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Abstract 

The micromechanics of fracture by growing and coalescence of voids is described using 

the discrete element method (DEM) for micro-porous metal-matrix material. The study 

was developed in a series of representative volume elements (RVE) of a pseudo-

microstructure of the reference material. In the RVEs, the stress vs strain, damage 

energy, elastic strain energy response and the evolution of the void volume fraction 

were analysed. Differently from other criteria encountered in literature, in this work, the 

occurrence of coalescence is considered, when two voids merge completely. Special 

attention is given to the moment of coalescence and final failure. The values of the void 

volume fraction at the coalescence are in good agreement with other visited reports. The 

results obtained demonstrate de effectiveness of the DEM in the modelling of fracture 

modes involving growth and void coalescence. 

Keywords: micro-porous metal-matrix material, discrete element method, damage 

mechanics 

 

 

 

 



1 Introduction 

The fracture micromechanics process of the metallic material has been divided into the 

following stages: nucleation, growth and coalescence of voids that are originated from 

the non metallic inclusion or second phase particles present in the metallic 

microstructure. 

In materials where there is a hard interaction between the particle and metallic matrix, 

the nucleation stage is a determinant one in the fracture process. When the interaction 

particle – metallic matrix is weak, the determinant stage in the fracture process is the 

voids coalescence (Anderson, 1991). It is on this kind of material that the present work 

focuses. 

Direct experimental observation of any fracture micromechanics evolution is very 

difficult, due to the scale in which this process occurs, which led to a few citation 

references about in situ observation of this evolution process (Berdin et al., 2001). 

The computational mechanics has shown itself as an efficient tool to help the physical 

experimentation related to the interaction among voids phenomena. In this context, 

many works have been carried out. As examples, it is possible to indicate the proposal 

that the material void volume fraction (f) is considered as a parameter of the constitutive 

models, (Gurson 1977), and the verification of the influences of the mechanical-

metallurgical parameters such as: the initial void volume fraction f0, shape and size 

voids, the influence of the stress triaxiality level, etc, in the growing and coalescence 

voids, (Kim et al, 2004). 

Considering that most works carried out in this area use the Finite Element Method 

and that in those studies the material periodicity is taken into account, the main aim of 

the present work is to verify the DEM applicability to the simulation of the voids 

growth and coalescence fracture mechanism for random microstructures materials. 



To accomplish this aim, 2D-model representative volume elements (RVE) of a 

Ferritic Nodular Cast Iron pseudo-microstructure were built and, in these models, the 

mechanics response evolution was simulated and the result in terms of void volume 

fraction f evolution was obtained. Henceforward, the criteria to voids coalescence and to 

rupture are proposed. 

The basic characteristics about the DEM could be found in (Iturrioz et al 2006), a 

work presented in the same Conference.  

2 Topological characterization of the reference material microstructure. 

The reference material used to build DEM models was the Ferritic Nodular Cast Iron 

(FNCI). The graphite nodules distribution characterization was carried out from the 

statistical analysis of the FNCI micrographies (Fig. 1a), considering the nodules with 

perfect circular shape as an accepted simplification and different number of nodules per 

unit area (from 60 tol 600 nodules/mm2). The analyzed nodules distributions parameters 

was, the nodules radii (r), nearest neighbors distance (d), nearest neighbors number (N), 

and mean nearest neighbors distance (see Fig. 1(b)). 

The number of the nearest nodule neighbors and the nodule center position were 

determined using a Delaunay Algorithm. The process is illustrated in Fig.1(b,c,d). 

Taking into account a previous statistical study, it may be concluded that the 

distribution of nodules is almost independent on the nodular count when the ratio d/r is 

chosen as a parameter. Based on this conclusion, and bearing in mind that the 3D 

volume fraction of spherical inclusions of a representative volume element coincides 

with the 2D volume fraction (area fraction) of its cross section (Sevostionov et al., 

2004), the nodule radius r was chosen as the characteristic length for the generation of 

the geometries of the DEM models. Thus, the model geometries consisted in random 

distributions of non-overlapping nodules of identical size, Fig.1 (d). This geometry 



possesses mean values for (d/r)cl = 3.91, (d/r)nat =6.99 and N= 5.96, which are well in 

accordance with those computed from the micrographs. This correspondence was 

verified for the computer generated models in all the range of node counts Narea. 
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Figure 1: (a) Micrograph without etching of nodular cast iron. (b) Geometrical 

parameters used in the geometrical characterization of the microstructure, (c) Delaunay 

triangulation of the positions of the nodules for the micrograph shown in (a), and (d). 

Example of a randomly generated microstructure containing 150 nodules. 

 

In table 1, the FNCI material properties utilized in the DEM models are depicted.  

Tabela 1. Mechanical properties of reference material (Berdin 2001) 
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3.2 Void volume fraction computation 

Since the graphite has a very low mechanical strength if compared to the matrix 

strength, and in the FNCI, taken as a reference material, the unsticking nodule-matrix 

happens at the beginning of the plastic strain (Berdin 2001). The simulated model can 

be considered as a microporous material. Then, in DEM models, load transmition 

capacity of those bars corresponding to nodules regions was diminished (see Fig 2). 

 

 

 

 

r ≅ 3 Lc 

Figure 2: Procedure for the introduction of initial voids into the DEM model (Note that 

only those elements with their centroids located within the nodule domain are selected 

and weakened). 

Using three DEM cubic modules per radii, it was possible to obtain a good geometric 

representation of the nodules. The initial voids volume and its growth during the 

damage evolution in the simulated process was defined by Eq. 1. In Eq. 1, Vi represents 

a cubic module volume, represents the number of the weakened bars that 

correspond to the analyzed module,  represents the number of the failed bars that 

correspond to the analysed module, and, finally, the  corresponds to the total 

number of bars of one module. If the module is not a boundary module, then = 26.  
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4. Determination of the representative volume element 

The Representative Volume Element (RVE) is the smallest material volume that 

presents a macroscopic invariant response. The material sample must be big enough to 

contain a high number of heterogeneities (graphite nodules in this case) and to present 

little response ranges caused by boundary irregularities (Terada and Kikuchi, 1995). 

To obtain the RVE, a set of DEM simulations of the Pseudo FNCI Microstructures 

were carried out, containing the increasing number of nodules but keeping the void 

fraction volume constant. Ten configurations with different nodules distribution were 

tested by each sample size. The biaxial tensile boundary condition was applied on these 

samples; hence the Hill (1952) condition was fulfilled. 

The field parameters verified in the RVE determination were a strain elastic energy 

density, uel= Uel/V, the Damage energy density udamage=Udamage/V, and the void volume 

fraction f. These control parameters were computed in different stages of the loading 

process, as indicated by the following  characteristic points: P1- in the linear elastic 

regime-, P2- non linear regime-, and P3- in the maximum stress, (Fig. 6 (a)). 

The obtained results in the RVE determination are shown in Fig 3 and 4, in terms of 

the mean values corresponding to ten analyzed simulations for each sample size 

considered. The dispersion of each value is represented by the error bar in the same 

plots. 

The control points P1, P2 and P3 show a stable behavior in terms of strain elastic 

density energy (uel) from the 30 nodules samples, with an approximated dispersion of 

about 0,5 %, 8 % e 30 %, respectively, as shown in Figs. 3 (b), 3 (c) e 3 (d)). 

The behavior evidenced for the density damaged energy udamage in the control points 

P1, P2 and P3 ((Figs. 4(a) e 4(b)), shows convergence and dispersion characteristics 

similar to the results in terms of strain elastic density energy (uel), at the same stages of 



loading. 
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Figure 3: The RVE scheme determination. (a)The location of the control points in the 

stress-strain curve. The results in terms of the strain elastic energy density uel.: (b) the 

linear regime (P1), (c) The non linear regime (P2), and (d) the maximum stress (P3). 

In the case of the void volume (Fig. 4(c)), for control points P1 and P2, it is possible 

to observe convergence in terms of the mean response from 20 nodules sample, with an 

approximated dispersion of 0,2% for both control points. On the other hand, in control 

point P3, the convergence from 40 nodules samples with an approximated dispersion of 

30% is observed.  
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Figure 4: Results in terms of damage energy density udamage and fraction void volume 

f for the samples with different number of nodules. (a) udamage in the non linear control 

point (P2),(b) ) udamage  in the maximum stress control point (P3). (c) f in the three 

control point (P1,P2,P3). The error bar indicates the dispersion in the result obtained. 

Henceforward, it is possible to consider that a sample with 40 nodules presents a 

mechanical response with an acceptable level of scattering. The using of the bigger 

samples increases the computational cost without significant improvement not only in 

terms of dispersion result, but also in terms of the mean values of the field variables 

considered. According to the above facts, it is possible to conclude that a 40 nodules 

sample might be considered as an RVE of the pseudo micro structure of the FNCI. 

5. Application to tension test 

Forty RVEs DEM models containing 40 nodules each were subjected to uniaxial 

traction in order to study the evolution of the damage in the pseudo-micro-structure. 



Fig. 5 illustrates the mean value and standard deviation (y-error bars) of the resulting 

stress vs strain curve together with the actual behaviour of one sample reference 

material.(Berdin et al, 2001). It can be observed that the numerical and experimental 

results are in excellent agreement up to the point where the maximum load is attained in 

the numerical models ( 12,022 ≈ε ) and then start diverging. However, experimental data 

are always contained within the standard deviation of the numerical results. 
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Figure 5: Mean value and standard deviation (y-error bars) of the uniaxial stress vs 

strain curve resulting from DEM analyses for the forty random RVE and the regular 

microstructure. Subfigures illustrate the evolution of the damage with the applied load. 

 

The evolution of the damage in the microstructure for the random models is depicted 

using a series of subfigures in Fig. 5. Black areas in the subfigures correspond to the 



damaged elements. Subfigure (a) shows the location of the damage in the early stages of 

the non-linear portion of the stress vs strain curve. Beginning the coalescence shows in 

subfigure (b) (circled detail) and ends in subfigure (c), illustrating the stage of advanced 

damage. 

5.1 Coalescence verification. 

Coalescence is considered to occur in this work when the complete failure of the 

ligament between the voids takes place. This criterion aims to quantify the actual void 

fraction in the model at the onset of coalescence (fc), and it differs from others criteria 

reported in the literature, with values from f  = 0.10 to fc c = 0.20 (Tvergaard and 

Needleman, 1984; Goods and Brown, 1979; Kim et al, 2004). 

. 

 

 

 

 

 

 

Figure 6: Onset of coalescence and failure a) Strain at moment of coalescence and 

failure for the forty EVRs (The dashed line and the shaded band indicate mean value 

and standard deviation of the results, respectively and b) Evolution of the void volume 

fraction as a function of the longitudinal strain  
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The strain at the occurrence of coalescence for all the forty RVE models is shown in 

Figure 6 (a). The average macroscopic strain value for the onset of coalescence is 

 with a standard deviation Δ=±0.035 (see shaded band in Figure 6). 22 0.12cε =

22
cεNote that the average strain value for coalescence, , corresponds to the maximum 

load attained by the numerical models (Fig. 5). 

Fig.6 (b) illustrates mean evolution of the void volume fraction in terms of the 

longitudinal strain 22ε , with y-error bars indicating the results dispersion. The strain 

range corresponding to the onset of coalescence (Fig.6), was used to estimate the critical 

void volume fraction fc. The resulting mean value for the critical void volume fraction 

is , with lower and upper bounds and , respectively. As 

mentioned early in this section, reported values for the critical void volume fraction are 

in the range from f

0.19cf = min 0.12cf = max 0.27cf =

= 0.10 to fc c = 0.20. This upper bound is strongly influenced by the 

dispersion in the void volume fraction results, which as shown in Section 4, could be 

important once maximum load is attained 

The void volume fraction at the onset of coalescence reported for the reference material 

is fc = 0.12 (Berdin et al, 2001). This value results lower than the mean fc = 0.19 

computed in this work and a number of reasons could help explaining this discrepancy. 

The first consideration is related to the concept of coalescence itself. As stated earlier in 

this section, coalescence is considered to occur in the DEM models when two voids 

(nodules) merge, while the usual criteria in the literature associates coalescence of flow 

localization in the ligament between voids. Thus, it could be expected that the DEM 

models will detect coalescence “later” during the loading process. At the same time it is 

worth to note that the value of fc reported by Berdin et al, (2001) does not correspond to 

actual experimental observations, but it was calibrated in order to adjust a Gurson model 



to the test data. Another important issue to consider when comparing the DEM results to 

that of Berdin et al, (2001) is stress triaxiality. It is well known that Gurson model 

assumes a high level of stress triaxiality and the dependence of fc on stress triaxiality is 

pronounced. Kim et al, (2004) report increments of up to 80% in fc when reducing the 

stress triaxility for a material containing an initial volume fraction fo= 0.05. They also 

show that this tendency can further increase when augmenting the initial volume 

fraction. Thus, if it is considered that computations in this work are performed for RVEs 

subjected to low triaxiality levels (two-dimensional plane-stress models) with an initial 

void volume fraction fo= 0.077, relatively high levels of the critical void volume fraction 

could be expected. 

5.1 Failure verification. 

The final failure was monitored for the forty RVE and the results in terms of the 

macroscopic strain are presented in Fig. 6 (a). The mean value for the failure strain is 

 with a standard deviation of Δ=± 0.067, in close agreement with the 

elongation values reported by Berdin et al (2001) (see Table 1).  

22 0.217fε =

The strain range for failure was used to estimate the void volume fraction at failure ff 

(see Fig. 6 (b)). The resulting mean value is , with lower and upper bounds 

 and , respectively. When compared to the results reported by 

Berdin et al (2001) and Dong et al (1997), for the reference material, f

295,0=ff

185,0min =ff 42,0max =ff

f = 0.20, is almost 

coincident with the computed lower bound. The relatively large dispersion encountered 

for the results at failure can be partially attributed to the size of the RVE. 

 

 



5.2 Three-dimensional verification. 

Because it was taken as premise that the RVE obtained in the 2D analysis is valid in 3D, 

a 3D-analysis with five samples of 40 nodules of a pseudo microestructure of FNCI was 

carried out. Fig 7 illustrates the lay out of the 3D-DEM samples. 
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Figure 7: The nodules distribution in 3D. a) The automatic distribution generated, b) 

The correspondent DEM model Sample. 
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Figure 8. Onset of coalescence in 3D. a) Axial strain at coalescence b) Void volume 

fraction at coalescence. 

In the same way as for the 2D analysis, in the 3D analysis, were verified a strain when 

the coalescence happens, as illustrated in Fig. 8(a). By means of this characteristic strain 

value, it is possible to obtain the correspondent void volume fraction fc , as shown in Fig. 

8(b). It is possible to observe that the fc verified in the 3D models is lower than the fc 



obtained in the 2D models. This statement is coherent with the theoretical response 

obtained considering a comparison between a circular planar void arrangement and a 

sphere void arrangement, both with regular distribution. Similar tendency in the result 

of the 3D and 2D were found by other authors such as Kim et al. (2004).  

6. Conclusions 

A Discrete Element Method (DEM) formulation for the analysis of the micro-mechanics 

of failure by grow and coalescence of voids was presented in this paper. The DEM was 

selected for the numerical analyses due its inherent ability to handle crack nucleation 

and void coalescence. The microstructure of the cast iron was assimilated to that of 

porous materials, with the graphite nodules acting as voids in an elastic-plastic matrix. 

The topology of the microstructure was characterized from the statistical analysis of 

measurements performed on standard micrographs using image-processing. DEM 

models were carried out using two-dimensional computer-generated microstructures 

which reproduce the distribution of nodules of the material. 

The size of the Representative Volume Element (RVE) was determined using a series of 

DEM models performed for samples containing an increasing number of nodules. The 

strain energy density, the damage energy density, and the void volume fraction were 

monitored throughout the tests till an invariant macroscopic response was found for the 

linear and non-linear regimes. Finally, a RVE containing 40 nodules was selected. 

The extension for a 3D analysis is possible; the great limitation, in this case, is the 

computational cost. 

The proposed methodology demonstrates the effectiveness of the DEM to provide 

further understanding of the micro-mechanics of failure by grow and coalescence of 

voids. The developed tool could be easily adapted to include the effect of inclusions, 



inhomogeneities in the matrix mechanical properties, viscous effects and to extend this 

tool to three dimensional problems. 
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