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Abstract. Aguiar (2004, 2006a) have considered a class of two-dinoaasiproblems
in classical linear elasticity for which material overlajpyg occurs. Of course, mate-
rial overlapping is not physically realistic, and one pdssi way to prevent it uses a
constrained minimization theory. In this theory, a miniatian problem consists of mini-
mizing the total potential energy of a linear elastic bodpjset to the constraint that the
deformation field be locally invertible. Aguiar (2004, 2@)&have used, respectively, an
interior and an exterior penalty formulation of the minimiion problem together with a
standard finite element method to compute the minimizers.fdimulation consists of
finding the displacement field that minimizes an augmentéehpial energy functional,
which is composed of the potential energy of linear elastittieory and of a penalty
functional divided by a penalty parameter. In the interienalty formulation, the penalty
functional becomes unbounded as we approach the boundding afet of all kinemati-
cally admissible deformation fields from inside the set. qusace of minimizers belong-
ing to this set and parameterized by the penalty paramet#vas constructed. As the
penalty parameter becomes unbounded, the sequence is ghoamverge to the solution
of the original constrained minimization problem. In theesior penalty formulation,
the penalty functional is bounded everywhere and is zelidenhe set of kinematically
admissible fields. A sequence of minimizers, parametebyede penalty parameter, is
also constructed and is shown to converge to the solutiomeobtiginal constrained min-
imization problem as the penalty parameter goes to zerohigwork, we compare both
formulations by solving a singular problem in plane elaigyicin particular, we determine
the convergence ratio in both cases and show numericalteesdiich indicate that, for a
fixed finite element mesh, the sequence of numerical sadutimained with the exterior
penalty formulation converges faster than the sequenceimienical solutions obtained

with the interior penalty formulation.
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1. INTRODUCTION

There are problems in the classical linear theory of elégtighose closed form
solutions, while satisfying the governing equations of idguum together with well-
posed boundary conditions, allow material overlappingdouo. Typically, problems of
this kind involve some sort of singularity, and strains ediag level acceptable from the
point of view of a linear theory occur around the singulampei

Aguiar (2004, 2006a) have considered a two-dimensionddlpno in classical linear
elasticity for which material overlapping occurs. The peob, presented in Lekhnit-
skii (1968), concerns the equilibrium of a circular homogauns disk, which is radially
compressed along its external contour by a uniformly disted normal force. The re-
guirement that the displacement field be rotationally sytniceith respect to the center
of the disk allows the derivation of a closed form solutioattpredicts overlapping of
material in a certain region occupied by the linear elassk.d

One possible way to prevent the anomalous behavior of s&fsection is proposed
by Fosdick and Royer (2001). It combines the linear theom wWie imposition of local
injectivity constraint through a Lagrange multiplier teatue. These authors investigate
the problem of minimizing the total potential ener§yof classical linear elasticity on
an admissible setl. of vector-valued functions that satisfy the injectivity constraint
det(1 + Vv) > ¢ > 0 for a sufficiently smalle € R. In particular, they show the
existence of a solution for the constrained minimizatioolgbem in two dimensions. The
constrained problem is, however, highly nonlinear and, enegal, needs to be solved
numerically.

Obeidat et al. (2001) and Aguiar (2004, 2006a) presentd-Elment approaches to
solve this class of constrained problems. In the Obeidafsa@ach, a carefully designed
algorithm is required to keep track of all subdomains of #ference configuration where
the injectivity constraint is violated.

Our approach in Aguiar (2004) is based oniaterior penalty formulationwhich
consists of replacing by a penalized functionaf, = £ + Q/~, where~ is an arbi-
trary positive number an@ is a penalty functional defined on the constraint4et The

penalty functional is non-negative o1, satisfieQ|v] — oo asv approaches the bound-
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ary of A, and is designed so that minimizers&f:] lie in the interior of the constraint
setA.; hence the terrmterior penalty methodThus, the penalty formulation of the con-
strained problem consists of finding < .A. that minimizes the penalized functior|
over the constraint set..

Another approach considered by Aguiar (2006a) is based @xtanior penalty for-
mulation which consists of replacin§ by a penalized functiond; = £ + P/, where
0 is an arbitrary positive number arfis a penalty functional defined on the whole set
A. The penalty functional is non-negative ghand vanishes oul.. In general, the min-
imizers of&s[-] lie in the exterior of the constraint sét; hence the ternexterior penalty
method Thus, the penalty formulation of the constrained problemststs of finding
u; € A that minimizes the penalized functior@l over the setd. This method has the
advantage of yielding an unconstrained minimization probl

In Section 2. we apply both penalty formulations on the clafssonstrained min-
imization problems considered by Fosdick and Royer (200d)Section 3. we review
some results presented by these authors concerning theessed disk problem in the
context of both the unconstrained and the constrainedigeedn Section 4. we use the
Finite Element Method to obtain discrete problems from thegty formulations of the
constrained disk problem and discuss briefly a strategyepted by Aguiar (2006b) to
solve this class of problems. The resulting numerical seéhersimple to implement,
converges much faster than previous schemes presented bgrAg004, 2006a), and
can be applied in the numerical solution of problems in amyegtision. In Section 5. we
compare the numerical results obtained from the solutibtiseodiscrete problems with
analytical results obtained from the closed form solutibthe constrained minimization

problem considered in Section 3.. In Section 6. we presenesmncluding remarks.

2. ThePenalty Functional Formulation

Let B C R? be the undistorted natural reference configuration of a bdelyints
x € B are mapped to points = f(x) = x + u(x) € R? whereu(x) is the displacement
of x. The boundaryB of B is composed of two non-intersecting patss and 0,5,
IBU KB = 0B, 08BN 0B = (), such that(x) = 0 for x € 9,8 and such that a dead



MECSOL 2007 — ABCM, Sao Paulo, SP, Brazil, Marth-5*", 2007

load traction fieldi(x) is prescribed fok € 9,5. In addition, a body force(x) per unit
volume of B acts on pointx € B.

We consider the problem of minimum potential energy:

. B
geliﬁ g[v] ) g[v] = 5 CL[V,V] - f[V] ) (l)
where
alv,v] = [ C[E] - Edx, flvl]= [ b-vdx+ [ t-vdx, (2)
/ [rree]

andE = [Vv + (Vv)7] /2 is the infinitesimal strain tensor field. The functiogdd] is

the total potential energy of classical linear theory okgtaty. Furthermore,
A ={v: W"*(B) — R*|det (1 + Vv) > e > 0,v =0 a.e. o, B} (3)

is the class of admissible displacement fields @ne C(x) is the elasticity tensor, as-
sumed to be positive definite and symmetric. We suppose thal in (3) is sufficiently
small.

Fosdick and Royer (2001) fully characterize the solutidnthe minimization prob-
lem (1)-(3). In particular, they show that there exists aigoh to this problem which
does not violate the injectivity constraidtt (1 + Vv) > ¢ > 0 and derive first variation
conditions for a minimizen € A. of £[-].

Let
A={v:W"?(B) — R’|lv=0a.e. o), 5} . 4)

We then obtain the first variation &[-] at u in the form< DE[ul,v >= afu,v] —
flv],¥v € A, wherea[-, -] and f[-] are defined in (2). On the other hand, it can be
shown that there exists a scalar Lagrange multiplier field’?(B8) — R such that the first
variation has the equivalent representatio®E[u), v >= [\ cof Vf-Vvdx,Vv € A,
wherecof V£ is the cofactor of the deformation gradieﬁt and we recalinfiabove that
£(x) = x + u(x).

Defining

B- =int[{x € B:det Vf > ¢}], B_ =int[{x € B:det Vf =¢}], (5)
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where inf-] denotes the interior of a set, the necessary first variatiowlitions for the

existence of a minimizer are given by

e The Euler-Lagrange equations
DivT+b=0 inB., Div(T—eX(VE)")+b=0, X>0, inB_, (6)
together with the boundary conditions
Tn=t ondB-NB, (T—-ecX(VE) H)n=t ondB_nadB, (7)
whereT is the stress tensor amdis a unit normal ta), 5.
e Jump conditions across = B~ N B—, which is assumed to be sufficiently smooth:
(T —eMVE) )|, 5 0= T\m> n, (8)

wheren is a unit normal ta and where N B_ andX N B~ mean that the evalu-
ations are understood as limits to the dividing interfaciom within 5_ andB-.,

respectively.

An interior penalty functional formulatioof the minimization problem (1)-(3) con-
sists of replacing the energy functional (1.b) by a pendligetential energy functional
&, A. — R, R =RU {oo}, of the form

1
£ fu] = £fu] + ~ Q. (©)

wherey > 0 is a penalty parameter ar@ : A. — R is aninterior penalty functional
also calledbarrier functional The penalty functional is designed so that minimizers of
&,[-] lie in the interior of the constraint set.. Thus, the addition of1/vy) Q has the
effect of establishing a barrier on the boundary of the cainstsetA. that prevents a
search procedure for a minimizer from leaving the.4et In this work, we consider the

inverse barrier functionaldefined by

1
Qlv] = / T s e dx, Vv e A, . (20)
B
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Observe from (10) tha® is non-negative otd. and satisfie®[v] — oo asv approaches
the boundary ofA..

The penalty formulation of the minimization problem (1)-¢nsists of finding an
admissible displacement field, € A, that minimizes the penalized potenttal:], i.e.,

min &, [v], (11)

veA.

where&, [v] is given by the expressions (9), (1.b), (2), and (10). Thia nstrained
problem, and indeed the functional to be minimized is sonawiore complicated than
the original energy functional (1.b). The advantage of aering this problem, however,
is that we can use numerical procedures commonly employ#einumerical approxi-
mation of solutions of unconstrained problems. Thus, algfnthe minimization problem
(11) is a constrained problem from the theoretical pointiefw from a computational
point of view, it is unconstrained.
On the other hand, aexterior penalty functional formulatioaf the minimization

problem (1)-(3) consists of replacing the energy functigha) by a penalized potential
energy functionafs : A — R of the form

&5lu] = E[u] + %P[u] , (12)

whered > 0 is a penalty parameter arfd : A — R is apenalty functionglwhich is
non-negative in4 and is designed so th@t|v| increases with the distance fromto the

constraint setd.. In this work, we consider

Plv] = %/[maX(O, —p(v))]? dx, VveA, (13)

where max(0, —p) = (—p+ | p|)/2 and
p(v) =det(1 4+ Vv) —¢. (14)

Clearly, P[v] = 0 if the injectivity constraint is satisfied; otherwis@[v] > 0. In Section
4. we see that the choice (13) fdr leads to a discrete version of the penalized energy

functional&; that is continuous and differentiable everywhere.
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We then want to find an admissible displacement fieJdc .4 that minimizes the

penalized potentiafs |-, i.e.,

min 55 [V] s (15)

veA

where&;|v] is given by the expressions (12), (1.b), (2), (13), and (T4j)s is an uncon-
strained problem, which also has the advantage of yieldisgrete minimization prob-
lems that can be solved by classical unconstrained optiimiztgechniques.

In Section 4. we use both penalty formulations presentedeatmconstruct a numer-
ical scheme that is used in Section 5. for the solution of thestrained plane problem

presented in Section 3.2.

3. TheDisk Problem

In this section we review the main results obtained from tetsn of a plane prob-
lem, which will serve as a model problem in our computatiamshe context of both the

classical linear theory, Section 3.1, and the constrainethmeation theory, Section 3.2.

3.1 The Unconstrained Disk Problem

In classical linear elasticity, the disk problem conceies équilibrium of a circular
homogeneous disk of radigs, which is radially compressed along its external contour by
a uniformly distributed normal force per unit length. Relative to the usual orthonormal

cylindrical basige,, ey), the stress and strain tensors are given by

T = o0,,e,0e,+0ppegReg+0,0(e,Deg+ey®e,),
(16)

E = eppep®ep—|—eggeg®eg+ep9(ep®eg+eg®ep),

respectively. These tensors are related to each other byndae constitutive relations

1
Opp = m(Ep‘Epp""VpE@e@@)v
(17)
1
0o = 7(1/9Ep€pp—|—E9699), O'p9:2G€p9,

1—v,uy
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whereFE,, Ey, v,, 19, andG are elastic constants that satisfy the inequalities

Yo E,>0, Ep>0, G>0, (1—wv,u)>0. (18)
E, Ey

Since uniqueness is guaranteed in classical linear atgstice displacement field
must be rotationally symmetric with respect to the centethef disk, i.e.,u(p,6) =

u(p) e,. Thus, the strain components take the form

€pp = U, €op = % , €0 =0, (19)
where(-) = d(-)/d p. Also, there is only one non-trivial equilibrium equatiomhich

is given bydo,,/0p + (0,, — 0s9) /p = 0. Because of (16)-(19), this equation becomes
B, (u'+2) ~ By % =0.
Imposing the natural compatibility conditiar{0) = 0 and the boundary condition

o,p(pe) = —p, We obtain theclassical solutiorpresented in Lekhnitskii (1968),

p" p(1—v,vp)

Eq
u(p) = —q , q= , k=4/— >0. (20)
) =47 VE, By +v, B \ E,

As remarked by Lekhnitskii, a consequence of both (20.3,¢hat the radial and

tangential stresses become singular for any 0 whenx < 1, since

P k—1 P k—1
Opp = —DP <_) y 09 = —DPK <_) . (21)
Pe Pe

Another interesting feature of the solution (20.a,c), doby Fosdick and Royer

(2001), is that for any > 0 there is a core region defined by
p 1-k
0< (E) <q (22)

for whichu(p) < —p. Since the deformation of the body is givenfifx) = [p + u(p)] e,
for each particlex = (p, 0) of the disk, we readily see that material penetrates itgelf i
this central core.

This core contains an annular region, definedxlay < (p—”e)l_n < ¢, where the
determinant of the deformation gradient, given by

() )]

det VI =
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is negative. Outside the annular region, i.e., for smalllange values ofp/p.)' ™", we
see from (23) thadet VT is positive.

Thus, for0 < k < 1, the classical solution has no physical meaning and therefo
should be rejected as a viable solution. The anomalous bwlefvmaterial overlapping
provides, however, motivation to use a pseudo-linear thetich respects the constraint

that admissible deformations be at least locally invegtibk., thadet Vf > 0.

3.2 TheConstrained L ekhnitskii Problem

Fosdick and Royer (2001) consider the solution of the rotatly symmetric disk
problem of Lekhnitskii outlined in Section 3.1 for the maaparameter € (0,1) of
(20.c) within the constrained minimization theory outtina Section 2..

The set83_ andB-. of (5), where the constraint of local injectivity is activeef V =

) and non-activedet VI > ¢), respectively, can be determined explicitly as
B-={x=pe,cB:0<p<p.}], B ={x=pe,eB:p,<p<p}, (24)

for somep, € [0, p.], which is the solution of the algebraic equation

1+ . k—1
- (e ()

1—v,vy o

1—k Pe rl 2Kp
" VY (E k—v E)[ 2
() e (5)

with  defined by (20.c).

(25)

The equations (6)-(8) can be solved in closed form, yieldiveglLagrange multiplier

constraint stress fieldl(p) = — (1‘f\f> (%) log (p%) in B_ . Note that\ has

a logarithmic singularity at the origin, which is weaker niithe stress singularity of the

unconstrained problem reported in (21).

Also, the displacement field = u(p) e, is given by
—(1=Ve)p in B_,
u(p) = (26)
(5) (Ve — 1) p =t pf o+ (F5) (Ve — 1) pit ™ i Bs
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Using (26) together witlfi(p) = [p + u(p)] e,, we can easily obtain the expression

€ in B_,

det VE(p) = {1 + 5 [('f +1) (,%)E_l +(k—1) (p%)_ﬁ_l} } * (27)

\ {1+\/§‘1 {(n+1) (p%)n_l—(li—l) <p%)_n_1” in B..

The solution (26) describes the deformation of the disk Wiscin fact, globally injective.

4. THE DISCRETE FORMULATION

We want to construct an approximate solution to both minatian problems (11)
and (15) for given penalty parameterandd, respectively. For this, we consider a Finite
Element formulation based on the introduction of discreteimization problems over
a finite-dimensional spacd; C .4, where the subscript stands for the characteristic
length of the finite element and is given by (4). These problems can be solved using an
unconstrained minimization method with a line search teg

Holding & fixed and increasing in the interior penalty formulation, we generate a
sequence of solutions parameterizechbipr the discrete problems that converges to an
approximate solutiom,, of the minimization problem (1)-(3) as — oo. We then refine
the Finite Element mesh by decreasingnd repeat the process above. In so doing, we
generate a sequence of solutiansparameterized by which converges to the solution
u of the original minimization problem (1)-(3).

A similar procedure is used to generate a convergent sequirsolutionsu,, for
the exterior penalty formulation. Here, howewey,is the limit function of a sequence of
solutions parameterized yasd tends to zero.

The procedures outlined above are general an apply to pnsbfeany dimension. In
this work, we consider the model problem of Lekhnitskii désed in Section 3. with the
imposition of the injectivity constraintet(1 + Vv) > ¢ > 0, wherev € A. Although
the problem is two-dimensional, we recall from Section &t this also rotationally sym-

metric, so thav = v e,, wherev is a scalar function defined on the interyal p. ).
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Since the energy potentiél-] is given by (1.b) and (2), we can write

TE, {/ [(v’)zpﬂt(fﬁTv)] dp+v, [M(pe)]z} +2mpu(pe) pe (28)

1—v,1

Elve,=

for the model problem of Lekhnitskii, wherds given by (20.c). Sincéet(1+V(ve,)) =

(1+)(1+v/p), the inverse barrier functional, defined by (10), becomes
Pe

_ p
Qlves =21 [ =2 (29)
0
and the exterior penalty functional, defined by (13) and,(héfomes
Pe

Ploed = [ -0 +0)0+0/p) e +1(+ )1 +0/p) I pdp.  (30)

The penalized potentidl,[-] is then obtained from (9), (28), and (29), while the penalize
potential&;|-] is obtained from (12), (28), and (30).

Now, let0 = pg < p1 < p2 < ... < p, = p. be a partition of the interval = (0, p.)
in sub-intervalsZ; = (p;_1, p;) of lengthAp,; = p; — p;—1,7 =1,2,...,n. Letalso4,
be the set of functionse, such thaw is linear over each sub-interva), v € C°(Z), and
v(0) = 0. Clearly, A, C A, whereA is given by (4).

Next, introduce the piecewise linear basis functione, € A, 7 = 1,2,...,n,
defined byp;(p;) = d;5,4,7 = 1,2,...,n. Then, a function, e, € A;, has the represen-

tation

vn(p) =s-glp), peT, (31)

which is the inner product between the vectoe= (11,79,...,1,) € R™ and the n-
dimensional vector-valued functign= (¢1, ¢o, . . ., ¢,) defined over the interval. The

coefficientsy; are given by

n: = vn(pi) - (32)
Substitutingy;, into (28)-(30), we obtain
Pe
El(s-g)e,] E, / [ "2 (ks-g)°
g S) = = S - + d +
) 27p pe 2(1—v,v9) ppe 5-8)°7 p ?

Vp [Hs~g(pe)]2} +s-g(pe), (33)
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Pe

_ Q[(s-g)ep] 1 p
%) = =, ‘ppeof[<1+s~g'><1+s~g/p>—e] 4 (34)
(L+s-g)(1+s-g/o)—el] pdp, (35)

respectively. Observe from (31)-(35) thgf, 9, andP,, are scalar functions of an n-
dimensional vector of coefficients,i = 1,2,...,n. Also, P, is a continuous function
of s with continuous first derivative.

The discrete versions of the penalized potentia|g and&;|-] are then defined by

F\(5) = E4(s) + Qi) Fi(s) = E4(s) + Pals), (36)

respectively, for a fixed. The discrete version of the minimization problem (11), ap-
plied to the constrained disk problem of Section 3.2, cassikfinding an n-dimensional
vectorr, = {x1,x2,---,X»} that minimizes the scalar functiafi,, given by (36.a),
over all vectorss in R™. A similar statement is also true for the discrete versiothef
minimization problem (15).

The discrete minimization problems stated above are sdteeatively using a stan-
dard unconstrained second-order minimization method althe search technique. The
method is based on aterative descent algorithrdescribed in Aguiar (2006b). Below,

we describe briefly the algorithm for the minimization prexol

min F.(s), (37)

scR™
whereZ, is given by (36.a) together with (33) and (34).

Starting from an initial guess, € R", which corresponds to the undistorted natural
state of the body, and from a known direction of steepestaigsly, we generate a se-
quence of approximate solutioss, & = 0,1,2,..., denoted by{s,} € R", using the
recursive formulas,;1 = s + o, di, Whereqy, is a scalar minimizingF, in a given
direction of searchl,. The sequence of poin{s, } converges to the solutian, € R™ of

the discrete minimization problem (37).
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Next, we increase the penalty parametand repeat the whole minimization process
outlined above. Now, however, we start the new minimizapascess taking fos, the
limit point r., of the previous minimization process. The initial direatiof searchd, is
the direction of steepest descent evaluated at the new goibising this procedure for a
fixed h, we generate a sequenfe, } that converges to a limit poinf, € R” asy — 0.
We user), together with the representation (31) to construct thetfanay, = (r;, - g) e,.
This function is an approximation of the solutianof the original problem (1)-(3) for a
fixed h. Lettingh — 0, we generate a sequenfe, } that converges ta.

The algorithm for the minimization problem

min fg (S) s (38)

seR”

whereF; is given by (36.b) together with (33) and (35), is similar e algorithm de-
scribed above. Here, however, we fet— 0 in order to generate a sequenfag} that

converges to the limit point, € R".

5. NUMERICAL RESULTS

We apply the numerical method discussed in Section 4. toesolumerically the
constrained disk problem described in Section 3.2. We havmalized all lengths by
setting the radius of the disk. = 1. Furthermore, in dimensionless units, the applied
load on the boundary of the diskjs= 500, and the elastic constants afe = F£,/(1 —
vovg) = 10°, con = Ey/(1 — v, 1) = 103, c12 = v, coe = 103, which, in view of (20.c),
yieldx = 0.1 < 1. Also, we take: = 0.1 for the lower bound of the injectivity constratnt
The radius of the core subregi#h where the constraint is active is calculated from (25),
yielding p, = 0.00583. In addition, we use uniform partitions of the interyél p.) to
simulate a case for which the active regién is both not empty and unknown. The most
refined mesh in this work has 4096 elements.

In Fig. 1 we show two graphs with both the exact analyticalioh, given by (26)
and represented by the solid line, and the numerical salsitiobtained with the regular

mesh of 4096 elements and represented by the dash-dotésd e graph on the left

1These geometric and material constants are used by Fosaidkayer (2001) and Obeidat et al. (2001)

in their analytical and numerical analyses, respectivlihe compressed disk problem.



MECSOL 2007 — ABCM, Sao Paulo, SP, Brazil, Marth-5*", 2007

0.01 T T T T 0 T T T T
y=1 —— Exact solution of the constrained disk problem
mrmmmmmm————— == Numerical solution for 8 =10, 1, ..., 107°

—— Exact solution of the constrained disk problem i
o ‘== Numerical solution fory =1, 10, ..., 10" i ~0.01k
I}

\
s -0.01f\s, 1 s -002fyt e

-0.02f -0.03f

-0.03 . : : . -0.04

Figure 1: Radial displacementversus radiug for the constrained disk problem with a
fixed h.

side was obtained with the interior penalty formulatiomgsincreasing values of and
the graph on the right side was obtained with the exterioajigfiormulation using de-
creasing values aof. We see from both graphs that the sequences of numericdisu
converge to limit functions that can not be distinguishedfithe analytical solution. Ob-
serve from the graph on the left side that the displacemeldt fioe v = 1 is positive
in (0, p.), even though the disk is under compression. This numeratatisn has no
physical meaning and it only provides a starting point indearch procedure for the next
solution in the sequence of solutions parameterizedl, lfgee Section 5.).

In Fig. 2 we show curves for the ba$é logarithm of the error between the exact
solutionu = ue,, given by (26), and the numerical solutiap = (r;, - g) e,, using the
regular mesh of 4096 elements. This error is plotted agaiott the basé0 logarithm
of the parametey of the interior penalty formulation in the graph on the leftesand the
basel0 logarithm of the parametdr/§ of the exterior penalty formulation in the graph
on the right side. For both formulations, the solid line ex@nts the energy norm of the
error, which is defined byu — u;||z = F(u — us), whereF is given by either (36.a)
together with (33) and (34) for the interior penalty forntida or (36.b) together with
(33) and (35) for the exterior penalty formulation. The ddsited line represents the
Euclidean norm of the errofjr — r,||2, for both formulations, where the components

of r are given by¢; = u(p;), i = 1,2,...,n. Observe in the graph on the left side that
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== Euclidean norm == Euclidean norm
N — Energy norm — Energy norm
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g,y ¥ log, (1/3)

Figure 2: Basd0 logarithm of the erroe versus base0 logarithm of the parameter g)

(left), b) 1/4 (right). Solid line:e = ||u;, — u| . Dash-dotted linee = ||r — r]|2.

|lr—r||2 decreases monotonically with increasing valueg afid tends to an assymptotic
value asy becomes large. A similar behavior is observed|fer u, || z, except that there

is a point off the curve fory = 10°. For the graph on the right side, observe that both
errors are almost constant for small and large valuesafd that they decrease rapidly
in an interval of intermediate values &f Notice a point off the curve fofr — r;, || when
§=10"".

In both graphs shown in Fig. 2 we see that the errors tend torastic values as
both~ and1/4§ tend to infinity. In Fig. 3 we show curves for the badelogarithm of
the Euclidean erroffr, — ry||» between the best numerical solutiep= r,, - g, obtained
with large values of eithety or 1/ for each discretization, and the numerical solution
up = 1y, - g. This error is plotted against both the basdogarithm of the parameterin
the graph on the left side and the basdogarithm of the parametdr/J in the graph on
the right side.

Observing the graph on the left side of Fig. 3, we see flrat— r;||» decreases
monotonically with increasing values gfand that, except for the curve obtained with
256 elements, which is represented by the plus sign, all ther @urves are similar to
each other. In particular, notice that all these curves lanest straight lines foty > 10%.

Performing a linear regression on the curve corresponding006 elements, which is
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represented by the solid line, we find that the angular coeffigs approximately equal
to —0.54, which corresponds to a convergence ratid @f*>* = 0.292. Similar analyses
can be performed on the curves shown in the graph on the fdghbo§Fig. 3. In this case,
all but the curve corresponding to 256 elements, are alni@ght lines forl /§ > 10°.

In this case, the angular coefficient obtained from a linegression analysis of the curve
corresponding to 4096 elements is approximately equallt62, which corresponds to a
convergence ratio af0—192 = (.096.

We see from the exposition above that, for a sufficientlydargiue ofn, the sequence
of numerical solutions parameterized bgonverges faster to a limit function than the se-
quence of numerical solutions parameterizedybyOn the other hand, this convergence
is more uniform for the sequence of solutions parametermed than it is for the se-
guence of solutions parameterizeddyn particular, notice that this last sequence yields
a convergence ratio close to one for large values dfo see this, we performed a linear
regression analysis on the curve corresponding to 4096esienfiorl /6 < 10 and found

that the angular coefficient is approximately equat-to01.

. . . . . . . . . . . .
0 2 4 6 8 10 -1 0 1 2 3 4 5 6 7 8
Iogwy Iogw(llﬁ)

Figure 3: Basd 0 logarithm of the Euclidean errer= ||r, — r;||> versus base0 loga-
rithm of the parameter a) (left), b) 1/ (right).

Next, we chose the largest value of eitheor 1/ for each discretization and ob-

2Consider the ratio between two consecutive values of a seguef real numbers. If this ratio tends
to a constant value as the number of terms in the sequence terndfinity, then the ratio is called the

convergence ratio of the sequence.
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tained curves for both the exact analytical solution, gibgr26), and the corresponding
numerical solution. These curves are shown in Fig. 4. Thé/aoa solution is repre-
sented by the solid line and the numerical solutions areesgmted by the dash-dotted
lines. The graph shown in the figure is identical to the graptaioed with either the
interior penalty formulation with a fixed largeor the exterior penalty formulation with

a fixed smally. Observe that the numerical solution converges to the oalysolution
ash = p./n — 0, wheren is the number of elements. In addition, a numerical solution
obtained from a coarse mesh, with oolyelements, is already a good approximation for
the exact solution in both cases, even though the distartbe okarest node to the origin,
given byp; = h = 0.015625 for a regular mesh, is greater than the radiug.of given

by pa = 0.00583.

T T T
+=+= Numerical solution: 16, 32, ..., 4096 elements
—— Exact solution of the constrained disk problem

-0.005

.
-0.01p\ v '~

s -0.015p

-0.02

-0.025F

.03 02 04 06 08 1
Figure 4: Radial displacement versus radiug for the constrained disk problem for

either largey or smallJ.

In Fig. 5 we show curves for the bagdogarithm of the error between the exact
solutionu = ue,, given by (26), and the numerical solutioy = (r), - g) e, versus
the base logarithm of the number of elements The solid line represents the energy
norm of the error|ju — u, ||z, and the dash-dotted line represents the Euclidean norm of

the error,||r — 1},

2, Where we recall from above that the components afe given by
& = u(p;), i = 1,2,...,n. Results for the interior and exterior formulations arevgho
in the left and right graphs, respectively. Observe thagtlag@hs are very similar to each

other. In both cases the error decreases with the increaaimgper of elements up to 128
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T T
== Euclidean norm == Euclidean norm
— Energy norm — Energy norm

Iog2 n Iog2 n

Figure 5: Base logarithm of the erroe versus base logarithm of the number of ele-
mentsn. Left: Interior penalty formulation with large. Right: Exterior penalty formu-

lation with smallé. Solid line:e = ||u;, — u||g. Dash-dotted linee = ||u;, — ul|2.

elements, which corresponds to the distamce- 0.00781, then increases and reaches a
peak forn = 256, which corresponds tp; = 0.00391, decreasing thereafter. These two
values ofp; are, respectively, above and below the valug,0f 0.00583.

Notice from Fig. 5 that all curves are almost straight lines/f > 1024 elements.
Performing a linear regression on these curves, we fourtdftireboth formulations, the
angular coefficient is approximately equakt0.8 for the energy norm of the error and to
—1.6 for the Euclidean norm of the error. These values correspmednvergence ratios
of 2798 >~ (.57 and of2~1¢ = (.34, respectively.

6. Conclusion

We presented a comparative study between an interior andtemog penalty formu-
lation for a class of constrained minimization problemsstdered by Fosdick and Royer
(2001). A constrained problem in this class consists of figdi minimizer for the to-
tal potential energy¥ of classical linear theory of elasticity over a sét of admissible
displacement fields that satisfy the local injectivity dvamtdet(1 + Vu) — e > 0 for a
sufficiently small € R.

In Section 5. we showed numerical results that are in verglggueement with ana-

lytical results presented in Section 3.2. In addition, wavetd some convergence results
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which indicate that, for a fixed characteristic lengtbf the finite element mesh, the se-
quence of numerical solutions obtained with the exteriargity formulation converges
faster to a limit function than the sequence of numericaltsmhs obtained with the inte-
rior penalty formulation. The results also indicate thas thmit function is the same for
both formulations. We then constructed a sequence of linmttionsu, and observed
that the convergence ratio for this sequence is the samdtfar ene of the formula-
tions, even though the convergence ratio obtained with tieegy norm of the error is

significantly different from the Euclidean norm of the error
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