z zf +σ  along the zzΣ -axis [13]. These 

translations in the space of macroscopic stresses are the expression of the reinforcement due to the 
presence of fibers. Thereby, one can identify zones along the boundary of homG  where one, two or 
three of the stress parameters fσ , { , , }f x y z∈ , has one or other of its limit values. Zones identified 

as A  are those in which only one stress parameter (x y z, orσ σ σ ) has a limit value whilst zones B  

and C  are those in which two and three parameters, respectively, have a limit value. 
The strength domains mG  and homG  of the matrix and composite can be conveniently defined 

by means of associated strength criterion mF  and homF , respectively: 
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3

hom
1( ) 0

( ) 0, , ,

m
f ff

i

mm
f f

e e
F

F I f x y z

=

 Σ = σ + σ ⊗Σ ≤ ⇔ 
 σ ≤ σ ∈ =

∑
  (4) 

 

with ,f f fI − + = σ σ ɶ ɶ , recalling that ff f f
± ±σ = σɶ . 

From a mathematical viewpoint, the expression of hom( )F Σ  is obtained by the following 

minimization process with respect to constrained parameters xσ , yσ  and zσ  

 

                              
f f

hom m
x x y y z zx y zI f x,y,z

F ( ) min F ( e e e e e e )
σ ∈ =

Σ = Σ − σ ⊗ − σ ⊗ − σ ⊗   (5) 

 

Denoting by 
o

,] [f f fI − += σ σɶ ɶ
 
and { },f f fI − +∂ = σ σɶ ɶ , the following situations can be identified: 

• The situation defined by f fIσ ∈∂  for the three fiber stress parameters. In this situation, the 

expression of hom( )F Σ  is given by 

 

                            hom m
x x y y z zx y zF ( ) F ( e e e e e e )Σ = Σ − σ ⊗ − σ ⊗ − σ ⊗   (6) 

 
since the values of all stress parameters are fixed: x x

±σ = σɶ , y y
±σ = σɶ  and z z

±σ = σɶ . This situation 

refers to zones C along the boundary of homG . 
• The situations when two of the three stress parameters have a limit value: 

o

( , , )zx x y y zI I Iσ ∈∂ σ ∈∂ σ ∈  and circular permutations of x , y  and z . Since, for instance, 

xσ  is fixed to x
+σɶ  or x

−σɶ  and yσ  to y
+σɶ  or y

−σɶ , hom( )F Σ  results from solving: 

 

                             ( ) 0
m

x x y y z zx y z
zz

F
e e e e e e

∂ Σ − σ ⊗ − σ ⊗ − σ ⊗ =
∂σ

  (7) 

 
with respect to zσ . This situation refers to zones B along the boundary of homG . 

• The situations when only one of the stress parameters has a limit value: 
o o

, ,y zx x y zI I I σ ∈∂ σ ∈ σ ∈ 
 

 and circular permutations of x , y  and z . The expression of 

hom( )F Σ  is obtained by solving: 

 

                            ( ) 0, ,
m

x x y y z zx y z
ii

F
e e e e e e with i y z

σ
∂ Σ − σ ⊗ − σ ⊗ − σ ⊗ = =
∂

  (8) 
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with respect to yσ  and zσ , the parameter xσ  being fixed to x
+σɶ  or x

−σɶ . The complementary cases 

are obtained by circular permutation. This situation refers to zones A along the boundary of homG . 

• The last situation is defined by 
o o o

( , , )x y zx y zI I Iσ ∈ σ ∈ σ ∈ . The strength criterion is obtained 

by solving, with respect to parameters xσ , yσ  and zσ , the following system: 

 

                            ( ) 0, , ,
m

x x y y z zx y z
ii

F
e e e e e e with i x y z

σ
∂ Σ − σ ⊗ − σ ⊗ − σ ⊗ = =
∂

  (9) 

 
2.3 The case of a Drucker-Prager matrix 

The strength capacities of the concrete matrix are assumed to be described by a Drucker-
Prager. The Drucker-Prager criterion may be expressed in the following form: 

 

                                      ( )m 3
m m m2F ( ) s tr 0σ = + α σ − σ − σ ≤   (10) 

 

where 
1

2s (s :s)=  is the norm of the deviatoric stress tensor s dev( )= σ . The material parameter 

mσ  represents the uniaxial tensile strength. Scalar mα  is a non-dimensional parameter ranging 

between 0 and 1, which accounts for the criterion dependence on the hydrostatic stress. 

Observing that 3
2

/ || || 1
mF

ms sσ α∂
∂ = + , Eq. (7) corresponding to the boundary B of homG  leads 

to the following minimizing parameter that defines the fiber stress parameter zσ : 

 

          ( ) ( ) ( )
2

0 2

2

3 2 3
: ( )

2 3 3 2 21

x y x ym
z zz zz x y xx yy

m

S S S S S S
σ σ σ σασ σ σ

α

 + − = + + − + − − − − 
 

  (11) 

 
where S dev( )= Σ  is the deviatoric part of the macroscopic stress tensor. Taking into account the 

restriction 
o

zz Iσ ∈ , this parameters is thus given by 

 

                                  

0
z z z z z

0 0
z z z

0
z z z z z

with f and fx x x y y y

or f and fx x x y y y

f if f

( ) if

f if f

zI

− −

+ +

+ −
σ = σ σ = σ

− +
σ = σ σ = σ

 σ σ ≤ σ

σ Σ = σ σ ∈

 σ σ ≥ σ

  (12) 

 
The remaining zones B  are obtained by proceeding to circular permutations of x , y  and z  

in the above Eq. (11) and (12). 
As regards the zones A of the boundary of homG , the system of Eq. (8) yields: 

 



IV International Symposium on Solid Mechanics - MecSol 2013 
April 18 - 19, 2013 - Porto Alegre - Brazil 

 

 
7 
 

                                  

0 2 2 2

2

0 2 2 2

2

2 2 3
1 4

2 2 3
1 4

m
y yy zz x xy xz yz

m

m
z zz yy x xy xz yz

m

S S S S S

S S S S S

ασ σ
α

ασ σ
α

 = + + + + + −

 = + + + + +
 −

  (13) 

 

xσ  being fixed to x
+σɶ  or x

−σɶ . Restrictions 
o

yy Iσ ∈  and 
o

zz Iσ ∈  impose thus 

 

     

0
y y y y y

0 0
y y y y

0
y y y y y

with fx x x

f if f

( ) if I

f if f

− −

+ +

+
σ = σ

 σ σ ≤ σ
σ Σ = σ σ ∈
 σ σ ≥ σ

 and 

0
z z z y z

0 0
z z y y

0
z z z z z

with fx x x

f if f

( ) if I

f if f

− −

+ +

+
σ = σ

 σ σ ≤ σ
σ Σ = σ σ ∈
 σ σ ≥ σ

  (14) 

 
The remaining zones A  are obtained by circular permutations of x , y  and z  in the above 

equations (13 and 14). 
The last situation is that where all stress parameters { }, , ,f f x y zσ ∈  have no limit value. In 

this case, the stress parameters { }, , ,f f x y zσ ∈  solutions to system (9) are obtained after some 

mathematical developments 

 

                                             0 m
f ff m

m

1
f x, y,z

3

+ ασ = Σ − σ =
α

  (15) 

 
The corresponding regions of convex homG are obtained by taking the projection of each one 

of the stress parameters 0fσ  onto interval fI : 
f

0
IPr oj ( )f fσ σ= . This situation can occur only for 

macroscopic stress states such that xy xz yzΣ = Σ = Σ = 0 . The strength conditions reduces that to 

 

                                             
1 1

, ,
3 3

m m
f m ff f m

m m

f x y z− ++ α + ασ + σ ≤ Σ ≤ σ + σ =
α α

ɶ ɶ   (16) 

 

3 FINITE ELEMENT NUMERICAL SIMULATIONS 

In the simplified setting defined in section 2, an analytical estimate of the strength capacities 
of SFRC has been derived. The latter is based on the fundamental approximation that the 
reinforcing effects of fibers can be evaluated by considering three orthogonal families for fiber 
orientation. This is clearly a strong simplification since in SFRC the fiber distribution is rather 
isotropic. In order to evaluate the relevancy and accuracy of such approximation on the effective 
strength properties of SFRC, finite element simulations are performed on a REV of cement matrix 
reinforced by randomly distributed short fibers. The macroscopic limit stress states are evaluated by 
means of step-by-step elastoplastic analysis until the free plastic flow of the structure is reached. 

A cubic REV Ω  of side VER2l  is considered (Figure 2). Symmetry with respect to mid-planes 

0x = , 0y =  and 0z = , is assumed for the spatial distribution of fibers. A biaxial macroscopic 
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stress solicitation x x y yI IIe e e eΣ = Σ ⊗ + Σ ⊗  is simulated by imposing the following mixed 

conditions on the boundary of the REV: (a) stress-free conditions on the horizontal faces VERz l= ±  

and (b) frictionless interface conditions on the vertical sides, along which the normal displacement 

0 along sides x VERE l x lξ = ± = ±  and 0 along sides yy VERE l lξ = ± γ = ±  

 

are imposed. 0 0E <  is a 

fixed strain parameter and γ  is a non-dimensional parameter that allows investigating different 

loading paths in the plane ( ),I IIΣ Σ . Perfect bonding is assuming between the concrete matrix and 

fibers. 
Owing to the symmetry conditions, only an eighth of the REV geometry, with appropriate 

boundary conditions, is considered for the numerical analysis (Figure 2). 
 

 

Figure 2: REV and macroscopic strain considered for the FE simulations. 

 
Twenty nodded quadratic hexahedral elements were used for the discretization of the concrete 

matrix geometry. As regards the reinforcement components, the fibers were randomly generated 
and embedded within the concrete matrix finite elements. We herein refer to the so-called 
“embedded model” [14], commonly used in the analysis of reinforced concrete structures. In this 
model the fibers location and geometry are independent of the finite element mesh. The 
displacements of the fibers are related to the displacements of the matrix finite element nodes where 
they are located and it is considered that each fiber has the same kinematics than the coincident 
points of the embedding concrete matrix finite element. 

The reinforcement elements thus considered contribute to the rigidity and the internal work of 
the element (or elements) in which they are embedded. In the context of the “embedded model” 
formulation, the stiffness matrix and internal force vector related to the fibers are added, 
respectively, to the stiffness matrix and the of internal nodal forces vector of the corresponding 
matrix element. The spatial distribution and orientation of fibers were randomly generated by 
means of a specific procedure using the intrinsic function RAN of Fortran programming language. 

Elastic-perfectly plastic behaviors with associated plastic flow rules were adopted for both 
constituent of SFRC. The yield function of concrete matrix is described by the Drucker Prager 
criterion Eq. (10), while the steel bars are assumed to take only uniaxial tensile-compressive 
stresses subject to a yield condition of the type f fσ σ σ− +≤ ≤ . The iterative algorithm used for 

plastic integration (return mapping) is described in most handbooks of computational plasticity. The 
macroscopic stress is computed as 

 

                                         
1

(x) d x ( .n) dS
Ω ∂Ω

Σ = 〈σ〉 = σ Ω = ⊗ σ
Ω ∫ ∫   (17) 
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The following values for the REV side and fiber length were adopted in the numerical 
simulations: 20VERl cm=  and 3l cm= , respectively. Two values were considered for the fiber 

aspect ratio: / 20l d =  and 100, and three values for the volume fraction of fibers have been used: 
0.5 %f = , 2 %f =  and 5 %f = . 

The strength surface parameters mσ  and mα  were identified by fitting the concrete uniaxial 

and biaxial compressive strengths. Only compressive stresses have been investigated. Two concrete 
matrices have been studied. They correspond to distinct uniaxial compressive strengths, m

cf =  30 

MPa and 70 MPa, and biaxial compressive strengths equal to m m
cb cf 1,16 f= . For the steel fibers, 

values of 1000f f MPaσ σ+ −= − = were adopted. 

A strain parameters 0 0.05E = −  was incrementally applied, with parameter γ  ranging 

between -0.5 and 1. Each value of the loading path parameter γ  is associated with a limit stress 

state ( I II,Σ Σ ). 

For comparison purposes, the predictions from the analytical approximation described in the 
previous section are evaluated assuming an equivalent fiber distribution along the three orthogonal 

directions ( ), ,x y ze e e . In other terms, it was assumed that / 3x y zf f f f= = =  and 

x y z fσ σ σ σ± ± ± ±= = = . It is important to note that we examined the situation were the principal 

macroscopic stresses are oriented following the directions ( ), ,x y ze e e  of fibers. 

Figure 3 shows FE results together with the corresponding analytical predictions. The solid 
lines represent the analytical predictions obtained for the strength domain of steel FRC, while the 
symbols refer to the numerical results. 

 

 

Figure 3: Strength domain of SFRC for biaxial stresses: numerical results versus analytical 
predictions. 
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It is first emphasized that numerical simulations with fiber aspect ratios / 20l d =  and 
/ 100l d =  have led to very close results. This preliminary results suggest that the aspect ratio of 

fiber has a negligible influence on the strength properties of usual SFRC ( 5%f ≤  and 
/ 20 100l d = − ). In particular, the assumption of long fibers adopted for the analytical model seems 

reasonable for the assessment of SFRC strength properties, similarly to what has been obtained in 
[15] for the elastic properties of SFRC. 

The comparison of the two approaches indicates that the analytical predictions overestimate 
the strength of the medium reinforced by randomly distributed short fibers, particularly under 
uniaxial compressive stress. Since the aspect ratio is not affecting significantly the strength 
properties of SFRC, this is clearly attributed to the fact that large amount of fibers (third of total 
fiber content) is concentrated along the directions xe  and ye  of macroscopic solicitation. Since 

fibers are isotropically distributed in SFRC, the simplified model that is concentrating the fiber 
distribution along the principal directions of loading is naturally expected to overestimate the 
strength properties of SFRC. A modeling including a higher number of fiber directions would 
undoubtedly improve the predictions of SFRC strength properties. 

 

4 IMPROVEMENT OF BIAXIAL AND UNIAXIAL COMPRESSIVE STRENGTH 
ESTIMATES 

The finite element analysis showed that the analytical model based on three fixed orientations 
of fibers leads to predictions that are higher than the numerical solutions obtained from reasoning 
on a REV of SFRC. The aim of this section is to develop an improved approach to biaxial and 
uniaxial compressive strengths of SFRC. The idea of the approach may be summarized as follows. 
The tridirectional fiber reinforced composite is kept as a simplified model for representing the 
morphology of SFRC. The approach consists basically in two steps. In the first step, the limit state 
of a macroscopic stress, defined by the orientation of its principal directions with respect to fibers, 
is evaluated. The second step consists in averaging the obtained limit stress over all orientations of 
the space, leading thus to an isotropic estimate. In some extent, this approach that can be applied to 
any stress loading, consists in fact to an isotropization process of the strength properties. In the 
subsequent analysis, we consider the specific cases of compressive biaxial and uniaxial 
macroscopic stress loading. 

 
4.1 Biaxial compressive strength 

The biaxial compressive solicitation of the REV is defined as ( )I I II IIe e e eΣ = Σ ⊗ + ⊗ , with 

0Σ < . The unit vectors Ie  and IIe  refers to the orientation of stress principal directions. The latter 

is completely defined by means of three angles ( ), ,θ ϕ ψ  (Euler angles) with respect to the fixed 

frame ( ), ,x y ze e e of fibers (Figure 4). 
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Figure 4: Euler angles defining the orientation of principal stress directions, and fibers directions 

( ), ,x y ze e e . 

 
The first step is to evaluate the strength under biaxial compressive stress b ( , , )−Σ θ ϕ ψ . The 

latter is obtained through the minimization procedure defined in Eq. (5). Applying the latter to the 
considered solicitation yields: 

 

               
( )

}

3
m

I I II II f fb f
i 1

mm
f f f

( , , ) min e e e e ; e e ;

F ( ) 0 ; f , f x, y,z

−

=

+

Σ θ ϕ ψ = Σ Σ = Σ ⊗ + ⊗ σ = Σ − σ ⊗


σ ≤ σ ≤ σ =

∑
  (18) 

 
Basic developments of Eq. (18) lead to the following expression 

 

          

3
2 2 2

f m 1f 2f m m m
f 1

b f f f2
m

(2(1 2 ) 3(a a )) 4 ( 1)
( , , ) min , f , f x, y,z

2(1 4 )
− +=

 − σ + α − + − α α + σ − β  Σ θ ϕ ψ = σ ≤ σ = − α 
  

∑   (19) 
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2 2 2
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f 1

23 3
2 2
m m f m m f x y y z z x

f 1 f 1
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4(1 4 ) ( )

=

= =

 β = σ + α − + + α α + σ 
 

  − − α − σ + σ α + σ + σ − σ σ − σ σ − σ σ     

∑

∑ ∑

 

 
Coefficients ija  define the components of vectors Ie , IIe  and IIIe  in the fixed frame 

( ), ,x y ze e e . The analytical expression of b ( , , )−Σ θ ϕ ψ  determined from Eq. (19) requires some 

complex developments that involve a discussion with respect of the stress orientation ( , , )θ ϕ ψ . 

Instead, b ( , , )−Σ θ ϕ ψ  is computed by means of numerical minimization. 

The second step of the approach consists in adopting for the biaxial compressive strength the 
following average value 

 

                                      
2 2

cb b b3
0 0 0

1
f ( , , ) d d d

4

π π π
− −= Σ = Σ θ ϕ ψ ψ θ ϕ

π ∫ ∫ ∫   (20) 



IV International Symposium on Solid Mechanics - MecSol 2013 
April 18 - 19, 2013 - Porto Alegre - Brazil 

 

 
12 
 

 
The obtained estimate is compared to the results derived from finite element simulations. Two 

different concrete matrices, corresponding to uniaxial compressive strengths m
cf  equals to 30MPa  

and 70MPa , are considered. 

The semi-analytical estimate of the biaxial compressive strength cb bf −= Σ  defined in Eq. 

(20) is also compared to experimental data available in [3] and [5]. In their laboratory tests, [3] 
employed fibers with aspect ratio / 70l d =

 

 and three volume fraction of fibers 0.5%f = , 1%f =  
and 1.5%f = . The uniaxial and the biaxial compressive strength of tested concrete were 

respectively, 82.3m
cf MPa=  and 1.20m m

cb cf f= . The values of parameters defining the Drucker-

Prager criterion were identified accordingly: m 0.141α =  and m 61.93MPaσ = . The uniaxial tensile 

strength of used fibers was 1115MPa . [5] employed fibers with aspect ratio / 44l d =  and three 
volume fraction of fibers 0.5%f = , 1%f = . The uniaxial and the biaxial compressive strength of 

the concrete matrix tested by this author were, respectively, 28.24m
cf MPa= and 1.16m m

cb cf f= . 

The values for the parameters of the Drucker-Prager criterion to be introduced in the model have 
been identified m 0.121α =  and m 23.13MPaσ = . The uniaxial tensile strength of the fibers was 

1200MPa . 
Figure 5(a) shows the variations of the estimate of biaxial compressive strength as a function 

of the volume fraction of steel fibers for usual values of f  ranging between 0.5% and 5%. Figure 

5(b) shows the semi-analytical estimates of cb bf −= Σ

 

together with the experimental results of [3] 

and [5]. 
 

 

Figure 5: Improved estimates of biaxial compressive strength 
cb bf −= Σ  versus fiber volume fraction. 

Comparison with finite element (FE) results (a). Comparison with experiments (b). 

 
Although the approach is a straightforward extension of that presented in section 2, the good 

agreement with finite element solutions indicates that the process of averaging over the stress 
orientations can provide good estimates of the biaxial compressive strength of SFRC. The semi-
analytical estimate of biaxial compressive strength perfectly fit the experimental results of [3] that 
have used cubic specimen for their tests (10x10x10 cm3). The discrepancy observed as regards the 
comparison with those [5] can be explained in part by the size of specimen used by authors. Indeed, 
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these specimens (15x15x5 cm3) had higher dimensions parallel to the principal direction of biaxial 
solicitation, corresponding to higher concentration of fibers along the largest dimensions that are 
coincident with the loading directions. 

 
4.2 Uniaxial compressive strength 

The loading of the REV is now defined by an uniaxial compressive solicitation defined as 

III IIIe eΣ = Σ ⊗ , with 0Σ < . The orientation of the unit vectors [ ]T
cos sen ,sen sen ,cosIIIe = ϕ θ ϕ θ θ  

is defined by two angles ( ),θ ϕ  (spherical angles) with respect to the fixed frame ( ), ,x y ze e e of 

fibers (Figure 4). 
The first step consists in evaluating the strength under uniaxial compressive stress ( , )−Σ θ ϕ . 

The minimization procedure defined in Eq. (5) applied to the considered solicitation leads to: 

 

                         

}

3
m

III III f ff
i 1

mm
f f f

( , ) min e e ; e e ;

F ( ) 0 ; f , f x, y,z

−

=

+

Σ θ ϕ = Σ Σ = Σ ⊗ σ = Σ − σ ⊗


σ ≤ σ ≤ σ =

∑
  (21) 

 
or, after mathematical developments 

 

          
( ) ( )
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3
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2 1
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− α 
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23 3
2 2
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(3(e e ) 1 2 ) 2 ( 1)

4(1 ) ( )

=

= =

 β = − σ ⋅ − − α + α α + σ 
 

  − − α − σ + σ α + σ + σ − σ σ − σ σ − σ σ     

∑

∑ ∑

 

 
Due to the complexity of an analytical determination of ( , )−Σ θ ϕ , the latter is computed 

numerically as in the case of biaxial solicitation. The second step of the approach consists in 
adopting for the uniaxial compressive strength the average value 

 

                                                 ( )
2

c 2
0 0

1
f , d d

2

π π
− −= Σ = Σ ϕ θ θ ϕ

π ∫ ∫   (23) 

 
Reconsidering the same data as in section 4.1, Figure 6(a) shows the variations of cf  versus 

the fiber volume fraction, together with the finite element results. 
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Figure 6. Comparison of uniaxial compressive strength estimates 
IIIcf (e )−= Σ  (a) with FE analysis 

results and (b) with experimental results. 

 
The results plotted in Figure 6(a) give evidence of the accuracy of the estimates based on 

averaging over the orientations of solicitation. It is recalled that this averaging process is a 
simplified way to derive isotropic estimates for the homogenized strength properties. 

The relevancy of the approach is also assessed by comparing the semi-analytical estimates 
with the experimental results given in [3] and [5], which have already been described in the 
previous section. These comparisons are shown in Figure 6(b), which emphasizes the relevancy of 
the semi-analytical approach. 

 
Comments 

The averaging approach has prove successful when applied to assessment of strength 
properties of SFRC under biaxial or uniaxial compressive stresses. The approach can obviously be 
extended to any stress orientation ( ), , , , ,I II IIIΣ = Σ Σ Σ Σ θ ϕ ψ . For a given stress orientation, the 

strength domain ( )hom , ,G θ ϕ ψɶ  is determined from minimization procedure (5). An isotropic 

approximation of the strength domain of SFRC is thus derived by averaging all stress states of 

( )hom , ,G θ ϕ ψɶ , and then can be symbolically denoted by ( )hom homG , ,G= θ ϕ ψɶ . 

It is worth noting that the strength parameters adopted for the steel bars and the concrete 
matrix in the fictitious material are the real properties of the random medium. The comparison of 
the obtained analytical and numerical and experimental results indicates that for usual values of the 
aspect ratio l / d , the use of real properties for the characterization of the fictitious medium may be 
appropriate. Indeed previous experimental studies, as well as the present numerical analysis, seem 
to indicate that the aspect ratio has little influence on the uniaxial tensile and compressive strengths 
of FRC. Further numerical analyses involving a larger number of finite elements are needed to 
investigate the effect of l / d  on the composite strength. Keeping in mind the small value of fiber 
content, such a task would be, however, to excessive in terms of computational cost. As a matter of 
fact, the practical values of f  range between 0.5 and 5% and the influence of l / d  within this range 
is not expected to be significant. 
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5 CONCLUSIONS 

The strength properties of steel FRC were evaluated in this work through the homogenization 
and limit analysis theories. Assuming the existence of a correlation between the random medium 
(FRC) and a fictitious medium defined by a concrete matrix reinforced by long fibers, the strength 
domain of this material was obtained analytically. The composite strength criterion was determined 
considering the constituents (fibers and matrix) volume fractions and strength properties. In the 
fibers case, only its uniaxial compressive and tensile strengths are needed. The matrix concrete 
strength, in turn, was characterized by the Drucker Prager criterion. This criterion has a simpler 
formulation than the Ottosen and the Willam-Warnke criteria, for example, not allowing the 
characterization of the concrete behavior under tensile and compressive stress states with the same 
parameters. Nevertheless, it allows performing the proposed study, employing the homogenization 
and limit analysis theories, in an analytical way. 

To address the relevancy as well as the accuracy of the analytical model, a finite element 
approach to the strength properties of FRC has been developed. It is based on the numerical 
resolution of the limit analysis problem formulated on the representative elementary volume of the 
random heterogeneous FRC. 

It follows from the comparison of the two approaches that the analytical predictions derived 
from the fictitious medium formed by concrete matrix and long fibers oriented in three 
perpendicular directions overestimate the strength capacities of FRC when, in the analytical model, 
the principal directions of loading coincide with the fibers directions. In addition, the average of the 
analytical strength obtained for the fictitious medium considering all directions the fibers could take 
leads to results that satisfactorily fit the FE solutions and also experimental data of uniaxial and 
biaxial compressive strength. This good approximation indicates that the approach adopted for the 
uniaxial and biaxial compressive strengths calculation can provide good estimates of these 
properties. 

Important extensions of the analysis to be foreseen in the future are to account for the 
fiber/matrix interface strength, to introduce a tensile cut-off in the formulation of the concrete 
matrix failure condition and to compare the analytical results with the few available experimental 
data. Moreover, the analysis of the FRC behavior employing a more complex model with a larger 
number of directions of fibers that would better considerate the isotropy of the material is a task 
which remains to be done. 
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