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ABSTRACT

The formulation of macroscopic poroelastic behawiba jointed rock is investigated within the franwek of a
micro-macro approach. The joints are modeled afates and their behavior is modeled by meanspémlized
poroelastic state equations. Starting from Hi¥mima extended for a jointed medium and extendiegctincept of
strain concentration to relate the joint displacetjemp to macroscopic strain, the overall pora@asonstitutive
equations for the jointed rock are formulated. Bmalysis emphasizes the main differences and sitidka of the
resulting behavior with respect to that charactegizrdinary porous media. It is shown that, unldeelinary porous
media, conditions on the poroelastic parameteisinfs are required for the macroscopic drainefingtss to entirely
define the poroelastic behavior. This is achieved,nstance, if the joint network is charactedzsy a unique Biot
coefficient.

Keywords: jointed rock; poroelasticity; micromechanics,

1 INTRODUCTION

Discontinuities are frequently present at differesctles in rock masses and represent a
fundamental component of rock deformation and rartsof fluid or contaminants through rock
masses. Usually referred to as joints, they coardo zones of small thickness along which the
mechanical and physical properties of rock mategrdde. The presence of joints constitutes the
key weak point for stability and safety of many ieegring works, such as dam foundations,
excavation of tunnels and caverns, oil and gasymtimh, geothermal energy plants, repositories
for toxic waste, etc. From transport propertieswyieint, joints within rock masses represent
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preferential channels for fluid flow and such, niay contributors to rapid transport of fluid and
contaminants through rock masses, particularly wherpermeability of the rock matrix is low.

As a consequence, comprehensive constitutive nmageh rocks requires accounting for the
poromechanics coupling which occurs at the scal@iofs and its implication at the scale of the
rock structure. Primarily focus should be on thkeawor modeling of the rock material as a porous
medium with specific treatment for the coupled lydechanical coupling governing the joint
deformation.

In this context, the main purpose of this papetoisextend the formulation developed in
Maghous et all [17] to the situation of a rock wiimdomly oriented short joints.

2 MACROSCOPIC STATE EQUATIONSIN THE CASE OF SATURATED JOINT
NETWORK

Considering first the dry case (i.e., in absencea giressurized fluid), the rock matrix is
assumed to be linearly elastic with fourth-ordeffretss tensorc®. As regards the individual
behavior of joints, it is assumed that the corresiiy elastic domain ifR® does not reduce to
vectorT =0. Inside the latter domain, the elastic behaviojoofts is assumed to remain linear, at

least within the range of considered joint straifise stiffness of jointy , relating the stress vector

to the displacement jump, is denotedLby

g=c’¢ inQ\w )
T=glh=k:[¢] alongw

with n=n, andk =k’ along..
The rock matrix fills the domai® \ w, where symbol stands for the set difference. Note

that strains and stresses within the rock mediwerdafined on the rock matrix domaih\ cwonly,
and not on the whole REV. Throughout the paper, ®ymib denotes the volume average over the

rock matrix:

()= )

mv[ﬂ\w.

The joints are modelled as interfaces and the &sdcdeformation is described through a
phenomenological lawl =k[[¥] linking the stress vector and the displacementpjuin this
context, the joint stiffnesk is traditionally evaluated from laboratory testrfprmed on rock

specimen with a single joint. By nature, this phaeaological approach relates the joint stiffness
to the geometry and elastic properties of the jomy in a global manner, which can be viewed as a
major limitation of the approach.

We now consider the situation where the conneated petwork is saturated by a fluid at
pressurep which is assumed to be uniform in the REV. Withpexg to the dry case, the elastic

behavior of the rock matrix is the same as before:c® ¢ in Q\ w. The behavior of the joints is
replaced by a poroelastic formulation in order ¢ocaint for the effect of the fluid pressure on the
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relationship between the stress vector acting om jthint and the corresponding relative
displacement. The poroelastic state equationshtojdints are written in the following form [1, 2]

T'=gh=k[{+T"
alongw=Uw 3)
p=L+a (g m i
m S.
where
a=a,, m=m , T°=-a,pn alongy (4)

Scalara, has the significance of a Biot coefficient for joent «y modeled as a generalized
porous medium. This means that the displacemenp [yinwhich represents the joint deformation
is controlled by the effective stress vectdr+a p n. As regards the second state equation in (3) of
the joint, it relates the joint pore change pet joint surfacep to the fluid pressurp and the joint
displacement jumjg] . Scalarm represents the Biot modulus for joiat. Physical interpretation
as well as identification procedures of the aboammeters from appropriate laboratory tests are
outlined in [1].

The loading is now characterized by two parametaxsely the macroscopic stra@ and

the fluid pressur@. The solution inQ\ w to this problem defined by the loading mt{@, p)

and denoted by (P), is the stress figldn 5 and the displacement fiell in € related by the state

equations of the medium constituemts=c*. ¢ in Q\w and (3). Due to the linearity of the

material behavior expressed in rate form, the qugsdtion principle can be used to decompose
problem (P) into two elementary problems (P1) aR@)(respectively defined by the loading

(D, p =O) and (Q=O , p) as shown in Figure 1. (P1) corresponds to thecdsg, whereas (P2)

corresponds to pressurized joint network and predemacroscopic strain.

Figure 1. Decomposition of problem (P) into tworeéntary problems (P1) and (P2).
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Let us designate bx_fl, £ and g, the displacement, strain and stress fields in RIE&/
corresponding to problem (P1) and @/, g, andg2 the displacement, strain and stress fields in

the REV corresponding to problem (P2). The fieldlsitson to problem (P) can simply be obtained
as§:§1+§2’ £:£1+£2 andg:£1+£2'

2.1 First state equation

We introduce the setof displacement fields which are kinematically ashible Withg. By
definition, it is the set of displacements fielfiscontinuous and differentiable d2\ w. Likewise,
& denotes the set of statically admissible stredddio’.

Q being prescribed, we consider the elastic probiiiined on the REV subjected to the
loading defined by the boundary conditiofi&) :QQ(for 0x00Q,. The solution to this problem
is the couple( g, é) in 5x¢€ and complying with (1). Clearly enouglr, and ¢ linearly depend on
the loading paramet@. This property is usually expressed through thecept of strain

concentration tensor, denoted here by the fourderotensoA . By definition, the termA Q():g
represents the strain tengoat pointx corresponding to the load defined previously. theo
words, A (x) is the link between the local strasfx) in the rock matrix to the macroscopic strain

Q applied to the REV. Besides, the strain conceiotidensor also relates the local stresso the
macroscopic strain:

:cS:A:Q (5)

19

The macroscopic stress being defined as the average), (5) yields :

s=crm:L] with  Cc™"=(c%A) (6)

regarding problem (P1jhe following relationships thus holds
z =(gy=crm:L] with  CM™™=(c%:A)  (7)

where the strain concentration tenAoreIatesgl to the loading paramet@ in problem (P)

£,=A():L ®)
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Due to the presence of the joints the average@ﬂé(g) is not valid in the jointed REV.
Accordingly, the averagéA ) of the strain concentration tensor over the roekrix is not equal to

the fourth order identity tensdr and thusC™" is not equal to matrix stiffness of rock matrix.
More precisely:

(A) =I —ﬁjw[gmgmg”ﬂﬁnmgt +;'53D§] ds(9)
0

The tensorg", gt and gt'are respectively the concentration tensors for maband tangential
displacement jumps of .
Regarding problem (P2)i",2 =(g,) represents the macroscopic stress associatedomth

interstitial fluid pressur@ which is required to prevent the appearance ofraagroscopic strain.
In order to evaluatgz, Hill's lemma (10) is used twice. It is shown [1ffflat Hill's lemma

expressed for jointed media reads:

1
2|

(o:U=(g"er+ [ 1707 ds (10)

Applying Hill's lemma with the couples(g':gz, {':il) and (g':gl, {':5‘2),

provides the following expression f& :

2, =-pB where B= ! L}ag” ds (11)
The first macroscopic state equation is obtaineohf(7) and (11), by superposition

z :£1+£2:(ch°m:D—p§ (12)

Similarly to ordinary porous media, the macrosccm'raing is controlled in poroelasticity

by an effective Biot stress + pB. The tensoB can be interpreted as the tensor of Biot
coefficients for the jointed medium. The anisotropyoduced by the joint orientation is captured
through that of the normal concentration teng’hr

The limit case of closed joints can be charactdrizg expressing that the normal component
of the relative displacemef§] vanishes, which implies thg" - 0. In such a situation, the joint
fluid pressure has no effect (i.B.— 0) on the relationship between the macroscopic rstaaid

stress within the elastic domain.
The fundamental difference between the jointed ra#t an ordinary porous medium arises

when examining how the Biot tend®ris connected to the macroscopic elastic tensatraihed
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moduli C™™. In the situation wherall the joints have the same Biot coefficient, [&.a, =a. In
this situation:

I

=a

=

I —cschom ) (13)

If this template is used when writing the full pgp&ieaders and footers will be set
automatically.

2.2 Second state equation
The complete formulation of the overall poroeladtiehavior for the jointed medium is

achieved by providing the second macroscopic sqtetion. The second state equation for the
macroscopic poroelastic behavior classically relatee pore volume change to the fluid

pressurep and the macroscopic stra@. In the particular case under consideration, theep

volume change is exclusively due to the joint voduohange. For this purpose, we introduce a
dimensionless variable called lagrangian porosignge defined as:

1
®=—F| ¢ dS (14)
|QO| .[w
Performing the decomposition g’fasi‘l +§2, it can be established that [17]:

153

o =P+
M

oo

(15)

Relationship (15) is the second state equationcioted porous medium. It constitutes with
(12) a set of two equations governing the respohs$ige jointed porous medium.

If all the joints have the same Biot coefficiente.illi a, =a , the expression of the
macroscopic Biot modulus is given by

+El = Zsﬁl+ag_:(cs)_l :B (16)

3|

1
M

where m is the average Biot moduloisand S represents the specific area of joipt m is a
scalar which indicate that the respoﬁzse and consequently the corresponding jL{@j from

loading (gzo , p) is proportional to fluid pressuge[17].

Relationships (13) and (16) show that the overadpprtiesM and B are entirely known

once the macroscopic tensor of elastic moduli leenletermined. These relationships extend to
the situation of jointed rock medium the classiehtionships providing the Biot tensor and Biot

modulus as functions of solid matrix elasticityand dry porous medium elastici/™™ [15].
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3 APPLICATIONS

Two applications of the micromechanics-based ampraa poroelastic properties of jointed
rocks are presented in the sequel:
* Rock with short parallel joints;
* Rock with randomly oriented short joints.

3.1 Rock with short paralle joints

We deal now with the situation of a cracked rodke Dnly heterogeneities considered for the
rock medium are short joints (i.e., cracks withdaeansfer). The analysis presented in the seguel i
intended as an extension of classical results kestteld in poroelasticity for cracks which do not
transfer stresses.

A convenient way to represent cracks is in the fofnoblate spheroids. We introduce for a

crack an orthonormal frar’r(q 0 r_1), in which n denotes the normal to the crack plane (Figure
2). The geometry of this oblate spheroid is defibgdhe crack radiua and the half opening of
the crackc. The aspect ratiX =c/a of such a penny-shaped crack is subjected todhditton

X «1. In the continuum micromechanics approach emplolyerein, a crack represents an

inhomogeneity embedded within the rock matrix. Wasume for simplicity that the latter is
elastically isotropic:

=3k + 21° K (17)

where k® is the bulk modulus ang?® is the shear modulus. The fourth-order tenfarsd K are
defined as

J=Z101 ; K=I-] (18)

Wl

The crack modeled as a short joint (crack withsstteansfer) has a stiffness in the form
k=k,nOn+ k (tOt+ t'Ot) (19)

wherek, andk, denote respectively the normal stiffness and sétémess.

We consider the situation of a homogeneous rock wpérallel cracks defined by the same
radiusa and crack aspect rat¥o. The volume fraction of cracks present in the medis denoted
by f :

f =gngx (20)
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wheres = N a% is the crack density parameter of the consideetabEparallel cracks introduced
by Budiansky and O’Connel [27}V being the number of cracks by unit volume.

L 2c

Figure 2: crack as oblate spheroid

Using a Mori-Tanaka scheme, the estimate for theaeof drained modulC "™ reads:

C"™™=lim (c5+f<cj:(]I+]I”:(<cs—<cj))_1):

X -0

]I+f(]I+]P’:(<cs—<cj))_1)_l 21)

whereP=P(X,n) is the Hill tensor associated with the considerextk family. It depends on the
aspect ratiX of the oblate spheroid and its orientationThe components of the Hill tensor of an
oblate spheroid can be found in Handbooks [4, Téhsorc’ is related to the crack stiffness

c'=3Xa(k,-4/3k) J+ X ak K (22)

Since all the cracks have the same poroelastioemiep(lé, a, m) , the Mori-Tanaka
estimate of the Biot tensor reads

oo
I

a lim 1:(1+P: (c=ch)) ™ {1+ (]I+]P’:(cs—<cj))_1)_l (23)

and the Biot modulus estimate can therefore be asstifrom that oﬂé:

ﬁ +a 1 (cs)_l B (24)

In the context of Mori-Tanaka scheme, the non-remponents of tensof ™™ estimated by
(21) are:
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K, +m(1+16/3¢ x, (-«,)

Ci11.=C o= (BK® +41°
1111 = Czo= ( () 3k, + 377K, (I- K, )+ 47TE

K +7TK1(1_K1)

3k, + 3k, (- K, )+ 4rte

K, + 1k, +8/3&)(A-k,)

3k, + 3k, (1-k, )+ 4rte (25)
Ky +7TK1(1_K1)

3k, +3mk, (1-«,)+ 4me

s 4K3+7T(1_K1)(1+ 2K1)

4k, +16/3me -k, (B %, ) (b«

Cazza = (3K* +44°)

Cliz = C o= (3K® = 21°)

Clias = Cygp= (3K* — 214°)

Ca23=Cas=2U

Con=H

where the non-dimensional parameteys «, and «; are defined by:

Klz—sks +/JS ; KZ:—“:’k”a < ng—fk‘a . (26)
3k® +4u X+ 4u X+ 4
Only diagonal components of Biot tensBrare not equal to zero:
B, =B, =4a e (413K, - Dk, - 8/9(F«, §
3k, + 3k, (1-k, )+ 4rre 27)
B, = dame
° 3k, +3mk, (1-k, )+ 4t
Finally, the Biot modulus estimate reads:
2
1 _ 1 + 1207 1e (28)
M m  (3k*+4u°) (X, + 3k, (K, 1 d1e)

In order to illustrate the solutions obtained, tiraphs in Figure 3 show the variation of
components fronC"", with respect to the crack density parametein Figure 3, the components
C{};’“ are presented divided by the elasticity modulushefrock matrixE. It is assumed that the
Poisson's ratio of matrix is equal to 0.25, theuwwdV of REV is unitary (1 m3) and also thAf=1
(only one fissure in the REV).

The normal and shear stiffness of joint are deteechias’k,/E and/k / E, where/ is a

characteristic dimension given =V 2N,
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Figure 3: components d&™™ for a rock medium with short parallel joints

In Figure 4 below, the previous problem is revaJueducing one thousand times the normal
and shear stiffness of the joint, for simulate ¢hse which reduced stresses are transferred across
the microcrack.

o Ctom
E

12 _k E pa-

1,0 4
0,3 4

0,2

0,6 0,2

0,4
0,14

0,2

T T T T T T T T T 1 T T T T T T T T 1
a 0,2 0.4 (IR 0z 1 2 1] 0.2 0.4 0,6 0,2 1 =
|— Cham ] —— Chomayag | |— Cham |5y —— Chom 4, Chotm e |

Figure 4: components ¢f™™ for a rock medium with short parallel joints, cifesing k. < E e
k <E

10
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3.2 Rock with randomly oriented short joints

We now examine the situation where the fibers anelomly distributed in the rocky medium.
The matrix has an isotropic elastic behavior amdj¢imts are distributed randomly in all directions
The homogenized material will therefore also exhalni isotropic behaviour.

Following Advani and Tucker [18], the orientatioheach fiber is described by a unit vector
p whose components are related by two spherical argland ¢. The set of all possible

orientations ofp is given by describing the unit sphere. The integvar the surface of the sphere,
i. e., on the directions of is given by:

pap=["""[ j:”senﬁd 6dg (29)

In addition, the orientation in space of a fibenadso be described generally by known
orientation distribution functiord/(g). This function is defined as the probability oiding an

inclusion between the anglés and (6, +dd), andg and (g +dg):
P(6,<6<6,+d0,¢< <@ +dg)=y(6,p)senddody (30)
If dN refers to the volume density of cracks, the foacof fibersdf can be written as:

df =gnazch :%aSNsen(H)dquH (31)

Finally, it should be observed that the approacttideed in section 3.1 can be extended to
the case of a rock with randomly (isotropic) orezhtshort joints by integration over the crack
orientations:

-1

C™™= lim (cs+cj: (]I+]P’: (cs—cj))_lj: (]I+(]I+]P’: (cs—cj))_lj (32)

X -0

where symbola denotes the integral over the spherical angulardinates &[0, 7] and
¢ [0, 2m]:

—_— m 2m 4 3 i 9
0 =[de [[" TTXN 06.9) 7 " dg (33)

In the context of Mori-Tanaka scheme, the non-remponents of tensof ™™ estimated by
(22) are:

11
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Citi =Coon= ;@1 (3k® + 41°) (8K 7P p? + 234 Pasm’y*+ 218° sk +

273
10&* ek, + 8k muak + 7TX%a’emuk, + 10k ka’+ 21Pasm i’ °+
81K 1 + 16K°mu*%ak, + 12@°a’erq &, + 36R°a‘’ ek + 1@k amk +
288&°a’ 1k k, + Aoyt + 180°5t+ 98 kL k + 48auk + TRasf K
+32a°erp K, + 192°15 k)

om om 3 S S S S S S S
Clom = Chom = ﬁ% (6482 % kk - 384 77 Kk + 24 7T i % 847 i °

2173
—3677° 1°° + 324’k k —108&°r - 96y K — 144ra° k. +
216kZa’eruk + 64&>a’erut k- 648 @z k — 216 A gk, -
576k’ a’eruk, + 24%>%am’k + S4&Casm’ - 3Basm s+ 128%Fmus k|
—-12&%emu*k, + 32&Zarlk - 16asrr’ 11°° + 324 amu® K + 32&° ar® &, —
216¢Cau®k — 10&ark  + 57BSa2£71u53kn))
Chom — 3B4°

1212

(ok°rps +12%ak, + 6™ + 16k, )
2
o _ o 3u° (9Kt + 1%kCak + 67 + 16yr°k,) (34)
1313 2323 27ks7ws+ 36(SaK +24ksa£7ws+ 4&13akt + 18'41152"' 33577,/32

om _ om — om_ om_ 3,8 s s
Cis =Cam=Co=C 3 _l('?’k —2u )

3322~
3

Chom = %(3k5 + 48 )(Koak, + 1kCasps + Ko + aurck, + )

3

where the parametei§, B, and S,are defined by:

B, =3k’ + 3Kk, + 4utak, + mu

B, =10 mprak, + 7k%a%emk + 108°%K ka’+ 8E°7glak + 7@ A ¥k,
+126K% s’ 1% + 8K *+ 8Kt P+ 28R°a 1k k + 19%a ik
+19X°a’erpik, + 18K ar®’k, + 16R°ru*ak, + 228 asr’ 1°® + 1871 +
48rma Pk, + 8Qasryt + 1927k k + 128%mirk + 128%mrk + sk

B, =36k¥agm+ 2> + 2Kk, + 6@°asrys + 3@cak + U+ ke’

(35)

Again, only diagonal components of Biot tengbrare not equal to zero:

Blhlom — Bzhzom — dasrr (gks 2, la(slus + 4;US 2)
? (36)

dasrmy (gksz + 6kslus _ 8/13 2)

B3hom -
3

2
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The Biot modulus estimate reads:

1 12’
__+_(

1
— 3k® + 418 37
M m B, H ) (37)

Again, in order to illustrate the solutions obtané&e graphs in Figure 5 show the variation

of components fronC™™, with respect to the crack density parameteMWe use the same data
given in section 3.1.

C'.“.Q'_'
E

0,35 -
0,30
0,25 -

07 - 0,20 4

0 o2 04 06 0z { 0 0z 0.4 06 03 1

|— Cham ) —— Chomqgog | |— Chom ||y —— Chom |1 Chom g |

Figure 5: components dE™" for a rock medium with randomly oriented shornjsi

As in section 3.1, in the Figure 6 below, the poesi problem is revalued, reducing one
thousand times the normal and shear stiffness @fjadmt, simulating the case which reduced
stresses are transferred across the microcrack.

13
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Figure 6: components d&™™ for a rock medium with randomly oriented shorhjsi considering
k, <xEek<xE

4 CONCLUSION

The micromechanical analysis of the behavior oksowith fluid saturated joint network has
been presented.

Extending the concept of strain concentration tensgointed media, the reasoning relies
upon the formulation of Hill lemma for such matésiand the introduction of strain concentration
tensors for the displacement jump along the joimsdeled as interfaces. The two state equations
for the rock medium with a fluid saturated conndgtent network have been formulated. They can
be viewed as an extension of the poroelasticity Bieory to such materials. In the situation when
all the joints are characterized by the same Baetffccient, it is established that the homogenized
Biot coefficient B and Biot moduluM are related to the homogenized tensor of drainedufno

C™ by Egs. (13) and (16), extending to the case oftéd rocks the classical relationships
available for ordinary porous media. From a pratticewpoint, this means that the determination
of poroelastic properties reduces to elastic homiazgéon in the dry case.

The displacement field solution to the poroelastincentration problem stated on the REV is
apriori required for the determination of the homogeniBext coefficient B and Biot modulu$/ .

Alternatively their determination can also resutinh solving the two elementary problens:
problem (P1), corresponding to the dry case andhvbolution provides fiel@”, and consequently
tensoB by (11), andb) problem (P2), corresponding to pressurized jop#ce with prevented
macroscopic strain, which provides fie{lgz] along the joints.

Finally, results are presented for two cases slfisd rocks. First, we presents the case of a
rock medium containing short parallel joints. Inc@n 3.2, this result is extended for a rock
medium with randomly oriented short joints.

A numerical solution, by applying the concept ofesive interface via finite element method
is currently under development, to allow the corgmar of results obtained by analytical solutions.

14
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