
ANALYTICAL PROCEDURE FOR STRESS FIELD SOLUTION IN 

CONCRETE GRAVITY DAMS 

 

 

Paulo Marcelo Vieira Ribeiro 
Lineu José Pedroso 
pauloribeiro@unb.br
lineu@unb.br
 
Department of Civil and Environmental Engineering, University of Brasilia - UnB 
Campus Universitário Darcy Ribeiro, 70910-900, Brasilia-DF, Brazil.  
 
 
 
 
Abstract 
 
 
Analytical solutions are of great interest to designers of concrete dams. Even though it 
is possible to solve this problem with numerical methods, it is undeniable the 
contribution of a totally analytical interior stress solution of dams. The easiness of 
computational planning and interpretation of this procedure, besides the speed and 
quality of the results obtained when compared to numerical solutions, justify the use 
of this method for preliminary stress analysis in concrete gravity dams.  
 
The analytical proposed development is based on classical formulations of solid 
mechanics and equilibrium of cross sections along the structure – assimilated to a 
deep beam – for a 2-D plane strain problem. The seismic loads associated to inertia 
and hydrodynamic forces are evaluated by a Pseudo-Static procedure, and are applied 
as static equivalent forces, which makes easier the analytical solution of this problem. 
  
The procedure development will be presented in this work, besides several examples 
and applications obtained through a computational tool developed by the Dynamics 
and Fluid-Structure Interaction Group (DFSG) at University of Brasilia. The results 
show a great potential of this solution applied to solid mechanics problems in 
engineering of dams, and indicates good results when compared to formulations and 
design examples obtained from USBR (United States Bureau of Reclamation). 
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1. INTRODUCTION 

 

It is well known that a closed form stress field solution for concrete gravity dams is a 

challenge to structural engineers. The arbitrary shape and loads applied in this 

geometry turns the design into a multi-variable task. Numerical solutions for this 

problem are available, but it is undeniable that an analytical procedure is of great 

interest to structural designers.  

The Gravity Method [1] is a solution proposed by the United States Bureau of 

Reclamation (USBR) for design of concrete gravity dams. In-plane stresses are results 

of this procedure. They can be easily combined for principal stress analysis at any 

interior point of the given geometry. It is a great design tool, but the mid-steps of this 

procedure are not very clear in literature, and that implies that the valid boundaries of 

this solution can be become a problem to designers. 

Past works developed by the DFSG have made important achievements in an attempt 

to solve analytically this problem [6, 7 and 8]. A complete rebuild of this method was 

proposed by Ribeiro [2]. It has been shown that final formulations, including Static 

and Pseudo-Static procedures, are identical to the original ones given by USBR. A 

forward step, including a new type of analysis is now available, and it gives this 

method additional seismic solution, including a modified pseudo-dynamic approach 

for stress field determination. A computer code called SAGDAM (Stress Analysis of 

Gravity Dams) developed by the DFSG is able to solve the stress field including both 

static and seismic actions in a dam. 

The easiness of computational planning of this procedure and quality of the results 

obtained when compared to finite element method models makes this solution a very 

powerful tool for initial design of concrete gravity dams. The step-by-step procedure 

and some practical examples are presented in this work.  



2. EXTERIOR ACTIONS IN A DAM 

 

Dams are usually subjected, in normal operation conditions, to three major exterior 

actions: self-weight, hydrostatic and uplift pressures (Figure 1). During an earthquake 

seismic loads must be also taken in account, and these include the hydrodynamic and 

inertia effects (estimated under a specified level of seismic analysis; Pseudo-Static in 

example). 

Figure 1 – Arbitrary section over normal operation actions (static analysis) 

 

 

 

 

 

 

 

 

 

Figure 2 – Pseudo-Static actions in a dam (seismic analysis) 



3. ANALYTICAL EQUATIONS (NORMAL OPERATION ACTIONS)  

 
Stresses formulations on arbitrary sections are listed in the next items. This analytical 

development is based on classical Theory of Elasticity 2D, under some simplified 

hypotheses, and the idea of global equilibrium of forces used in Strength of Materials.  

 

3.1 Simplified hypotheses  

The stress field solution is based on the following properties:  

 
1. Linear stress distribution for vertical normal and parabolic shear stress 

distributions over the section in analysis;  

2. The dam is built of a homogeneous, isotropic and linear elastic concrete;  

3. All applied loads are transferred to foundation under beam action. This means 

that the dam is analyzed as a cantilever beam with unitary width; 

4. The dam’s body is divided in concrete joints that have uniform properties 

along its length, and are uniformly elastic; 

5. There is no interaction between adjacent joints. Each one is treated 

independently. 

 
3.2 Vertical normal stress formulation ( Zσ ) 

From classical beam theory, assuming that normal stresses are linear distributed over 

a section, it is shown that:  
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Equation (1) can be rearranged to a coordinate system fixed at the dam’s downstream 

position ( ).  That implies on the following equation: y
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where:  

WΣ = sum of all vertical forces over an analyzed section; 

MΣ = sum of all moments over an analyzed section; 

T = length of the section being analyzed; 

y = distance measured from section’s downstream side;  

 
Figure 3 illustrates the signal convention for stresses and forces over a section. 
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Figure 3 – Positive stresses (a) and forces (b) over a section 
 
 
3.3 Shear stress formulation ( YZτ  or ZYτ ) 

It is assumed that shear stresses follow a second degree parabolic equation: 
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where ,  and  are specific constants for every section in analysis. 1a 1b 1c

Three boundary conditions are needed for this problem. Two of them can be obtained 

at the dam’s upstream and downstream sides. The last one is given by the shear force 

acting on a section. The solution of these constants leads to the following final 

equation for shear stresses:  
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where: 

VΣ =  sum of all horizontal forces over an analyzed section; 

ZYUτ = shear stress at dam’s upstream side, given by Equation (5); 

ZYDτ = shear stress at dam’s downstream side, given by Equation (6); 

( )tan[ ]ZYU ZU pτ σ= − − Uφ⋅ (5) 

( )[ ]́ tanZYD ZD Dpτ σ φ= − ⋅ (6) 
 

ZUσ = vertical normal stress at dam’s upstream side ( y T= ), given by Equation (2); 

ZDσ = vertical normal stress at dam’s downstream side ( 0y = ), given by Equation (2); 

  'p or p = hydrostatic pressure at section’s upstream or downstream side; 

  U Dorφ φ = angle between upstream or downstream side and a vertical line. 

 

3.4 Horizontal normal stress formulation ( Yσ ) 

Unlike Zσ  and ZYτ , the horizontal normal stress formulation is not a hypothesis of 

this procedure. It is the result of element equilibrium of forces (as shown on Figure 4; 

using previously defined equations), and it is the most difficult to obtain analytically.  

Solution of this problem provides a third degree parabolic equation: 
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Figure 4 – Element equilibrium at dam’s downstream side 



The solution of these constants leads to the following final equation for horizontal 

normal stresses [2]: 
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where the partial derivatives in z  are given by Equations (9), (10) and (11). 
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cω = unitary concrete weight; 
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Equations (2) and (4), combined with (7) and its constants, gives the stress field 

solution for a dam under normal operation condition. That is: under self-weight plus 

hydrostatic pressures acting on upstream and downstream sides. Uplift pressures 

contribution is not included. 



4. ANALYTICAL EQUATIONS (PSEUDO-STATIC ACTIONS) 

 
Comments on seismic action of inertia and hydrodynamic effects using pseudo-static 

approach on previous formulations are listed in the next items.  

 

4.1 Procedure hypotheses  

The pseudo-static approach for analysis of dams follows the following hypotheses: 

1. Rigid dam movement (uniformly accelerated over its height); 

2. Incompressible fluid. 

 

4.2 Additional forces 
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H

In this procedure additional forces appear due to inertia and hydrodynamic effects on 

a rigid body movement in an incompressible fluid. Inertia contribution is given by 

FI m v= ⋅  , where m  is the structural mass over an analyzed section, and Hv  is the 

rigid body acceleration. Hydrodynamic effects are calculated though a simplified 

Westergaard [3] formula, given by Equation (12). 
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where: 

ep  =  hydrodynamic pressure along the fluid-structure interface; 

γ  =  unitary fluid weight; 

gV  =  horizontal seismic acceleration in terms of gravity acceleration ( Hv g ); 

H  =  reservoir height; 

h  =  vertical distance between analyzed section and reservoir surface. 

 
Hydrodynamic pressure distribution is illustrated on Figure 2.  



Equation’s (12) integral over h  provides the hydrodynamic force over an analyzed 

section.  
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4.3 Vertical normal stress formulation ( Zσ ) 

Equation (2) remains the same in this analysis. But moments and forces are increased 

by additional inertia and hydrodynamic effects.  

 
4.4 Shear stress formulation ( YZτ  or ZYτ ) 

Equation (4) remains valid, but ZYUτ  and ZYDτ  are modified by the presence of 

hydrodynamic pressure terms (  and ) on its equations (Figure 5): ep 'ep
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Figure 5 – Element equilibrium at upstream and downstream sides 

where: 

ep = upstream hydrodynamic pressure on a section, given by Westergaard formula; 

'ep = downstream hydrodynamic pressure on a section, given by Westergaard; 

 =  positive for downstream acceleration, otherwise negative; 



 = positive for upstream acceleration, otherwise negative. 

Forces and moments are increased by additional inertia and hydrodynamic effects. 

 
4.5 Horizontal normal stress formulation ( Yσ ) 

Element equilibrium shown on Figure 3 receives two additional components: inertia 

and hydrodynamic forces. Constants  and  suffer the following modifications: 2a 2b
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where: 

 
hv gλ = = horizontal acceleration modulus divided by gravity acceleration; 

 
Constants  and  do not receive additional terms on its formulations. However the 

partial derivatives in 

2c 2d

z are affected by seismic action. The first one is given by: 
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where 'ep∂ ∂z  is the first hydrodynamic downstream pressure derivative. 
 

Equation (10) remains the same for 1b z∂ ∂ , but inside terms suffer the following 

modifications: 
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Equation (11) remains the same for 1c z∂ ∂ . Modifications on inside terms have 

already been shown on above equations. It is important to notice that all equations on 

seismic effects action must include forces and moments with inertia and 

hydrodynamic contributions. Except when commented, all terms remains the same 

and have the same meaning as in the static case.  

 

5. ANALYTICAL PROCEDURE VALID BOUNDARIES 

 
The proposed procedure was compared with results obtained in a finite element 

model. Valid boundaries of this solution are presented in the next items.  

 
5.1 Dam geometry and finite element mesh properties  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Friant Dam typical section geometry 



Figure 6 illustrates the analyzed dam. It is a real model of American Friant Dam under 

normal operation actions (except uplift forces). The finite element mesh was built 

using eight node plane strain quadrilaterals elements (Figure 7). In this analysis the 

foundation has the same material and element properties as the dam’s body.  

 

 

 
 
 
 
 
 
 
 
 
 

Figure 7 – Friant Dam finite element model [9] 

 

5.2 Overall comparison of results 

(a) (b) 

Figure 8 - Maximum principal stresses (kPa) obtained analytically (a) and with finite 
element method (b) 



Figures 8 and 9 illustrate an overall comparison of principal stress results under 

normal operation actions (except uplift forces). 

(b) (a) 

Figure 9 – Minimum principal stresses (kPa) obtained analytically (a) and with finite 
element method (b)  

 
 
5.3 Section results 

Section results are presented on Figures 10 through 13.  
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Figure 10 – Elevation 71.63m stress distribution 



 
 Elevation 41.15m (51% dam's height)
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Figure 11 – Elevation 41.15m stress distribution 
 Elevation 25.91m (32% dam's height)
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Figure 12 – Elevation 25.91m stress distribution 
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Figure 13 – Elevation 10.67m stress distribution 



5.4 Results analysis 

From the above figures and graphics it is clear that the analytical procedure provides 

very good results for stress field distribution when compared to finite element 

solution. Figures 8a and 8b are almost identical. Very good results are also shown by 

Figures 9a and 9b. Section analysis reveals that analytical stress functions are very 

close to numerical results on a great part of the dam’s elevations. Sections near the 

base or close to abrupt changes in geometry provide poor results.  

 

6. SOME SEISMIC RESULTS SAMPLES 

Seismic action is able to make significant changes on stress field magnitudes during 

earthquakes. Figures 14a and 14b illustrate some sample results. The first one 

indicates the stress field on Pine Flat Dam under normal operation actions. The 

second one indicates the stress field during a 0.2g ( 21.962 m s ) peak ground 

acceleration (upstream direction), using the pseudo-static approach. 

 

(b) (a) 

Figure 14 – Pine Flat Dam maximum principal stresses (kPa) under normal (a) and 
upstream seismic action (b) 



7. CONCLUSIONS 

Analysis of previous results indicates that: 

1. Analytical results are globally very similar to the ones obtained trough numerical 

methods as seen in Figures 8 and 9; 

 

2. Section analysis justifies the above results. Analytical stress equations cover most 

of the dam’s stress field with good accuracy. Singular points on geometry or near 

boundary conditions (dam’s base) provide poor results; 

 

3. The simple nature of this procedure and the good results provided makes it an ideal 

tool for preliminary design of concrete dams. Computational cost when compared to 

the output’s quality is minimal for automatic calculations, and that is one the 

method’s great advantage.  

 

4. Seismic action can make significant changes on stress field during earthquakes. 

When Pine Flat Dam is accelerated at upstream direction, maximum principal stresses 

magnitudes at downstream side can increase up to 67%. The same effect could be 

expected in a downstream direction, generating overstressed regions on upstream side. 
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