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Abstract

Topology optimization of linear elastic continuum structures is a challenging problem

when considering local stress constraints. The reasons are the singular behavior of the con-

straint with the density design variables, combined with the large number of constraints even

for small �nite element meshes. This work presents an alternative formulation for the ε-

relaxation technique, which provides an workaround for the singularity of the stress constraint.

It also presents a global stress constraint formulation. Derivation of the sensitivities for the

constraint by the adjoint method is shown. Results for single and multiple load cases show the

potential of the new formulation.

1 Introduction

Topology optimization is already established as a effective method for designing continuum me-

chanical structures. It has been developed to ef�ciently deal with strain energy based functions,

as in its original application, compliance optimization. Relentless development has extended its

usefulness; among many applications, it is nowadays used in compliant mechanisms, mechanical

vibrations, wave propagation, and buckling [Bendsøe & Sigmund 2002].

Most engineering situations, however, require the designs to pass pointwise failure criteria,

usually based on the stress tensor. Thereby, topology optimization would greatly increase its us-

ability if this kind of constraint could be successfully incorporated in its formulation.
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Local constraints, however, are still a challenge to topology optimization. The large number

constraints in a discretized structure, combined with the inherent large number of design variables

conjure to create a large scale optimization problem. In the case of stress constraints, it is even

more problematic; stress approximation is naturally worse in the �nite element method, requiring

�ner meshes to achieve small errors.

The �rst tentatives to introduce stress constraints resorted to transform the local constraints into

a single global constraint. These early attempts [Park & Kikuchi 1995, Yang & Chen 1996] failed

to achieve a �ne control of the stresses in low density regions. Those shortcomings had already

been noticed [Sved & Ginos 1968] in truss layout optimization. In this �eld, this lack of conver-

gence was associated with the singular behavior of the stress-area relation [Dobbs & Felton 1969,

Kirsch 1990, Rozvany et al. 1995].

Cheng and Guo [Cheng & Guo 1997] developed a strategy to cope with stress singularity, a

continuation approach called ε-relaxation. In this case the stress constraint was relaxed by a ex-

pression containing a positive constant ε; when its value becomes zero the original stress constraint

is recovered. The authors proposed a sequence of optimization problems which gradually reduces

the value of the relaxation which would converge to the original constraint.

This idea was then adapted to continuum topology optimization with local stress constraints

by [Duysinx & Bendsøe 1998]. Although they used an active set approach to reduce the number

of simultaneous constraints, the computational cost of dealing with all the stress recovery points

in the mesh was high.

Fancello and Pereira [Pereira et al. 2003, Fancello & Pereira 2003] introduced a new global

stress constraint, which was combined with the ε-relaxation technique to reduce the computational

cost of the optimization. Their work used an augmented Lagrangian formulation which lead to a

box-constrained optimization, not very usual in topology optimization.

The ε-relaxation is not without some critics, however; recent works [Stolpe & Svanberg 2001]

showed some cases where the continuation approach does not converge to the global optimal solu-

tion. Svanberg [Svanberg & Werme 2006] indeed proposed a new approach based in a new discrete

sensitivity analysis; but its results show that it is still not quite useful. Also the new phase-�eld

approach also has yet to be generalized to stress problems.

This work presents an alternative to formulate a multi-load case ε-relaxed stress constrained



topology optimization which can be solved by standard constrained mathematical programing

methods. As the results show, this formulation shows a good potential to be easily coded into

most topology optimization software.

2 Topology Optimization

Topology optimization is de�ned as �nding the material distribution inside a �xed domain Ω so that

an objective function is minimized while a set of constraints are satis�ed. The problem formulation

starts by de�ning an arti�cial parametrized composite material, and obtaining a relation among

these parameters and the constitutive properties. This work adopts a constitutive relation based

on a power law relating a single parameter, the density, with the isotropic elastic properties, also

called SIMP [Bendsøe & Sigmund 2002]:

E = ρrE0 (1)

where E is the composite's Young's modulus, ρ is the density, E0 is the base material Young's

modulus, and r is the exponent of the power law, which behaves like a penalty factor. Thereby, the

optimization is accomplished by �nding the spatial distribution of the density.

As most structural analyses are performed with the �nite element method, the density distri-

bution is also de�ned with the �nite element interpolation. In this case, it was chosen the usual

constant density for each �nite element. Thereby, the discretized optimization problem has as

many design variables as the number of �nite elements in the mesh.

2.1 Objective function

The natural choice for the objective function is the total mass of the design, in this case represented

by

f (ρ) =
∫

Ω
ρ dΩ ; (2)

but this work adopts a penalized version [Haber et al. 1993]

f (ρ) =
∫

Ω
[ρq + αρ (1− ρ)] dΩ , (3)



where q and α are penalty coef�cients, used to increase the relative cost of the intermediate densi-

ties.

Setting q = 1 and α = 0 yields the volume of material; also ensures that the objective function

is convex. It is usual to use a continuation approach by solving the problem with this objective

function. Choosing 0 < q ≤ 1/p means that the cost of the intermediate densities increase faster

than the elastic properties, so the optimization algorithm prefers to use either low or high densities.

However the objective functions is non-convex; furthermore values close to zero cause ill condi-

tioning to the problem. Choosing a coef�cient α < 0 means that the intermediate density costs

more than the base material, and is only used in the last part of the optimization to further clean

the design from intermediate densities.

2.2 Checkerboard control

It is well known that the use of lower order �nite element interpolation for the density can lead to

some numerical instability, where the elemental densities may de�ne a checkerboard pattern on low

density areas. This phenomenon is usually avoided with the use of �ltering, that is, some algorithm

to constrain steep density variations. A move limit density �lter [Cardoso & Fonseca 2003] was

used in this work.

3 Stress Constraints

The main point of this work is present a new formulation for stress constraints. Sved and Gi-

nos [Sved & Ginos 1968] �rst described convergence problems in truss optimization with stress

constraints as some of the areas reached small values. They traced this instability to the stress

singularity: as both forces and areas tended to zero, truss stress becomes unde�ned. Later works

[Dobbs & Felton 1969, Kirsch 1990, Rozvany et al. 1995] stated that the optimum solution would

be achieved with the removal of some of the bars, and suggested that a combinatorial method

would be needed to test the many distinct layout possibilities. This problem was also noticed in

the case of continuum topology optimization [Park & Kikuchi 1995, Yang & Chen 1996].

The underlying idea of the ε-relaxation [Cheng & Guo 1997] for truss optimization is to replace

the stress constraint σ ≤ σq by (σ − σq) A ≤ ε, where ε is an arbitrary small number. As the



problem converges, a new one is de�ned by reducing the value of ε. A sequence of problems is

solved until the relaxation reaches a previously de�ned threshold.

Although this method yields good results for truss optimization, its adaptation for the contin-

uum case is not straightforward. Duysinx and Bendsøe [Duysinx & Bendsøe 1998] de�ned the

relaxation for isotropic linear elasticity as

ρ
(

σvM

σlim

− 1
)
≤ ε , (4)

where σvM is the equivalent von Mises stress, and σlim the limit stress value. This equation was

used as a local stress constraint, imposed in each �nite element of the mesh. The large number of

constraint equations is the main drawback of this approach.

The next step is the de�nition of a global stress constraint with relaxation. The well known

alternatives are the p-norm [Park & Kikuchi 1995]

{∫

Ω

(
σvM

σlim

)p

dΩ
} 1

p ≤ 1 , (5)

and the discrete Kreisselmeier-Steinhauser function [Yang & Chen 1996]:

1

p
ln

N∑

i=1

e
p

σvM
σlim ≤ 1 (6)

where N is the number of �nite element stress points. Both approaches can emphasize the local

stresses as the exponent increases; however, with a ill-conditioning as a side effect. Duysinx and

Sigmund [Duysinx & Sigmund 1998] modi�ed the relaxation to

ρ

(
σvM

ρnσlim

− 1

)
≤ ε− ερ (7)

1 ≥ ρ ≥ ε2

and then introduced two different global stress constraints, the relaxed p-norm

{
N∑

e=1

[
max

(
0,

σvM,e

ρn
e σlim

+ ε− ε

ρe

)]p} 1
p

≤ 1 , (8)



and the relaxed p-mean

{
1

N

N∑

e=1

[
max

(
0,

σvM,e

ρn
e σlim

+ ε− ε

ρe

)]p} 1
p

≤ 1 , (9)

where σvM,e is the von Mises equivalent stress for the �nite element. The article cite some numer-

ical dif�culties to achieve convergence.

More successful was the work of Pereira et al. and Fancello and Pereira, [Pereira et al. 2003,

Fancello & Pereira 2003] which de�ned the global stress function as

∫

Ω
max

[
0, ρ

(
σvM

σlim

− 1
)
− ε + ρε

]
dΩ ≤ 0 . (10)

The problem is then solved by an augmented Lagrangian approach, which includes also a penalty

for the norm of the density gradient. A box-constrained optimization mathematical programming

algorith was used.

In this work, after some testing with the existing relaxation expressions, an alternative ε-

relaxation is proposed,
σvM

σlim

− 1 ≤ ερ − ε (11)

which respects the original idea of Cheng and Guo: a continuous mapping from the perturbed

problem to the original problem through the penalty ε. This new relaxation is now used to de�ne a

global stress constraint based on the p-norm

{
N∑

e=1

[
ve

Vt

max
(
0,

σvM,e

σlim

+ ερ − ε
)]p

} 1
p

≤ 1 , (12)

where ve is the element's volume and Vt the total domain volume. This additional fraction accounts

for the possibility of unstructured meshes, where each element can have a different volume.

From the above expression it is evident that this constraint equality does not present a smooth

behavior during the optimization iterations, as different elements might contribute to the constraint

along the process.



4 Sensitivity Analysis

The expressions that de�ne both the objective function and the global stress constraint can be

analytically differentiated with respect to the discrete design variables. Therefore, mathematical

programming algorithms can be easily implemented.

The objective function sensitivity is given by

f (ρ) =
∫

Ω
[ρq + αρ (1− ρ)] dΩ , (13)

which can be easily discretized and differentiated

f =
N∑

e=1

ve [ρq
e + αρe (1− ρe)] ⇒

∂f

∂ρi

= vi

[
qρq−1

i + αρi (1− 2ρi)
]

. (14)

The proposed global stress constraint sensitivity derivation is somewhat more complex. Using

the adjoint method, it can be written as

g (σ (ρ) , ρ) =

{
N∑

e=1

[
ve

Vt

max
(
0,

σvM,e

σlim

+ ερe − ε
)]p

} 1
p

, (15)

which is augmented with the equilibrium equation and an arbitrary multiplier vector λ as

h = g (σ (ρ) , ρ) + λt (Ku− f) (16)

which can be now differentiated with respect to a design variable ρe. Collecting the terms with the

displacement sensitivity yields

dh

dρi

=

(
∂g

∂σj

∂σj

∂u
+ λtK

)
∂u

∂ρi

+ λt ∂K

∂ρi

u +
∂g

∂ρi

. (17)

Following the standard procedure, the term between parenthesis can vanish with the suitable choice

of λ such that

λ = −K−1 ∂g

∂σj

∂σj

∂u
, (18)



remaining only
dh

dρi

= λt ∂K

∂ρi

u +
∂g

∂ρi

. (19)

The derivatives in equation 18 can be developed by using the expression for the von Mises

equivalent stress in the case of plane stress

σvM =
√

σ2
11 + σ2

22 + 3σ2
12 − σ11σ22 (20)

=

√√√√√√√√√√√





σ11

σ22

σ12





t 


1 −1
2

0

−1
2

1 0

0 0 3








σ11

σ22

σ12





(21)

=

√√√√√√√√√√√





σ11

σ22

σ12





t

V





σ11

σ22

σ12





(22)

where the middle matrix is de�ned as V . For a speci�c element, the equation above can be written

using the displacement-strain matrix B as

σvM,i =
√

utρiE0BtV BρiE0u (23)

=
√

tE0BtV BE0u (24)

so the needed derivative is expressed as

∂σvM,i

∂u
=

1

2σvM,i

∂

∂u

(
ρ2

i u
tE0BtV BE0u

)
(25)

=
1

σvM,i

(
ρ2

i E
0BtV BE0u

)
(26)

The other term in equation 18 is given by

∂g

∂σj

=
∂

∂σj

{
N∑

e=1

[
ve

Vt

max
(
0,

σvM,e

σlim

+ ερe − ε
)]p

} 1
p

(27)



which can be expanded as

∂g

∂σj

=

{
N∑

e=1

[
ve

Vt

max
(
0,

σvM,e

σlim

+ ερe − ε
)]p

} 1−p
p

{
N∑

i=1

[
vi

Vt

max
(
0,

σvM,i

σlim

+ ερi − ε
)]p−1

}
vj

Vtσlim

(28)

Finally, the derivatives in equation 19 are

∂g

∂ρi

=

{
N∑

e=1

[
ve

Vt

max
(
0,

σvM,e

σlim

+ ερe − ε
)]p

} 1−p
p

{
N∑

k=1

[
vk

Vt

max
(
0,

σvM,k

σlim

+ ερk − ε
)]p−1

ερi ln ε

}

(29)

and
∂K

∂ρi

u = L
∂Ki

∂ρi

ui = L (q − 1) ρq−1K0
i ui , (30)

where K0
i is the element's stiffness matrix with the base material, L is the localization vector of the

elemental displacements in the global displacement, and ui is the elemental displacement vector.

The computational cost of the sensitivity analysis is not particularly high, since it requires only

one additional matrix backsubstitution for the adjoint problem given by equation 18 and a series

of local elemental computations given by equations 28, 29, and 30.

5 Optimization procedure

The following optimization problem is formulated in this work: minimize the penalized function

of the volume, subject to a von Mises stress constraint in each load case,

min
ρ

f =
N∑

e=1

ve [ρq
e + αρe (1− ρe)] (31)

gl ≤ 0

where l spans the number of load cases.

A computer program was written in C language, and the �nite element code implemented the

bilinear four-node plane stress element, with a single centroidal stress recovery point. The Sequen-

tial Linear Programming (SLP) algorithm with adaptive moving limits [Cardoso & Fonseca 2003]

was chosen for the optimization.



As mentioned before, the optimization procedure uses a continuation method, that is, a se-

quence of complete successive optimization problems. This means that each problem of the se-

quence must converge before the next starts, although for ef�ciency sake, the tolerance can be

lowered in the early runs. The main path of this sequence is the reduction of the ε relaxation

factor; typically it starts with ε = 0.5 and reduces by 0.1 until it vanishes.

There are many coef�cients to be reckoned in this formulation. The �rst one is the exponent of

the constitutive power law, equation 1; all the results presented here used a simple linear scaling

(law of mixtures). The other exponent is the power of stress norm, which for most cases was

�xed as p = 4. The objective function de�nes its own continuation sequence; it starts linear

(q = 1, α = 0) while the ε factor is changing, and then a sequence of optimization problems

is solved by reducing the exponent q and increasing the coef�cient α. Typically, at the last run,

q = 0.1 and α = 10.

Some remarks should be done after the test runs:

• As expected, global stress constraints with an active constraint set do not work with small

meshes, because the constraint equation jumps noticiably at each design iteration.

• Moving limits �ltering hampered convergence and had to be switched off. Reasons for this

behavior are still under investigation.

• As noticed in [Fancello & Pereira 2003], convergence for more than one load case is prob-

lematic, and depends on a �ne tuning of the parameters.

6 Results

Results presented here use regular meshes. Limited testing with non-structured meshes did not

yield any special dif�culty, and is under thorough investigation.

The graphics show the resulting density plots, where black means full material, white means

void. Gray areas represent intermediate densities. The underlying �nite element mesh is notice-

able, since the formulation uses constant density in each element.



6.1 Single load case

Two test cases are presented here; the �rst is a rectangular domain supported by the upper edge

under transversal load considering a material with E=21000, ν = 0.3, σlim = 35 .

Figure 1: Rectangular design domain, support and loading

The optimized design is given by

Figure 2: Optimized solution

The second problem comes from [Pereira et al. 2003]. It is the 1x1 L-shaped domain supported

at the top with a vertical load in the middle of the lower vertical edge. E = 100; ν= 0.3; σlim =

42.42; P = 1. Notice that the equivalent stresses that violates the constraint are in the low density

areas. The full material areas are respecting the constraint.

Comparing this results with [Pereira et al. 2003], two main differences can be noticed: the lack

of �ltering causes small features in the designs presented here, and the penalized objective function

means that the value of the objective function is also higher.

It is also interesting to address the concerns presented in [Stolpe & Svanberg 2001]. From the

practical point of view, it appears that a large number of design variables apparently mitigates the

non-convergence issue.



Figure 3: L-shaped optimal design

6.2 Multiple load cases

The same L-shaped domain is now subject to a horizontal load as the �rst load case and a vertical

load as the second load case.

Results show that multiple load cases also presents a higher volume than the comparable work

[Fancello & Pereira 2003]. This can also be attributed to the lack of �ltering and excessive penal-

ization of the objective function.

7 Conclusions

This work presents a formulation for the topology optimization of continuum structures subject

to stress constraints for single or multiple load cases. The approach presented here lead to results

comparable to existing literature. The results show that it is possible to reduce the volume while

satisfying all the stress constraints. Despite the shortcomings of the ε-relaxation presented by

Stolpe and Svanberg, it can be still be seen as a good heuristic method for stress constrained

problems, at least until another formulation appears.

The main practical issues to be further developed in this formulation are the convergence issues

with multiple load cases, test of other �ltering algorithms, and an implementation with a faster

optimization algorithm.



Figure 4: Equivalent stresses
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