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Abstract. This paper presents numerical simulations of incompressible turbulent free-surface fluid flow problems. The
methodology employed to solve the time-averaged Navier-Stokes, mass conservation and k — € turbulence equations is
an extension of GENSMAC: a finite-difference marker-and-cell technique for the numerical solution of incompressible
free-surface flows using a velocity-pressure formulation. The numerical solution procedure is applied to a turbulent
boundary-layer on a flat plate and an azisymmetric jet impinging onto a flat surface.

Keywords: turbulent flow; time-averaged Navier-Stokes; free-surface fluid flow; high-order upwinding; finite-difference
formulation; K — & turbulence model

1. Introduction

Numerical solutions of the time-averaged Navier-Stokes equations for turbulent flow field have received a
great deal of attention in recent years, since, in principle, they describe fluid flow problems with any level of
complexity. The only uncertanty in this approach is that introduced by turbulence model to effect closure of
the mean conservation equations. The effects of the turbulence in the fluid flow sometimes play an important
part in the physical process because of its increased mixing properties, which can affect the overall temperature,
density and velocity distributions in the flow. However, compared to confined fluid flow problems, the numerical
solution of turbulent free-surface fluid flow problems represents a challenge, since the free-surface itself is one
of the unknowns.

The main purpose of this work is to present numerical simulations of incompressible turbulent free-surface
fluid flow problems using two versions of the k — & turbulence model. The numerical solution procedure is
applied to a turbulent boundary-layer on a flat plate and an axisymmetric jet impinging onto a flat surface.

2. Governing Equations

The set of governing equations for time-dependent, viscous, isothermal incompressible turbulent newtonian
fluid flow are the time-averaged Navier-Stokes equations, mass conservation equation, and k and € equations.
In conservative form, these fluid flow equations, omitting averaging symbols, can be written as, respectively,
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In the above equations, t is the time, u = u(r, z,t) and v = v(r, 2,t) are, respectively, the components in the r
and z directions of the local time-averaged velocity vector field u = u(r, 2,t), kK = k(r, z,t) is the time-averaged
turbulent kinetic energy, € = €(r, z,t) is the dissipation rate of x, and p, = p + %%Iﬂ is the effective pressure.
The non-dimensional parameters Re = UgLo/v and Fr = Uy/+/Lo|g| denote the associated Reynolds and
Froude numbers, respectively, in which Uy is a characteristic velocity scale, Lg is a length scale, and v is the
kinematic viscosity of the fluid. The isotropic eddy-viscosity v, the production of turbulence P, the source
term E and the time scale T; are, respectively, defined as
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where, in Eq. (9), |S|? = D:D, with D=Vu + (Vu)T. Together with the model constants C,, Ci., Ca., oy
and o, the parameter § in Eqgs. (5) and (9) is used to specify the k — & models. In the case of C, = 0.09,
Cie =1.44,C5. =1.92,0, = 1.0, 0. = 1.3 and = 0, we deal with the high-Reynolds x —e model of Lauder and
Spalding, 1974 (H Re x—e model), with the time scale proposed by Durbin, 1996 for appropriated treatment of
stagnation-point anomaly. When the model constants are that proposed by Hoffman, 1975; that is, C}, = 0.09,
Cie =181, C3. = 2.0, 0, = 2.0, 0. = 3.0 and B = 1, we treat with a low-Reynolds k — & model (LRe k —¢
model), similar to that proposed by Yang and Shih, 1993. The damping function f, in Eq. (6) assumes the
value f, = 1in the case of the HRe k—e model, and takes the following expression in the case of the LRe k—¢
model

1/2
fu= (1 — Ezp(—aiRe,, — agRegw — a5Re§w)) , (10)

where a;,a3 and as are constants given by a; =1.5 x 107%, a3 =5.0 x 1077, a5 =1.0 x 1071, and Re, is the
local Reynolds number defined as Re,, = 2w Rex"/ 2 being z, the normal distance from the rigid-boundary
to a point into the flow. The parameter « in Egs. (1) through (7) is used to specify the coordinate system,
namely: when a = 0, plane cartesian coordinates is considered; and when a = 1, cilyndrical polar coodinates is
assumed. The dependent variables in Egs. (1)-(9) have been nondimensionalized by Uy, Lo and v in the usual
way.



3. Initial and Boundary Conditions

Equations (1) through (5) are coupled, non-linear, partial differential equations and, together with the eddy-
viscosity model (6), are sufficient, in principle, to solve for the five unknowns u, v, p., £ and € when appropriated
initial and boundary conditions are specified. In this work, a staggered grid is used where the effective pressure,
the turbulent kinetic energy and the dissipation rate are stored at the center of a computational cell, whereas
velocities are stored at the cell boundaries. With this grid system, effective pressure boundary conditions are
not needed. For initial conditions, the values of all variables are prescribed. Five types of boundary conditions
are used, namely: inflow, outflow, symmetry, free-surface, and rigid-wall boundaries. At the inflow, the values
of u, v, k and ¢ are prescribed. At the outflow, the streamwise gradient for each variable is required to be equal
to zero. At symmetry boundaries, we are using
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where n and t denote normal and tangential directions to the boundary, respectively. At the free-surface, we
are considering that the fluid is moving into a passive atmosphere (zero-pressure) and, in the absence of surface
tension forces, the normal and tangential components of the stress must be continuous across any free-surface,
so that on such a surface we have (see, for example, Ladau and Lifshitz, 1987)

un = 0,

n-(c-n)=0, (12)
m- (o-n)=0. (13)

Here, n and m are unit normal and tangent vectors to the surface, and o is the general constitutive equation
(Cauchy stress-tensor) defined as

1
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0= —p. T+ ——(1+m)D, (14)
where I denotes the identity tensor. From Egs. (12) and (13), we determine the effective pressure and the
velocities, respectively. The turbulent variables at the free-surface are determined by imposing
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The boundary conditions at rigid-wall depend on the k¥ —e model considered. When the simulation is performed
with the HRe k — & model, the wall-function approach of Lauder and Spalding, 1974 is used. In this case, the
fundamental equation for determining the fictitious velocities and turbulent variables near a rigid-wall is the
total wall shear stress 7, given by (Wilcox, 1988)
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where 4 represents the velocity component tangential to the rigid-wall, and u, is the friction velocity. The
values of the k and € in the inertial sublayer are given by

Tw TwUr
K= RCW and €= ReK—zw, (17)
being K = 0.41 the von Karmén constant. In the viscous sublayer, we are using the strategy of Sondak and

Pletcher, 1995, that is,

Tw Z+ 2 [ 1 Ii3/2
K = RCW <ZC—+> and g = El—*, (18)
where 2% is defined as 2+ = Reu,z, and [* represents the length scale proposed by Norris and Reynolds,
1975. Neglecting the buffer layer of a turbulent boundary-layer, the critic z* (z.%) in Eq. (18) delimits the
viscous sublayer and the inertial sublayer. A detailed discussion of the initial and boundary conditions using the
HRe k — ¢ turbulence model is given in Ferreira, 2001. When the LRe k — e model is used in the simulations,

the velocity at solid boundary is set to zero, in order to represent the no-slip condition (u = 0), and the values
of the variables k and ¢ at this boundary are (Merci et al., 2001)

9 1/2\ 2
k=0 and 5:§(agn ) (19)




3.1. Wall-Function Application

It is well known that the HRe k — ¢ model requires modification for the simulation of flow near rigid
boundaries, so as to account for damping of velocity flutuations and viscous effects. In general, the solution of
the conservation equations in the inner layer is not necessary since the flow mechanism in such a region can be
described reasonably well by employing wall-functions (for a more datailed discussion see, for example, Ferreira,
2001). The behavior of the mean velocity profiles in the viscous and inertial sublayers are, respectively, given
by (see, for example, Bradshaw, 1976, Wilcox, 1988 or White, 1991)

ut —2t =0, (20)
In(Ez") — Ku® =0, (21)

where ut = 4 /u, and E = exp(K5.1). One of the central questions in the application of the wall-functions (16)-
(18) is the determination of the friction velocity, and hence the wall shear stress. It is determined from relation
(20) or (21), depending on the local Reynolds number z*. When u, is obtained by (21), Newton-Raphson’s
method is applied with w, = 11.60 as the initial condition. We initiate the calculations by determining the
critic Reynolds number z.T, solution of the non-linear equation defined by the intersection of (20) and (21),
and by imposing that it is in the viscous sublayer. By neglecting the transition sublayer, in every cycle of the
computational procedure, the friction velocity is estimated in the following manner: with the tangential velocity
@ known in the first cell adjacent to the wall, u, is apdated according to the value of the z* given by (20). If
27T is less than 2,7, we use (20); on the other hand, we employ (21). The fictitious velocities are calculated by
central-difference approximation of the Eq. (16).

4. Numerical Methodology

The governing equations (1) through (5) are solved with an extension of the GENSMAC methodology for
turbulent flow field (see Ferreira, 2001). It is based on the decomposition of vector field into a divergence free
component and a gradient of a scalar field. The detailed information of the GENSMAC for laminar flow field
is provided by Tomé and McKee, 1994 and Tomé et al., 2000.

GENSMAC is a finite-difference, explicit, first /second-order accurate numerical method based on a predictor-
corrector scheme. By using a guessed effective pressure p. and an eddy-viscosity, the method consists of solving
the time-averaged Navier-Stokes equations at the (k + 1) time-step for a tentative velocity field 4. The 1 is
related to the true velocity field u, at the (k + 1) time-step, by an auxiliary potential function ¢ which is
calculated by a Poisson equation, originated by imposing V - u = 0 at the (k + 1) time-step. The effective
pressure and the turbulent variables k and € are then updated, and the procedure is repeated at each time-step.
In particular, when calculating @ in step 1, we employ an adaptive time-stepping routine (see Tomé and McKee,
1994). The numerical solution procedure may be summarized as follows.

It is supposed that, at a given time ¢ = ¢y, the velocity field u is known and suitable boundary conditions
for the velocity and turbulent variables are given. Let p.(r, z,t) be an arbitrary effective pressure field, which
satisfies the correct pressure condition on the free-surface. This pressure field is constructed employing the
normal-stress condition (12) at the free-surface, and it is chosen arbitrarily (for instance g, (r, z,t) = 0) into the
fluid. The updated velocity field, the effective pressure and the turbulent variables, at time t = tg + dt, are
calculated by the following steps:

1. With the eddy-viscosity v, known at t = tg, compute an approximate velocity field u(r,z,t) from a
finite-difference discretization of
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with 1u(r, z,t0) = u(r, z,t9) using the correct boundary conditions for u(r, z,%0). It can be shown (see, for
example, Ferreira, 2001) that u(r, z,t) possesses the correct vorticity at time ¢ but does not satisfy (3), in
general. By writting

11(7‘, 2, t) = l~l(7‘, 2, t) - V’Qb(T’, 2, t) (24)
and imposing
V2¢(T‘,Z,t) =V- 1~1(T,Z,t), (25)

a velocity field is obtained in which the vorticity and mass are conserved;

2. Solve the Poisson equation (25). The appropriate boundary conditions for this elliptic equation are
homogeneous Dirichlet-type on the free-surface and homogeneous Neumann-type on fixed boundaries.
These are treated in a similar way as is in the GENSMAC code of Tomé and McKee, 1994;

3. Calculate the velocity field u(r, z,t) from (24);

4. Compute the effective pressure. It can be shown (see Ferreira, 2001) that the effective pressure field is
given by

Pe(r; 2,t) = Pe(r, z,t) + Y(r, 2, ) [ 6t; (26)
Compute the kinetic energy « from a finite-difference approximation of (4);
Compute the dissipation rate € from a finite-difference approximation of (5);

Update the eddy-viscosity v; from (6);

® N o o

Particle movement. The last step in the calculation involves the movement of the marker particles to their
new positions. These are virtual particles (without mass, volume, or other properties), whose coordinates
are stored and updated at the end of each cycle by solving the ordinary differential equations

@ d == 27
g = v and —=v (27)
by Euler’s method. This provides a particle with its new coordinates, allowing us to determine whether
or not it has moved into a new computational cell, or if it has left the containment region through an
outflow-boundarys;

9. Update the boundary conditions and go back to the first step.

In the solution procedure outlined above, the differential equations are discretized in time and space in
precisely the same manner for all dependent variables. The temporal derivatives are discretized using the
first-order forward difference (Euler’s method), while the spatial derivatives are evaluated using specific finite-
differences on a uniform staggered grid system. The convective terms are approximated by the high-order
upwinding VONOS scheme of Varonos and Bergeles, 1998, which satisfy the monotonicity criterion proposed by
Gaskell and Lau, 1988. A detailed discussion of this convection scheme would go beyond the scope of this paper,
and the reader is referred to Ferreira et al., 2002 for details of implementation and application. All the other
derivatives are approximated using standard second-order central-difference formulation. The Poisson equation
(25) is discretized using the usual five-point Laplacian operator, and the corresponding symmetric-positive
definite linear system is solved by the conjugate-gradient method

5. Numerical Results and Discussions

First, results with the HRe k — & model will be presented for the turbulent boundary-layer on a flat plate.
For this problem, the Reynolds number based on the inflow velocity Up = 1.0 m/s and the channel height
H =1.0m is Re = 2.0 x 108. Three different meshes are used: a coarse mesh (20 x 100 computational cells,
dx = dy = 0.05 m); a medium mesh (40 x 200 computational cells, §z = djy = 0.025 m); and a fine mesh (80 x 400
computational cells, 0z = dy = 0.0125 m). Figure 1 shows a comparison between the dimensionless turbulent
skin-friction coefficient profiles C; = 27,, as a function of the local Reynols number Re, = Upx/v, obtained
by the HRe k — e model, in the three meshes and at the adimensional time ¢ = 6.477, and the estimates given



by Prandtl, power-law and White (see, for example, White, 1991). In this picture, for simple comparison, the
laminar profile is also presented. As shown in Figs. 1 a), b) and c), the numerical estimates are generally
satisfactory for Re, beyond 1.0 x 105. It can also be observed from Fig. 1 d) that when the coarse mesh is twice
refined, there was convergence of the numerical solution for a profile near the power-law and White profiles. On
the other hand, for Re, < 1.0 x 10, the discrepancy may be due to the uniform meshes used and the initial
velocity profile not being sufficiently turbulent at the entrance region. Of course, near to Re, = 1.0 x 10%, it
may be noticed the tendency of the numerical profile, in the fine mesh (Fig. 1 c)), to follow the theoretical
profiles.

Next, results with both the HRe k — ¢ and LRe k — ¢ models will be examined for an axisymmetric jet
impinging onto a flat surface. For this problem, the Reynolds number based on the inflow velocity Uy = 1.0 m/s
and inflow diameter D = 0.02 m is Re = 5.03 x 10%, and the Froude number is F, = Uy/+/gD. Three different
meshes are also used for this free-surface flow: a coarse mesh (50 x 100 computational cells, 7 = z = 0.001 m);
a medium mesh (100 x 200 computational cells, dr = 6z = 0.0005 m); and a fine mesh (200 x 400 computational
cells, or = 6z = 0.00025 m). Figure 2 shows a comparison between the dimensionless surface height h, obtained
from the HRe k — ¢ (Figs. 2 a), ¢) and e) - left column) and LRe k — e (Figs. 2 b), d) and f) - right column)
models in the three meshes and at the adimensional time ¢t = 20.48, and approximate viscous and inviscid
solutions by Watson, 1964. It can be seen, from the left column of this figure, that the numerical solutions using
the HRe k — € model on coarse and medium meshes monotonicaly converge to the numerical solution on the
fine mesh, and the numerical solution on the fine mesh shows reasonable agreement with the Watson’s viscous
solution. At the same adimensional time of the simulation with the HRe k — e model, the comparison between
the surface height obtained from the LRe k—¢ model and the Watson’s viscous solution was also made, and the
results are displayed in the right column of the Fig. 2. It is clear that the numerical results with this turbulence
model on coarse and medium meshes are unsatisfactory, whereas the solution on the fine mesh converges to a
solution near Watson’s viscous solution. We believe that, for this especific free-surface fluid flow problem, the
discrepancy between viscous analytical solution, developed by Watson, and the numerical solution, obtained by
the two versions of kK — ¢ models, may be atributed to the poor resolution of the viscous sublayer by numerical
methods and the hypotheses made by Watson to obtain his viscous analytical solutions. In fact, the numerical
solutions have been calculated on uniform meshes; and the viscous analytical solution, according to Watson, is
in disagreement with experimental data.

6. Summary and Conclusion

Numerical simulations of turbulent free-surface fluid flow problems by using two versions of the k — &
turbulent models have been presented. In order to describe the turbulent effects on the averaged flow, the
k and € conservation equations were analysed and implemented into the two-dimensional and axisymmetric
GENSMAC codes. In an attempt to obtain bounded transient solutions, the convection VONOS scheme was
adopted for all non-linear derivatives of the convective transport equations. The numerical results show that it is
beneficial to incorporate this high-order upwinding method in order to reduce the effects of numerical diffusion
in turbulent free-surface flow problems. Particularly, on fine meshes, both the x — ¢ models yield favorable
predictions of turbulent boundary-layer on a flat plate and jet impingement flows.

At the present, the authors are looking at the adaptation of these numerical techniques to more difficult
fluid flow problems, such as those involving three dimensions.
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