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ABSTRACT 

The goal of the present paper is to propose a simple methodology to estimate the burst pressure of thin-walled 

metallic pipelines with arbitrary localized corrosion damage. This methodology is conceived as a preliminary tool for a 

quick analysis of the structural integrity of real corroded pipelines. Due to the different possible geometries of the 

corroded region, the exact analysis of this kind of problem can be very complex (in general using an elasto-plastic finite 

element simulation). The idea is to obtain an approximate exact analytical solution of the problem for any arbitrary 

geometry of the corroded region considering elasto-plastic constitutive equations and a factor that accounts for the 

stress concentration due to the metal loss caused by corrosion. Different expressions are considered for such factor, and 

they all depend on the general average geometry of the corroded region. With this simple expression, a reasonable 

lower limit for the burst pressure can be obtained. The predicted burst pressures for different corroded geometries are 

compared with experimental results, showing a good agreement. 
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1 INTRODUCTION 

The goal of this paper is propose a simple methodology to predict the failure pressure of 

metallic pipelines with localized corrosion defects. The study is an extension of the methodology 

presented in [1] for undamaged pipelines. The analysis of this problem, due to the variety of 

possible corrosion conditions, is quite complex (and expensive) when a finite element simulation is 

adopted. The idea of the proposed methodology is to use elasto-plasticity constitutive equations 

obtained in [2] and to solve analytically the resulting problem, including a factor that takes into 

account the stress concentration due to loss of material caused by corrosion. This factor is based on 

expressions found in classical criteria for corroded pipelines (see [3]), but the analysis is extended 

to situations where these criteria are not satisfied and plastic deformation occurs. Thus, it is 

expected to be possible to obtain a lower limit for the failure pressure of a metallic pipeline with 

arbitrary localized corrosion defect only taking into account a few data concerning its geometry and 

the ultimate stress of the material obtained in a simple tensile test.  

Generally the standards for corroded pipelines try to approximate the corroded region through 

a rectangle or an ellipse with depth corresponding to the greater corrosion depth measured along the 
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pipe axis (see figure 1). 

The most widely used criteria for structural integrity evaluation of corroded pipelines under 

internal pressure constitute a family of criteria known as "effective area methods" and are described 

in [3]. This family includes the ASME B31G criterion [4] and the criterion RSTENG 0.85 (also 

known as modifiedB31G criterion presented in [5]). These criteria were developed in the late1960s 

and early 1970s to assess the serviceability conditions of corroded gas transmission lines. The basic 

empirical hypothesis is that the loss of strength due to corrosion is proportional to the amount of 

material loss measured axially along the pipe. Other approaches may be found in the literature but 

in all of them consider part-wall metal loss defects obtained in [6].  

Hydrostatic burst tests are generally recommended for assessing the structural integrity of 

these pipelines. For experimental studies performed in laboratory, rectangular regions with reduced 

wall thickness are artificially created in the specimens. In a burst test, the axial stress induced by the 

pressure applied at the extremities of the specimen can be important. The particular nature of the 

specimens may lead to mistaken conclusions. Real pipelines are long and the effect of axial stresses 

in straight lines is almost negligible (all criteria for corroded pipelines mentioned before neglect the 

effect of axial stresses), what is not the case of the specimens for hydrostatic testing. Hence, such a 

difference must be taken into account or the strength of the pipeline is overestimated. In order to 

identify and eventually “correct” or even eliminate the perturbation caused by the closed ends of the 

specimen on experimental results, a theoretical analysis of closed-ended pipelines is also performed 

in the present paper. 

Model predictions are compared with experimental results obtained in [7] showing a good 

agreement. 

 
Figure 1: Metal loss in the pipeline 

2 MODELING 

2.1 Summary of the elasto-plastic constitutive equations 

The following set of elasto-plastic constitutive equations is a particular case of the constitutive 

equations discussed in [2] but restricted to isotropic hardening. These equations are adequate to 

model the monotonic inelastic behaviour of metallic material undergoing a quasi-static and 

isothermal process at room temperature.   

In the framework of small deformations and isothermal processes, besides the stress tensorσ  

and the strain tensor 1 2[  ( ) ]Tu u= ∇ + ∇ε ( u  is the displacement at given material point), it is 

considered the following auxiliary variables: the plastic strain tensor 
p

ε , the cumulated plastic 

strain p and another variable Y, related to the isotropic hardening. A complete set of elasto-plastic 

constitutive equations is given by: 
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Where E is the Young Modulus, ν the Poisson’s ratio and 1 2, ,y v vσ are positive constants that 

characterize the plastic behaviour of the material. 1 is the identity tensor, and tr( )• is the trace of a 

tensor ( )• . σ is the stress tensor and S is the deviatoric stress tensor given by the following 

expression: 

 

 
1

tr( )1
3

S
   = −      
σ σ  (7) 

 

J  is the Von Mises equivalent stress. Y  is an auxiliary variable related with the isotropic 

hardening. p  is usually called the accumulated plastic strain and pɺ  can be interpreted as Lagrange 

multiplier associated to the constraint 0F < . Function F  characterizes the elasticity domain and 

the plastic yielding surface. From the constraint 0pF =ɺ , it is possible to conclude that 0p =ɺ  if 

0F <  and hence 0
p

=ɺε  (see equation (3)). If 0p ≠ɺ , from the constraint 0pF =ɺ  it comes that 

necessarily 0F = . Besides, from equations (3) and (4) it is possible to verify that, in this case,  

0
p

≠ɺε  and 0Y ≠ɺ . Therefore, the elasto-plastic material is characterized by an elastic domain in 

the stress space where yielding doesn’t occur ( 0
p

=ɺε , 0p Y= =ɺɺ if 0F < ).    

 

Using expressions (3) and (6) it is possible to obtain the following relations: 

 

 ( ) ( ) ( ) ( )
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: 0 :
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Generally the following initial conditions are used for a “virgin” material 
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 ( ) ( )0 0,  0 0
p

p t t= = = =ε  (9) 

 

From now on, initial conditions (9) are assumed to hold in the analysis. It is also important to 

remark that the evolution law (3) with initial condition (9) and definition (7) imply that the principal 

directions the stress tensor, of the deviatoric stress tensor and of the plastic strain tensor are the 

same. From evolution law (3) and considering initial conditions (9), it is possible to verify that the 

following relation always holds 

 

 ( )   i,j=1,2 or 3
p

i i

p
j j

S

S
= ∀

ε

ε
 (10) 

 

With ( )1, 2 or 3iS i = and ( )1, 2 or 3p
i i =ε  being the principal components (eigenvalues) 

respectively of S and
pε . 

 

2.2 Thin-walled elasto-plastic cylinder under internal pressure 

This section it is considered an elasto-plastic cylinder with internal radius R, thickness e 

submitted to an internal pressure P. The internal radius R and the thickness e are such that 

 

 10
R

e
>  (11) 

 

The components of the stress tensor σ  and of the deviatoric stress tensor S  in cylindrical 

coordinates for a thin-walled cylinder are supposed to be reasonably approximated in the 

framework of membranes theory by the following expressions 
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with, 

 

 
2 4

;   ;   ;   
6 6 3

z z z
r z

PR
A A A

e

+ − −
= = − = =θ θ θ

θ
α α α α α α

σ  (13) 

 

rσ  is the radial stress component, θσ  the circumferential stress component and 
zσ the axial 

stress component. All other stress components are considered to be equal to zero. θα
 
and 

z
α are 

parameters that take into account the corrosion damage and that, in principle, will be treated as 

constants. 

From equation (6) it is possible to found the following expression to Mises equivalent stress 

gives by 
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Introducing the last result and the expression for circumferential component of deviatoric 

stress in equation (3) it is possible to obtain the following expressions in the case of a 

monotonically increasing loading (for instance, ,  >0P t= α α ), 
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Therefore, from equation (5) it comes that 

 

  if  F  0Y A= =σ  (17) 

 

Hence, it is possible to obtain the following expression relating the pressure P with pε  

combining equations (14), (16), (17) and (4) in the case of a monotonic loading gives by 
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The yield pressure yP
 
is obtained taking 0pε =  in equation (18) 

 

 y

e
P

AR
=  (19) 

 

Therefore, once the geometric parameters of the cylinder are known, it can be easily verified 

that the yield pressure yP
 
can be obtained from the axial yield stress yσ . The maximum pressure 

maxP   is obtained by taking the limit of P  as pε → ∞ . Hence, 

 

 max 1( )y

e
P v

AR
= +σ  (20) 

 

It can be verified that the maximum pressure maxP  can be related with the ultimate stress 

obtained in a tensile test max 1( )y vσ σ= + . Besides, the following analytic expression can be 

obtained 
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With max{0, }x x= . Finally, with this last result it is possible to obtain the strain 

components in the case of monotonic loading history 
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It is important to remark that maxP  is the limit pressure maxP  beyond which the hypothesis of 

quasi-static process is invalid and the dynamic must be accounted, since the acceleration field is no 

longer negligible. From the engineering point of view such pressure can be taken as the limit 

pressure (or failure pressure), beyond which there is not enough time to make any repair procedure: 

the rupture process is considered brutal and instantaneous after this pressure level is attained (see 

fig. 2). Such reasoning is very similar to the one adopted in fracture mechanics in order to define 

the critical load in a cracked medium. The proof of this fact can be obtained within a 

thermodynamic framework summarized in [1]. 

 

 
Figure 2: Dynamic rupture in a hydrostatic test with monotonically increasing pressure. 

2.3 Remaining strength criteria for corrosion defects 

Possible expressions for θα  can be obtained from the criteria presented in [3], generally 

called remaining strength criteria for corrosion defects. It can be verified that these criteria can 

always be expressed as follows 

 

 max

PR

e
<θα σ  (24) 

 

Where θα  is a function of geometry and maxσ  a maximum admissible tensile strength before 

failure that varies according to the criterion. The term (1 / )θα  is usually called the remaining 

strength factor.  In these criteria, the component in the axial direction is not taken into account 

because for long lines, is reasonable consider zσ  negligible in comparison with θσ . The following 

expressions are found for θα  
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• ASME B31G Criterion 

Firstly, it is necessary to calculate the nondimensional factor ( )fA given by: 
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 max 1.1 y=σ σ  (28) 

 

Where d is the maximum depth of the defect, L the total axial extent of the defect, e the wall 

thickness of the pipe and yσ  is the yield stress of the pipe (0.5% criterion).  

 

• RSTRENG 0.85 or Modified B31G Criterion 
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 max 69 MPay= +σ σ  (32) 

 

Where tM  is the bulging factor in RSTRENG’s criterion. 

     

  

• Chell Limit Load Analysis 
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R is the inner radius of the pipe and cM is the bulging factor in Chell’s criterion. 
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• Kanninen Shell Theory Criterion 
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Kanninen’s criterion uses the pipe ultimate tensile strength ( )ultσ  with a maximum 

admissible tensile strength. 

 

• Sims Pressure Vessel Criteria 
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Where tR is the thickness ratio, sM is the bulging facto in Sims’s criterion and w is the 

minimum defect width. 

 

• Ritchie and Last Criterion 
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Where 1tM  is the bulging factor in Ritchie and Last criterion. 
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• PRC//Battelle PCORRC Plastic Collapse Criterion 
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• BG/DNV Level 1 Criterion 
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3 MATERIALS AND EXPERIMENTAL PROCEDURES 

In order to analyse the adequacy of the proposed methodology, tensile and hydrostatic tests 

were performed in API 5L X60 steel specimens. Table 1 presents the material properties obtained in 

tensile tests. 

 

Table 1: Mechanical properties. API 5L X60 steel 

E (GPa) 
y

σ (MPa) 1v (MPa) 2v  

182 478 172 44.3 

 

Hydrostatic tests were performed in thin-walled pipes with a rectangular localized defect as it 

can be seen in figure 2.   

 

 

 

 

 

 
Figure 2: Rectangular damage 

 

The specimen dimensions are presented in table 2. 

 

Table 2. Specimen dimensions 

Inner Radius - R 249.2 mm 

Wall thickness - e 14.3 mm 

Maximum depth of defect - d 10.0 mm 
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Length of the defect - L 500.0 mm 

Width of the defect - w 95.0 mm 

 

In the test, a strain gage was installed in a central region of the defect (at point "C") as it can 

be seen in figure 3, in order to measure the circumferential strain and the longitudinal strain of the 

pipe.  

 
Figure 3: Specimen with rectangular damage 

 

The different values of θα  computed in this case are presented in table 3. 

 

Table 3. Determination of θα
 

Criterion θα  

ASME B31G 3.32 

RSTRENG 0.85  2.12 

Chell 2.28 

Kanninen Chell 3.33 

Sims 3.08 

Ritchie and Last 2.88 

Battelle 2.75 

BG/DNV 2.63 

 

Fig. 4 shows, respectively, the curves pressure versus circumferential strain and pressure 

versus longitudinal strain obtained in a hydrostatic test. The failure pressure (beginning of the 

plastic necking at the final stage of the loading process. Rupture process is considered brutal and 

instantaneous after this pressure level is attained) is approximately 11.6 MPa. 

 

 
Figure 4: Curves pressure - strain 
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4 RESULTS AND DISCUSSION 

Fig. 5 presents both theoretical and experimental stress-strain curves in a tensile test. In order 

to obtain the experimentally the coefficients θα  and zα  it is necessary to determine the slope of the 

curve press-strain in the elastic region using equations (21) and (22). If  y<σ σ , it is possible to 

obtain 

 

 
2

2
zP PR

K e E

− = =  
 

θ
θ

θ

α να
ε  (43) 

 

 
2

2
z

z
z

P PR

K e E

− = =  
 

θα να
ε  (44) 

 

Where Kθ  
and

z
K

 
are the slopes of the press-strain curves in the elastic region (see fig. 4). 

Solving this linear system the following values are obtained: 4.48=θα  and 3.31z =α . Figure 6 

shows a comparison between model prediction and experimental results for the uniaxial tensile test 

and the figures 7.a and 7.b show comparisons between model predictions and experimental results 

using equations (22) and (23). It can be seen that the model gives a reasonable (but conservative) 

prediction of the failure pressure. 

 

 
Figure 6: Tensile test – Experiment versus mode 
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Figure 7.a: Hydrostatic test – Experiment versus model 

 

 

 

 

Figure 7.b: Hydrostatic test – Experiment versus model 

 

 

 

The criteria presented in the previous section aims at giving a conservative estimation of the 

factor θα (they do not consider the axial stresses and strains). Table 4 presents the failure pressure 

obtained using all criteria presented in the previous section ( max max( ) / ( )P e R= θσ α , see equations 

(24)-(42) and table 3) and the predicted failure pressure obtained using the proposed methodology
   

 ( 4.48,  3.31z= =θα α  and max 1( ( )) /yP e v RA= + σ ). 
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Table 4: Failure pressure obtained using different criteria
 

Criterion max (MPa)P  exp
max max( / )P P  

Experimental 11.6 1.00 

Model ( max 650,=σ
 

4.48=θα  and 3.31z =α ) 9.50 0.82 

ASME B31G ( max 525.8,  3.32= =θσ α ) 9.07 0.78 

RSTRENG 0.85 ( max 547,  2.12= =θσ α ) 14.80 1.28 

Chell  ( max 525.8 . 8,  2 2= =θσ α ) 13.22 1.14 

Kanninen Chell ( max 650,  3.33= =θσ α ) 11.22 0.98 

Sims ( max 531.11,  3.08= =θσ α ) 9.90 0.85 

Ritchie and Last ( max 585,  2.88= =θσ α ) 11.64 1.00 

Battelle ( max 650,  2.75= =θσ α ) 13.59 1.17 

BG/DNV ( max 650,  2.63= =θσ α ) 14.16 1.22 

 

The proposed methodology, ASME B31G, Kanninen Chell, Sims and Ritchie and Last 

criteria give conservative results while the predicted failure pressures using RSTRENG 0.85, Chell, 

Battelle and BG/DNV criteria are above the experimental failure pressure. Ritchie and Last and 

Kanninen Chell criteria give the best predictions. It is important to remark that pressure at the 

beginning of the plastic necking was taken as the failure pressure. Most of these criteria are more 

suitable for long axial flaws and when the axial stress component is negligible in comparison with 

the circumferential stress component. Therefore, the preliminary results show that the proposed 

methodology allows obtaining a conservative, but reasonable, prediction of the failure pressure 

when the axial component is also important. In the case it is necessary to perform an approximate 

prediction, it is suggested to use a corrected version of the ASME B31G criterion, replacing θα  by 

A , obtained considering 1.35 0.87z Aθ θα α α≈ ⇒ ≈  
 

 max

1.1
1.26

0.87

y ye e
P

R R

  ≈ ≈  
  θ θ

σ σ

α α
 (45) 

 

In this case we have max 11.34P = MPa exp
max max( / 0.98)P P =  for the specimen defined in table 

1 and table 2. 

5 CONCLUSION 

Assessment methods are needed to determine the severity of corrosion defects when they are 

detected in pipelines. The idea of the proposed methodology is to obtain a preliminary, but adequate 

estimate of the failure pressure of a pipe with arbitrary corrosion defect when the effects of closed 

ends are important. It aims at providing tools to allow deciding whether operation must be 

immediately stopped or if it is safe to apply a provisory reinforcement system [8] and to wait until 

the next scheduled maintenance stop. Therefore, the proposed methodology can be a valuable 

auxiliary tool for assessing the integrity of corroded pipelines, since it does not require the use of 

numerical codes and not even hydrostatic testing. To compute the failure pressure, besides the pipe 

geometry and the average geometry of the flaw, it is only necessary to know the elastic properties 

and the ultimate stress obtained in a tensile test.   
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