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Abstract

The rate tensor of plastic deformation in elasto-viscoplastic models is usually
decomposed in direction and magnitude. In the case of small-strain J2 models, this
leads to the well known radial return mapping algorithms in which the flow direction
is known a priori at each load step. In the context of the variational large-strain
elasto-viscoplastic models, this decomposition between constitutive and cinematic
aspects is accomplished by the choice of logarithmic strain measures, exponential
integration algorithm and quadratic (Hencky) elastic potentials. The aim of this
paper is to show that the mentioned decoupling properties can be extended to
a wide set of hyperelastic-plastic isotropic models not restricted to Hencky-type
elastic behavior by relaxing the classical decomposition amplitude/direction into
the sum of spectral quantities.

1 Introduction

A variational formulation of irreversible (i.e. dissipative) constitutive models was initially

proposed in [7][9], in an isothermal context, and later extended to a fully coupled thermo-

mechanical context in [8]. One of the most relevant aspects of variational approaches is

that they provide appropriate mathematical basis for error estimation and mesh adap-

tation [9]. Applications to non-linear finite viscoelasticity were studied in [4] where an

spectral decomposition of elastic/inelastic strain/strain-rates quantities is proposed in

order to allow the inclusion of arbitrary elastic and inelastic (isotropic) potentials within

the same formalism.
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In elasto-plasticity and elasto-viscoplasticity, the rate tensor of plastic deformation

(or its incremental value), is usually decomposed in direction, related to the gradient of a

yield potential, and magnitude. In the case of von Mises (J2) type flows and small strain

range, this decomposition provides a complete separation between kinematic and consti-

tutive aspects which reduces the problem to the determination of the plastification in a

radial known direction. Analogous results are obtained with classical hyperelastic based

models by using appropriate logarithmic strain measures and exponential integration al-

gorithm [3][2][1][6]. In the variational approach, both internal quantities are determined

by a local minimization process. Moreover, It is shown in [7] that the kinematical and con-

stitutive decoupling is, once again, achieved by the choice of logarithmic strain measures,

exponential integration algorithm and quadratic elastic potential (Hencky model).

The aim of this paper is to show that the mentioned decoupling properties may be ex-

tended to a wide set of simple hyperelastic-viscoplastic isotropic models not restricted to

quadratic elastic behavior. This is performed by relaxing the classical decomposition am-

plitude/direction in a similar way as done in [4], by using spectral quantities. Moreover,

this approach allows for a natural combination of viscoelastic and viscoplastic dissipative

mechanisms appropriate for a group of thermoplastic polymers, which is the final goal of

this research.

The paper is organized as follows. Section 2 briefly presents the variational ap-

proach for irreversible constitutive problems. The application of this approach to elasto-

viscoplastic materials is stated in Section 3 where the main results of this work are shown.

Section 4 shows two particular material models within the present context while Section

5 presents a couple of numerical examples. Final remarks are shown in Section 6.
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2 Incremental formulation for inelastic constitutive

behavior

The main assumption in Hyperelasticity is the existence of a potential function Ψ which

depends on the value of strains only and whose derivative provides the state of stress of

a material point, i.e.,

P =
∂Ψ(F)

∂F
= 2F

∂Ψ(C)

∂C
(1)

In (1) F = ∇0x denotes the gradient of deformations, C = FTF is the Cauchy strain

tensor and P the first Piola Kirchhoff stress tensor. Assuming the satisfaction of com-

patibility and constitutive equations, the equilibrium problem may be defined by the

minimization of the Potential Energy

min
x∈K

H(x)

H(x) =

∫

Ω0

Ψ(F(x)) dΩ0 −
[∫

Ω0

b0 · x dΩ0 +

∫

Γ0

f0 · x dΓ0

]
(2)

where K is the set of admissible deformations.

On the other hand, the state of stress of an inelastic path dependent dissipative

phenomenon cannot be obtained just from the value of final strains and it is not any

longer possible to define a potential function with the property (1). The history of the

process is usually is described incrementally with the aid of internal (dissipative) variables.

However it is shown in [7][9], that a wide set of dissipative materials can be modelled by

the aid of pseudo potentials that behave like hyperelastic (in the sense that satisfy (1))

within the interval of a load increment, i.e.,

Pn+1 =
∂Ψ(Fn+1; En)

∂Fn+1

= 2Fn+1
∂Ψ(Cn+1; En)

∂Cn+1

(3)
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where E denotes a set of external and internal variables:

E = {F,Fi,Q} F = FeFi (4)

The tensors Fe and Fiare the elastic and inelastic parts of the gradient of deformations

while the quantity Q contains all the remaining internal variables used to describe the

process. The subindexes n and n+1 indicates the beginning and end of the load increment

and it is supposed that all quantities at time n are known.

For a quite general set of inelastic problems the potential Ψ(Fn+1; En) takes the form

(see [7], [9] for a detailed construction):

Ψ(Fn+1; En) = min
Fi

n+1
Qn+1

{
W (En+1)−W (En) + ∆tψ

(
F̊i, Q̊; En

)}
(5)

W (E) = ω(F) + ϕe(FFi−1) + ϕi(Fi,Q) (6)

where F̊ (Fn+1, En) , F̊i
(
Fi

n+1, En

)
and Q̊ (Qn+1, En) are suitable incremental approxima-

tions of the rate variables Ḟ, Ḟi and Q̇ respectively. The potentials W, and ψ inside

(5) may assume different expressions depending on the particular model needed. The

expression of W (E) in (6) assumes that the free energy can be additively decomposed

in potentials depending on F, Fe and Fi,Q respectively. The minimization in (5) with

respect to the internal variables Fi
n+1 and Qn+1 provides an evolution path of these vari-

ables within the time step and eliminates them from the potential Ψ enforcing it to be

dependent only on the gradient of deformation Fn+1.
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3 A set of hyperelastic-viscoplastic isotropic models

In this chapter, we focus an elastic-viscoplastic models1. Consider a free energy function

which ω(E) accounts for the separation of F in volumetric and isochoric parts:

ω(F) = ϕ(F̂) + U(J) (7)

F̂ =
1

J1/3
F, Ĉ = F̂T F̂, J = det(F) (8)

Thus, we rewrite W (E) as

W (E) = ϕ(F̂) + ϕe(F̂Fp−1) + ϕp(Fp,Q) + U(J) (9)

where

F̂ = F̂eFp =⇒ F̂e = F̂F
p−1

, detFp = 1 (10)

Ĉe = F̂eT F̂e =
3∑

j=1

ce
jE

e
j (11)

A rate of plastic deformation (or plastic stretching) Dp is defined as

Dp = sym(Lp) = Lp = ḞpFp−1 (12)

i.e., Lp is assumed to be symmetric. This means that no plastic spin W p =
(
Lp − LpT

)
/2

is considered.

If a von Mises’ flow type is assumed, The tensor Dp may be decomposed as follows:

Dp = q̇M, (13)

q̇ ∈ R+, (14)

M ∈ KM = {N ∈ Sym : N ·N =
3

2
, N · I = 0}. (15)

1Just for facility of notation we change the superscript i (inelastic) for p (plastic).
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where the non-negative scalar q̇ accounts for the amplitude of Dp while the normalized

traceless tensor M provides the direction of Dp. It is shown in [7] that, when this sep-

aration is combined with logarithmic strains and quadratic hyperelastic (Henky type)

potentials, a complete separation of kinematic aspects (provided by M) and constitu-

tive aspects (provided by q̇) is reached and constitutive expressions similar to those of

infinitesimal plasticity theory are obtained. This result is also verified in more classical

hyperelastic-plastic and viscoplastic approaches [6]. In order to extend these facilities to

more general hyperelastic laws other than Hencky, a spectral decomposition of Dp is here

used, following the ideas proposed in [4]:

Dp = M = q̇
3∑

j=1

qjMj (16)

q̇ ∈ R+, qj ∈ KQ =
{

pj ∈ R :
∑3

j=1pj = 0;
∑3

j=1p
2
j = 3/2

}
(17)

Mj ∈ KM = {Mj ∈ Sym : Mj ·Mj = 1, Mi ·Mj = 0, i 6= j} (18)

The set KQ enforces the traceless form of M with fixed norm, while the set KM accounts

for usual properties of eigenprojections.

Equation (16) has a special meaning: it defines a flow rule for Ḟp and establishes a

constraint between Fp and q through the flow directions qjMj. Due to this constraint, Fp

becomes a internal variable dependent of the (independent) internal variables {q, qj,Mj}
An incremental approximation of Dp is obtained by the exponential mapping:

∆Fp = Fp
n+1F

p−1
n = exp[∆tDp] (19)

∆Cp = (∆Fp)T ∆Fp = Fp−T
n Cp

n+1F
p−1
n = exp[∆tDp]2 (20)

⇒ ∆εp = ∆tDp =
1

2
ln (∆Cp) = ∆t q̇

3∑
j=1

qjMj = ∆q
3∑

j=1

qjMj (21)

⇒ Fp
n+1 = exp

[
∆q

3∑
j=1

qjMj

]
Fp

n (22)
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The elastic potential ϕe is assumed to be an isotropic function of the elastic deforma-

tion depending on its eigenvalues:

ϕe(Ĉe) = ϕe(ce
1, c

e
2, c

e
3), Ĉ

e
= F̂eT F̂e =

3∑
j=1

ce
jE

e
j (23)

This function is also described in terms of the natural strain εe = 1
2
ln Ĉe which has the

same eigenprojections of Ĉe and eigenvalues given by εe
j = 1

2
ln ce

j :

ϕe(εe) = ϕe(εe
1, ε

e
2, ε

e
3)

The plastic potential ϕp accounts for hardening phenomena. In this case we consider

an isotropic hardening depending on the internal variable q :

ϕp = ϕp(q) (24)

q(t) =

∫ t

0

q̇ dt qn+1 = qn + ∆t q̇ = qn + ∆q (25)

The dissipative isotropic plastic potential ψ depends on Dp through q̇ :

ψ(Dp) = ψ

(
∆q

∆t

)
= ψ(q̇) =





ψ̄(q̇) if q̇ ≥ 0

+∞ if q̇ < 0
(26)

This definition of ψ has the objective of incorporating an exact penalization for negative

values of q̇.

The potential ϕ(F̂) is considered null for the present set of proposed models. The

internal variables are reduced to ∆q and the spectral quantities {qj,Mj} that substitute

the minimizing variables Qn+1,F
p
n+1 in (5). The incremental potential Ψ is thus re-written
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as

Ψ(Fn+1; En) = Ψ(Cn+1; En) = ∆U(Jn+1) + min
∆q,Mj ,qj

{
∆ϕe(Ĉe

n+1) + ∆ϕp(qn+1) + ∆tψ̄
(

∆q
∆t

)}

(27)

∆ϕe(Ĉe
n+1) = ϕe(Ĉe

n+1)− ϕe(Ĉe
n) (28)

∆ϕp(qn+1) = ϕp(qn+1)− ϕp(qn) (29)

∆U(Jn+1) = U(Jn+1)− U(Jn) (30)

where the minimization operation is constrained by the conditions

qj ∈ KQ =
{

pj ∈ R :
∑3

j=1pj = 0;
∑3

j=1pjmj = 3/2
}

(31)

Mj ∈ KM = {Nj ∈ Sym : Nj ·Nj = 1, Ni ·Nj = 0, i 6= j} (32)

∆q ≥ 0 (33)

First order necessary optimality conditions of the minimization problem (27) take into

account the derivatives of potential Ψ as well as the derivatives of constraints (31), (32)

and (33). The minimization along the eigenprojections Mj can be performed analytically.

To this aim, a relevant relation between elastic and plastic deformations is shown:

F̂e
n+1 = F̂n+1F̂

p−1
n+1 = F̂pr (exp[∆tDp])−1 , F̂pr = F̂n+1F

p−1
n (34)

Ĉe
n+1 = F̂eT

n+1F̂
e
n+1 = Ĉpr (exp[∆tDp])−2 , Ĉpr = Fp−T

n Ĉn+1F
p−1
n (35)

εe
n+1 =

1

2
ln Ĉe

n+1 = εpr −∆tDp, εpr =
1

2
ln Ĉpr (36)

Equation (35) is only valid if co-linearity between Ĉpr and Dp is assumed in order to

allow permutation between both tensors. Using this assumption, it is possible to show

that the minimization with respect to Mj is achieved when the tensors Ĉe
n+1, Ĉpr and

Dp share the same eigenprojections: Ee
j = Epr

j = Mj. This means collinearity between
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Ĉpr and Dp which corroborates the permutability assumption made in (35). Moreover,

the optimality conditions for qj and ∆q take the form

ri = −∂∆ϕe

∂εe
i

∆q + λ + 2βqi = 0, i = 1, 2, 3 (37)

r4 = −
3∑

j=1

∂∆ϕe

∂εe
j

qj +
∂∆ϕp

∂∆q
+

∂ψ

∂q̇
= 0 (38)

r5 =
3∑

j=1

qj = 0 (39)

r6 =
∑3

j=1q
2
j = 3/2 (40)

Once the minimization is performed, the derivative of Ψ with respect to Ĉn+1 and Jn+1

should be calculated in order to obtain the Piola-Kirchhoff stress tensor. Due to the

separation of potential Ψ in isochoric and volumetric contributions, the stress tensor P

is re-written as

Pn+1 = 2Fn+1
∂Ψ(Cn+1; En)

∂Cn+1

= Fn+1

[
J
−2/3
n+1 DEV

(
2

∂ϕe

∂Ĉn+1

)
+

∂U

∂Jn+1

Jn+1C
−1
n+1

]
(41)

where:

∂ϕe

∂Ĉn+1

=

(
3∑

j=1

∂ϕe

∂cpr
j

∂cpr
j

∂Ĉpr

)
∂Ĉpr

∂Ĉn+1

= Fp−1
n

(
3∑

j=1

∂ϕe

∂εe
j

1

2cpr
j

Epr
j

)
Fp−T

n . (42)

4 Material tensors

An important aspect form the numerical implementation point of view is the determina-

tion of the tangent matrix, consistent with the constitutive incremental update algorithm.

The contribution to the tangent matrix from geometric terms is common to any hypere-

lastic model. Thus, we focus here on the expression of the second derivative of the present

incremental material update. We will use here the notation d(·)
dĈn+1

as the total derivative
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of the argument with respect Ĉn+1. We define thus the tensor C :

C =
d

dĈn+1

(
∂Ψ

∂Ĉn+1

)
=

d

dĈn+1

(
∂ϕe

∂Ĉn+1

)
(43)

Considering Ĉpr =
(
F̂p

)−T

n
Ĉn+1

(
F̂p

)−1

n
, calling fpn=

(
F̂p

)−1

n
and dropping index n+1,

we have:

Cijkl =
3∑

m,t,p,q=1

fpn
im fpn

jt

d

dĈpr
pq

(
∂ϕe

∂Ĉpr
mt

)
fpn
kp fpn

lq = Cϕe

klij = Cϕe

jikl.

The critical point is the obtention of the derivatives of ϕe with respect to Ĉpr = cpr
j Epr

j .

In spectral coordinates this requires the computation of the following functions:

yi =
∂ϕe

∂cpr
i

=
∂ϕe

∂εe
i

1

2cpr
i

, (44)

yi,j =
d

dcpr
j

(
∂ϕe

∂εe
i

1

2cpr
i

)
=

∂2ϕe

∂εe
i∂εe

i

dεe
i

dεpr
j

1

4cpr
i cpr

j

− ∂ϕe

∂εe
i

δij

2 (cpr
i )2 . (45)

The terms ∂ϕe

∂εe
k

and ∂2ϕe

∂εe
k∂εe

l
are straightforward. On other hand, the relation εe

k(ε
pr
1 , εpr

2 , εpr
3 )

is defined by the derivation of the nonlinear system (37,40) which provides the terms
dεe

i

dεpr
j

.

5 Examples

In this section, some expressions for the potentials considered are stated in order to obtain

different models.

The dissipative term ψ play an important role: it defines the threshold among the

elastic and inelastic regions and its definition is non differentiable. Its expression also

defines the rate dependence or independence of the plastic deformation. The Perzina law

is achieved for

ψ(q̇) =





mY0q̇0

m + 1

(
q̇

q̇0

)m+1
m

if q̇ ≥ 0

+∞ if q̇ < 0

(46)
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When m →∞ the potential becomes

ψ(q̇) =





Y0q̇ if q̇ ≥ 0

+∞ if q̇ < 0
(47)

providing a rate independent plastic deformation.

A quadratic expression for the plastic potential express a linear hardening rule:

ϕp(q) = Σ0q +
h

2
(q)2 (48)

5.1 Hencky-based model

In this section we analyze the case when the elastic potential is based on quadratic form

of the logarithmic strain tensor (Hencky-type potentials [5],[6]):

ϕe = µe
3∑

j=1

(
εe
j

)2

The potentials ψ and ϕp take the forms (47) and (48) respectively. Thus,

∂ϕe

∂εe
j

= 2µeεe
j = 2µe(εpr

j −∆q qj)

∂ψ

∂q̇
= if q̇ ≥ 0

∂ϕp

∂∆q
= Σ0 + hqn+1
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In this case, the conditions (37) take the particular form

ri = −2µe(εpr
i −∆q qi)∆q + λ + 2βqi = 0, i = 1, 2, 3 (49)

r4 = −
3∑

j=1

2µe(εpr
j −∆q qj)qj + Σ0 + hqn+1 + Y0 = 0 (50)

r5 =
3∑

j=1

qj = 0 (51)

r6 =
∑3

j=1q
2
j = 3/2 (52)

After some algebra , the following expressions may be obtained:

∆q =

√
3
2
‖spr‖ − (Y0 + Σ0 + hqn)

3µe + h
if ∆q ≥ 0 (53)

qi =
3µeεpr

i

a∆q + b
(54)

which is the usual expression for elastoplastic radial return von-Mises model. Finally,

(54) allow the computation of εe
i = 2µe(εpr

i −∆q qi) needed for the elastic potential.

5.2 Ogden-based model

In the previous case, the quadratic function of the logarithmic strains is particularly

convenient to obtain an explicit expression for for the minimizing argument ∆qp
j . In

spite of this advantage, it is well known that this type of hyperelastic potential do not fit

very well other materials like polymers. For that case, a more adequate choice may be

the Ogden model ([5][6]) which has also the property of generalizing others models like

neo-Hookean and Mooney-Rivlin:

ϕe =
3∑

i=1

N∑
p=1

µe
p

αp

([exp(εe
i )]

αp − 1) (55)

∂ϕe

∂εe
i

=
N∑

p=1

µe
p [exp(εi)]

αp (56)
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In this case, the conditions (37) take the particular form

ri = −
N∑

p=1

µe
p [exp(εi)]

αp ∆q + λ + 2βqi = 0, i = 1, 2, 3 (57)

r4 = −
N∑

p=1

µe
p [exp(εi)]

αp qj + Σ0 + hqn+1 + Y0 = 0 (58)

r5 =
3∑

j=1

qj = 0 (59)

r6 =
∑3

j=1q
2
j = 3/2 (60)

whose solution provides ∆q, qj, λ and β.

6 Numerical Example. Uniaxial traction test

This simple example illustrates the behavior of this approach for the case of a traction

test submitted to a constant strain rate. Two material models were tested: Hencky and

Ogden. Both materials were considered incompressible through a convenient penalization

value of K. The Ogden model used N = 3, i.e., p = 1, 2, 3. The corresponding parameters

are listed in Table 1. For both cases, potentials (46) and (48) were used with parameters

Y0 = 1, m = 0.8, q̇0 = 0.1, Σ0 = 20, h = 20. It is important to remark that this used

values are merely illustrative, with no relation to a specific material. Both specimens were

elongated up to λ = 3 (ε = ln λ = 1.0986) with constant strain rates of 1, 0.5 and 0.1 and

unloaded at the same strain rate. The results for the Hencky model are shown in Figure

1 where the expected dependence of the strain rate for the permanent deformation region

is found. In Figure 2 the results for the Ogden model are shown. Classical Ogden-type

elastic response is obtained, followed by a rate dependent plastic behavior.

7 Concluding Remarks

A general set of hyperelastic-viscoplastic material models was proposed in this paper.

This approach, imbedded within an unified variational approach of inelastic material
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Table 1: Material parameters for cyclic shear test.

Potential Ogden Hencky
µi −94.22 140.42 35.21 µ = 30.0
αi 3.0559 1.3328 3.8812
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Figure 1: Uniaxial traction test. Hencky model.
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Figure 2: Uniaxial traction test. Ogden model.

models [7], is characterized by a spectral decomposition of viscoplastic strains and by

generic hyperelastic and viscoplastic isotropic potential functions. Different material

models may be obtained just by changing the expression of these potentials and their

derivatives. The stress and internal variables updates require (in the general case) the

solution of a six nonlinear equation system to determine the eigenvalues of viscoplastic

increments. This nonlinear system has an analytically invertible tangent matrix which

provides computationally inexpensive Newton solutions and the symmetric material ten-

sor for the tangent matrix calculations.

All these characteristics will allow us to combine this formulation with that already

obtained for nonlinear viscoelastic behavior [4] in order to propose consistent models for

polymeric materials subject to combined viscoelastic and viscoplastic strains, which is

the subject of future works.
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