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Abstract

The present work is aimed at modeling and characterizing viscoelastic materi-
als. A constitutive equation for viscoelastic materials, in time domain, is proposed
based on the concepts of internal variables and the thermodynamics of irreversible
processes. The proposed constitutive equation is capable of dealing with common
viscoelastic behavior such as creep and relaxation phenomena. Once one has chosen
the parsimony of the model, a finite element model of the system, which is parame-
terized by a set of constitutive parameters, is built. The performance and features of
the proposed constitutive modeling is assessed by means of an inverse formulation,

which also provides an adequate framework to obtain the constitutive parameters
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and eventually propose optimal designs involving damped structures. A number of
specific analysis is carried out and their results are compared to experiments.
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1 Introduction

Modeling plays a crucial role in controlling and optimizing engineering applications
by providing means of better understanding the involved phenomena and on im-
proving the capacity of predicting future behavior, probably its key feature. An
interesting example is provided by vibrating devices, which often use viscoelastic
components to enhance damping levels. Optimal design of such vibration control
systems requires accurate modeling, specially in what concerns the viscoelastic dy-
namic behavior.

The dissipation mechanisms inherent to those materials are tied to chemical
micro-structure and, therefore, a viscoelastic constitutive equation could be derived
from a multiscale perspective. The main drawback of this approach would be the
computational effort that a multiscale computation takes, which can lead to pro-
hibitive costs for analyzing real applications. Taking this in consideration several
phenomenological models, which leads to an interesting balance between accuracy
and computational cost, have been proposed in order describe the viscoelastic be-
havior in terms of macro variables [6] and [8] .

The present work is aimed at modeling and characterizing the dynamic behavior



of viscoelastic materials. A constitutive equatio in time domain is proposed based
on the concepts of internal variables and the thermodynamics of irreversible pro-
cesses [6]. The proposed constitutive equation is capable of dealing with standard
time viscoelastic response such as creep and relaxation. More complex phenomena
can also be reproduced but their relationship with the model parameters is not
straightforward. This represents an important drawback for optimal design and
operation tuning.

Indeed, exploring the model dynamics and the role of its parameters represent
crucial steps towards the use of simulation as an effective engineering tool. In the
present work this is accomplished trough inverse formulations [1], which constitute
a means of obtaining the parameters values from experimental data and provides
a rational framework for understanding the connection between parameters and
dynamic response as well.

The constitutive parameters required to describe the dynamic behavior of the
viscoelastic material are estimated by means of the solution of the associated inverse
problem which was formulated in frequency domain. The inverse problem has been
solved by means of the Levenberg-Marquardt technique [4]. The effectiveness of the
proposed approach has been evaluated through experimental data obtained out of

a viscoelastic sandwich beam.



2 Modeling

The dynamic response of viscoelastic body submitted to a level of excitation cor-
responding to small deformations is considered. Therefore, the main aspect of the
mechanical modeling relies upon the constitutive equations that would be described
bellow.

Aiming at proposing a constitutive equation for viscoelastic materials the Ther-
modynamics of Irreversible Processes have been considered along with the concept of
internal variables [2] and [6]. Considering a small strain thermomechanical process,
the free energy function ¢ and the pseudo-potential of dissipation ¢ were chosen as

follows
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where p is the specific mass, F,F1,...,.Er and n,n1,...,n; are constitutive material
parameters, € is the total strain tensor and &;,...,&; are the internal variables ten-
sors. Once the free energy function ¢ and the pseudo-potential of dissipation ¢ had
been chosen one can obtain the constitutive equation by means of the fulfillment

of the Clausius-Duhem Inequality. Therefore, the constitutive equation renders as
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follows
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where o is the stress tensor and the parameter b, is defined as the inverse of the

relaxation time and it is defined as follows
b, = — (5)

It should be emphasized that the constitutive equations (3) and (4) should be
able to reproduce some common dynamic behaviour of viscoelastic materials such as
creep and relaxation. The ability of these constitutive equations to reproduce such
phenomena can be shown through some mathematical manipulations with equations
(3) and (4) [2]. The physical meaning of the constitutive parameters E, E, and b,,
r=1,...,1, can be easily understood by means of the the stress relaxation response
of a one-dimensional system whose constitutive equation is given by equations (3)

and (4). Such a stress relaxation response is shown in equation (6)

o(t) = E¢ {1 + zI: A, e_brt} (6)

r=1

where A, is defined as the ratio of E, and E. From equation equation (6) one can
conclude that A, and b, are associated to the magnitude of relaxation and to the

inverse of the relaxation time of the r-th internal variable. Another aspect that



should be highlighted is the fact that such constitutive equations are able to re-
produce the behaviour of a viscoelastic material whose loss factor is approximately

uniform over a certain frequency range.

3 Inverse Analysis

The key features of the constitutive modeling are assessed within the context of
an inverse analysis. This is carried out by combining experimental data, forward
modeling involving Finite Elements and parameter estimation relying upon the
Levenberg-Marquardt method [4]. The parameter estimation explores both time
and frequency domain data [7].

The system under analysis is a sandwich beam whose core is made of a vis-
coelastic material and whose sketch is shown in Figure (1). The base layer and
the constraining layer are made of aluminium and the core of the sandwich is a
viscoelastic tape produced by 3M. The specification of the tape is 4950.

The length of the beams is 1.46 m. The system is instrumented with four piezo-
electric accelerometers (PCB SN 13575) placed at 1/4, 2/5, 1/2 and 3/4 of the
beam length and with an electromechanical shaker collocated with accelerometer
number one. The first layer, called base layer, is the only one which is connected to
the support as shown in Figure(1). The base layer is hinged at both ends.

As a mathematical model of the system shown in Figure(1) is required to be



used in the estimation process, a finite element model of this system was built [2].
This finite element model takes the constitutive equations (3) and (4) into account
and the kinematics that was adopted for this model is shown in figure (2).

Uy Ry Y

restriyg‘xg

= :

Figure 1: Sketch of the viscoelastic sandwich beam.

The estimation process considers the F'RF' of the first and second accelerometers
within the band (0 — 100) H z, containing 200 points each, and it was measured at a
laboratory at 25 © C. The first analysis considers the viscoelastic model containing

one internal variable and the parameters have been denoted as follows:

G = p1 X 106 (7)
G1 = po x 10° (8)
b1 = p3 9)

As no test has been done previously in order to obtain initial estimates for the
parameters it was considered a simple test to determine the order of magnitude of
parameter GG. The test that has been performed considered a sandwich beam similar
to the under analysis but with an elastic core whose first three natural frequencies
were evaluated for a set of values of G. It was concluded that these three natural

frequencies are close to the information contained in the FRF's for values of G within
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Figure 2: Finite element model.

(3.5,5.5) MPa. Such information was important to determine the initial guesses for
G and G,. Unfortunately the authors did not have a specific pretest for determining
a suitable range of initial guesses for b;. Three different initial guesses were tested,
namely: p©® = {5,1,1}7T, p® = {5,1,10}" and p@ = {3,3,1}T. All of the
converged to the estimated vector p = {1.58,10.82,652.6}7. Figure (3) graphs the
experimental and estimated frequency response functions of the accelerometers 1

and 2 respectively.
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Figure 3: Experimental an estimated FRFs for accelerometers 1 and 2.
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From figure (3) one may conclude that the estimated and the experimental FRFs

are in agreement. The Lo norm of the difference of the experimental and estimated

FRFs of the accelerometers 1 and 2 are 12.45 and 8.88, respectively.

In order to evaluate the effect of the inclusion a new internal variable it is

considered a new model for the viscoelastic core whose dynamics is assumed to be

described by two internal variables. The vector on unknown parameters may be

defined as follows

G =p; x 10°
Gi = py x 10°
Gy = psg x 10°

b1 = pa



It was used the experimental FRFs of the accelerometers 1 and 2 and the initial
guess was chosen as follows p@ = {2,2,2,1,1}1. The estimated parameter vector
is p(© = {0.469,2.14,12.6,59.95, 1090} . Figure (4) show the experimental and es-
timated FRF's of acceleromters 1 and 2, respectively. One can clearly see from figure
(4) that the level of agreement between the estimated FRFs and the experimental
ones is higher than the one shown in figure (3). The Ly norm of the difference of the
experimental and estimated FRFs of the accelerometers 1 and 2 for this 2 internal

variable model are 11.88 and 7.14, respectively.
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Figure 4: Experimental an estimated FRFs for accelerometers 1 and 2.

authors decided to con
Aiming at validating the provided results it is considered a new set of experi-

mental data. The first validation considers time response of the first and third ac-
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celeromters when the system is excited with a sine-chirp sweeping the band (0,100)
Hz. The validation for accelerometer number one is shown in figure (5) and for ac-
clerometer number three in shown in figure (6). The responses graphed in figures (5)
and (6) are in favor of the estimated parameters. Although the estimated responses
provided by the one internal variable model and by the two internal variable model
seems to be quite similar in figures (5) and (6) the model which best describes the
system is the one which contains two internal variables. Such a conclusion can be
obtained out of the comparison between figures (3) and (4) and by the Ha norm of

the differences between the experimental and estimated FRF's for these two models.

t(s)

Figure 5: Experimental and estimated time responses measured by accelerometer number

one for a sine chirp excitation.
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Figure 6: Experimental and estimated time responses measured by accelerometer number

three for a sine chirp excitation.

4 Final Remarks

The present work proposed a internal variable based constitutive equation to de-
scribe the dynamical behavior of viscoelastic materials. This constitutive equation
is linear and it seems that it is able to describe common viscoelastic behavior such
as creep and relaxation. The parameters that characterize the constitutive equation
have been estimated by means of the classical Levenberg-Marquardt technique.
The suitability of the proposed constitutive equation has been assessed on a set
of experimental data out of a sandwich beam whose core is made of viscoelastic
material. The inverse problem has been formulated in frequency domain and it
has been used the frequency response function of two of the accelerometers within

the band (0,100) Hz. As a means of validating the estimative obtained for the
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parameters, it has been been used the time domain response of two acceleroters
due to a sine chirp excitation. The validation step showed agreement between the
experimental and the predicted response.

The contribution of this work is to propose a constitutive equation for linear
viscoelastic materials in time domain and provide a rational framework for obtaining
the model parameters. As this constitutive equation is defined in time domain it is
straightforward to build a time domain mathematical model of the system after the
estimation of the constitutive parameters. Such a time domain model can be used
to simulate the dynamical behavior of the system under different environmental

conditions.
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