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Abstract. The present work will shortly review some recently developed results for the description of the asymptotic

structure of a separating °ow. Our main purpose is to show how the single limit concept of Kaplun can be used to

derive a new asymptotic structure for the °ow ¯eld which is consistent with our commom knowledge of the problem. The

classical structure of the velocity and temperature boundary layers is shown to develop into an one-deck structure near

the separation point due to the merging of two principal equations. The work also shows that, near a separation point, the

Reynolds analogy breaks down yielding a di®erent power-law for the temperature pro¯le. As a bonus, the work furnishes

analytical expressions for the velocity and temperature near wall solutions which are shown to hold also in the reverse

°ow. The speci¯ed velocity pro¯les are based on a previous formulation of the problem by Cruz and Silva Freire(IJHMT,

41, 2097{2111, 1998; IJHMT, 45, 1459{1466, 2002). The temperature pro¯les near the wall are described by a newly

proposed expression that reduces to a logarithmic pro¯le in the attached region, and assumes a minus half power law

pro¯le at the separation point. In the separated region, the logarithmic pro¯le is recovered.
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1. Introduction

The correct description of the asymptotic structure of the turbulent boundary layer is a problem that
has been satisfactorily resolved for simple °ow conditions. For the classical problem of zero-pressure-gradient
boundary layers, early developments by Yajnik(1970), Mellor(1972) and Bush and Fendell(1972) have stated
the boundary layer to have a two-layered structure consisting of a viscous wall layer and an outer defect region.
Yajnik and Mellor do not use in their analyzes any closure hypothesis to represent the turbulent shear stress
terms, relying only on asymptotic arguments. Bush and Fendell, on the other hand, use in their developments
turbulence models of the mixing-length/eddy viscosity type. In all cases, the °ow structure and solutions are
developed in terms of an appropriate small parameter, ² = ord (lnR)¡1. Clearly, these early analyzes had been
tailored to conform the results to the then classical two-layered structure suggested by the law of the wall and
the law of the wake.

Using a di®erent asymptotic approach, Sychev and Sychev(1987) have claimed the boundary layer to have
a three-deck structure. In fact, all recent discussions that led to the development of three-layered asymptotic
models for the turbulent boundary layer are basically motivated by the inability of the classical two-deck model
to deal with large adverse pressure gradients. When a turbulent boundary layer is subjected to a large adverse
pressure gradient, the wake velocity de¯cit is large and the mean momentum equation is non-linear. These
features make Millikan's \matchability" arguments, which result is a log-law and in a two deck structure, not
valid anymore. Also the friction velocity, u¿ , used in the classical approaches as a characteristic velocity, becomes
an inappropriate scaling parameter for adverse pressure gradient boundary layers since it tends to zero. All
these di±culties force into the adverse pressure gradient problem a new small parameter of the order of R¡1=3,
which is used to scale a power y layer that replaces Millikan's log-layer. This layer matches, on passage of the
inner and outer limits, respectively, to the wall and defect layers. Thus, according to this picture, three sets of
characteristic scales are needed for the asymptotic description of adverse pressure gradient turbulent boundary
layers (see Durbin and Belcher(1992)).

A major di±culty of all previous theories is to establish a single scaling procedure which can naturally
accommodate the far upstream boundary layer structure to a two-deck structure, and the far downstream
structure to a three-deck structure. In other words, the theories are not capable of explaining, in asymptotic
terms, how the logarithmic layer vanishes as separation is approached, and how the y1=2-layer is formed. In
fact, some theories (Mellor(1966), Gersten(1987), Melnik(1989)) present expressions for the intermediate layer
that upon appropriate limit passages reduce to the log-law upstream and to the y1=2-law downstream. These
expressions, however, are developed in terms of inappropriate scaling parameters or conceptual frameworks that
cannot explain how the logarithmic portion completely vanishes as u¿ ¡! 0.

In a previous work, Cruz and Silva Freire(1998) introduced a new scaling procedure which was not subject to
the aforementioned prejudices. The new scaling parameter was de¯ned through an algebraic equation, resulting
in a changeable asymptotic structure for the boundary layer, di®erent from those of other authors, but consistent
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with the experimental data. The major theoretical basis for the results was provided by the single limit process
concept of Kaplun(1967), together with his Ansatz about domains of validity. Thus, some formal properties of
the motion equations, yielded by the de¯nition of \equivalent in the limit" of Kaplun, were used to determine
the actual validity domains and overlap regions of the °ow. The theory, in particular, led to a new expression
for the velocity law of the wall and to a skin-friction equation that were supposed to hold up to the separation
point and in the reverse °ow region. Also, new expressions were proposed for the temperature law of the wall
and for the Stanton number equation. All theoretical results were validated with the data of Vogel(1984).

In a subsequent work, Cruz and Silva Freire(2002) revisited the previous theory to show how some results
could be improved so as to furnish more reliable expressions for the velocity and temperature laws of the wall. In
relation to the original paper, the following modi¯cations were introduced: 1) a new formulation for the reference
velocity, 2) a new expression for the velocity law of the wall, and 3) a new expression for the temperature law
of the wall. The new reference velocity was speci¯ed through the total shear stress, as opposed to the previous
one which had to be evaluated from an algebraic transcendental equation. The single expression advanced for
the velocity law of the wall replaced the three expressions (Eqs. 25, 26 and 27) of Cruz and Silva Freire(1998);
this expression is supposed to hold in the whole °uid region. The temperature law of the wall was written with
the help of reasonably sophisticated expressions for its angular and linear coe±cients; these are a function of
the turbulent Prandlt number, the pressure gradient, the reference velocity and the shear stress at the wall.
The main result of all these modi¯cations was that much better results were found for the prediction of Stanton
number near the separation point.

The purpose of this work is to present the theories formerly introduced in Cruz and Silva Freire(1998, 2002)
in an uni¯ed framework. Thus the work will be structured in two parts. In part one, the asymptotic structure
of separating °ows will be reviewed. In part two, new formulations for the law of the wall will be reviewed as
well; this new formulation includes an alternative expression for the description of the near wall characteristic
length which holds also in the reverse °ow region. The temperature ¯eld near de wall is described by a single
expression that reduces to the logarithmic pro¯le in the attached region, and assumes a minus half power law
pro¯le at the separation point. In the separated region the logarithmic pro¯le is recovered.

Nomenclature

A Parameter in thermal law of the wall.
AJ Linear coe±cient of thermal law of the wall.
Cf Skin friction coe±cient.
cp Speci¯c heat at constant pressure.
C¹ Constant in ·-² model (=0.09).
D Formal limit domain.
E Parameter in law of the wall (=9.8).
E Denotes partial di®erential equation.
F;G Generic functions de¯ned in ¥ by a system of di®erential equations
H Step height in Vogel's experiments.
L Characteristic length.
Pr Prandtl number.
Prt Turbulent Prandtl number.
P Pressure.
Q Heat °ux.
R Reynolds number.
S Solutions of E.
St Stanton number.
t; T Temperature.
u, v velocity components.
u¿ Friction velocity.
uR Reference velocity.
x; y Flow cartesian coordinates.
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Greek symbols

® Overlap index.
± Gauge function.
¢; ´ Functions de¯ned in ¥.
² small parameter.
² Kinetic energy dissipation.
{ von Karman's constant (=0.4).
· Turbulent kinetic energy.
µ Error function.
¹ Viscosity.
º Kinematic viscosity.
½ Density.
¿ Shear stress.
¥ Space of all positive continuous functions on (0; 1].

Subscripts

1; 2 Order of magnitude.
d Singularity point.
i; j Summation.
l Local conditions.
p First grid point.
R Reference parameter.
t Temperature.
w Conditions at wall.
¢ variable stretched according to ¢(²).
´ variable stretched according to ´(²).
1 External °ow conditions.

2. Kaplun limits

In this section, a survey of some essential ideas used in solving singular perturbation problems is made.
Some of the concepts to be discussed here are those of matching of asymptotic expansions, domain of validity
of such expansions, overlap, formal validity of equations and limit processes.

The purpose of perturbation methods is to try to construct approximating solutions by the study of simpli¯ed
equations. For the class of problems termed singular perturbation problems, at least two expansions are needed
to construct a solution which is uniformly valid in the whole interval domain. It is thus necessary to de¯ne the
concept of uniform domain of validity for such approximations. This can be achieved by a direct extension of
the concepts of uniform convergence on an interval and of uniform validity on an interval, to the concepts of
uniform convergence on a function class and of uniform validity on a function class. The concepts of domain of
validity, of overlap, of limit processes and of matching then follow immediately.

Matching is, by its nature, a comparison of two approximations in their domain of overlap. On this ground,
rules and recipes can be devised for matching in which the concept of overlap does not appear explicitly. The well
known technique of interchanging limit expansions can be shown to be appropriate for certain simple cases. In
simpler cases, even more precise rules can be enunciated such as the matching principle of Van Dyke(1972). This
leads us to the central problem in perturbation theory: How can one justify a priori that two approximations
have an overlap domain?

Trying to overcome this di±culty, Kaplun(1967) suggested to consider some formal properties of equations,
characterizing them through their domains of validity. This would be not only more basic for understanding
the matching process but also essential in the construction of the asymptotic expansions. Since all techniques
used for matching are based on overlap, it is clear that this can only be achieved if two approximations have
a common validity domain. The formal properties of an approximation are de¯ned through a study of limits
of the original equation. Then, the concepts of formal domain, of intermediate equation, of principal equation
and of formal domain of validity can be introduced. The operational details of the mathematical procedure are
laid by ¯ve de¯nitions, one Axiom and one Ansatz. These are shown below.

The formulation to be presented here is only introductory to the ample set of results presented in Kaplun(1967)
and in Lagerstrom and Casten(1972). For more details on the technique, the reader is referred to these two
works. Complementary material is found in Meyer(1967), in Freund(1972) and in Silva Freire and Hirata(1990).

Here we use the topology on the collection of order classes as introduced by Meyer(1967).
Let ² be a parameter on (0; 1] and x a variable in Rn with Euclidean norm jxj. Let F be a function de¯ned

for ² and on some x-space domain with pointwise norm kFk. Our interest is to study the behaviour of F in
the limit ²! 0. In particular, we are interested in the cases where singularities arise. For example, passage of
the limit may result in the loss of the highest order derivative term in a di®erential equation, and hence in the
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impossibility of satisfying all the boundary conditions. The idea of the Kaplun limit is to study the limit as
²! 0 not for ¯xed x near a singularity point xd, but for x tending to xd in a de¯nite relationship to ² speci¯ed
by a stretching function ´(²).

Taking xd = 0, we de¯ne

x´ =
x

´(²)
; G(x´; ²) = F (x; ²) (1)

with ´(²) a function de¯ned in ¥ (= space of all positive continuous functions on (0; 1]).
The Kaplun limit process is then de¯ned as follows.

De¯nition 1 (Meyer(1967)). If the function

G(x´; +0) = lim
²!0

G(x´; ²); (2)

exists uniformly on fx=jx´j > 0g; then we de¯ne lim´F (x; ²) = G(x´;+0).

If F is a function de¯ned by a system of di®erential equations, then the above de¯nition establishes to

every order of ´ a correspondence original equation
lim´¡! associated equation on that subset of ¥ for which the

associated equation exists. The passage of the ´-limit process is a formal operation which results in a set of
associated equations referred to by Kaplun(1967) as the \splitting" of the original di®erential equation; this
operation establishes the basis for the de¯nition of formal domain of validity.

De¯nition 2. The formal limit domain of an associated equation E is the set of orders ² such that the ´-limit
process applied to the original equation yields E.

To evaluate how close two equations are, Kaplun needed to advance a measuring procedure. This was made
through the de¯nition of equivalent in the limit.

De¯nition 3. Two equations E1 and E2 are said to be equivalent in the limit for a given limit process, lim´,
and to a given order ±(²), if,

µ =
E1(x´; ²)¡ E2(x´; ²)

±(²)
! 0; as ²! 0: (3)

De¯nition 4 (of formal domain of validity). The formal domain of validity to order ±(²) of an equation
E of formal limit domain D is the set De = D [D0

is, where D
0
is are the formal limit domains of all equations

Ei such that E and Ei are equivalent to Di to order ±(²).

To relate the formal domain of validity of an equation to its actual domain of validity, Kaplun(1967) ad-
vanced two assertions, the Axiom of Existence and the Ansatz about domains of validity. These assertions are
primitive and unveri¯able assumptions of perturbation theory. They allow one to use de¯nitions 1 to 4 to ¯nd
approximate solutions to singular perturbation problems. Because the heuristic nature of the Axiom and of the
Ansatz, comparison to experiments will always be important for validation purposes. The theory, however, as
implemented through the above operations, is always very helpful in understanding the matching process and
in constructing the appropriate asymptotic expansions.

Axiom (of existence) (Kaplun(1967)). If equations E1 and E2 are equivalent in the limit to order ±(²)
for a certain region, then given a solution S1 of E1 which lies in the region of equivalence of E1 and E2, there
exists a solution S2 of E2 such that as ²! 0; j S1 ¡ S2 j =± ! 0, in the region of equivalence of E1 and E2.

To this axiom, there corresponds an Ansatz to ensure that there exists a solution S1 of E1 which lies in the
region of equivalence of E1 and E2.

Ansatz (about domains of validity) (Kaplun(1967)). An equation with a given formal domain of
validity D has a solution whose actual domain of validity corresponds to D.

The word \corresponds to" in the Ansatz was assumed by Kaplun to actually mean \is equal to". The above
formulation ceases to be valid when small terms have large integrated e®ects. In the example to be studied here,
however, the principle is expected to work. Switchback terms, which are deduced from inspection of formally
higher order terms, can always be included in the original formulation if we backtrack to the lower order terms.
Large integrated e®ects occur when singularities occur in the approximating functions; these are not expected
to occur here.
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3. The equations of motion

We consider the problem of an incompressible two-dimensional turbulent flow over a smooth surface in a
prescribed pressure distribution. The time-averaged motion equations; i.e., the continuity equation, the Navier-
Stokes equation and the energy equation, can be cast as

@uj
@xj

= 0; (4)

uj
@ui
@xj

= ¡ @p

@xj
¡ ²2 @

@xj

µ
u0ju

0
i

¶
+
1

R

@2ui
@x2j

; (5)

uj
@t

@xj
= ¡²2 @

@xj

µ
u0jt0

¶
+

1

PrR

@2t

@x2j
; (6)

where the notation is classical. Thus (x1; x2) = (x; y) stand for the coordinates, (u1; u2) = (u; v) for the
velocities, p for pressure, t for temperature and R and Pr for the Reynolds and the Prandtl numbers respectively.
The dashes are used to indicate a fluctuating quantity. In the fluctuation terms an overbar is used to indicate
a time-average.

All mean variables are referred to some characteristic quantity of the external flow. The velocity fluctuations,
on the other hand, are referred to a characteristic velocity uR, ¯rstly introduced in Cruz and Silva Freire(1998,
2002). This characteristic velocity, fundamental for the determination of the inner layers solution is known to
reduce upstream and downstream of a separation point respectively to u¿ and to (º(dp=dx)=½)

1=3. It must then
be de¯ned so as to comply with this behaviour. In the next section we will show how this can be done.

The small parameter ² is de¯ned as

² =
uR
U1

: (7)

The temperature fluctuation is considered to be of the order of the friction temperature t¿ , here de¯ned as

t¿ =
qw

½cpuR
: (8)

Note that the classical de¯nition of t¿ based on the friction velocity breaks down near a separation point.
Now, based on the adverse pressure gradient results of Orlando et alli(1974), we make

ord (u0i) = ord (t
0): (9)

The above assumptions concerning the relative order of magnitude of the various fluctuation terms, which
are crucial for our future developments, have become a well established result in the asymptotic theories for
turbulent boundary layer flow. For incompressible flow, the basic experimental support for them stems from
the works of the Stanford Heat and Mass Transfer Group. The results of Kistler(1959) and of Kistler and
Chen(1963) provide experimental support for compressible flows.

4. The velocity and the temperature asymptotic structures

We write the asymptotic expansions for the °ow parameters as

u(x; y) = u1(x; y) + ²u2(x; y); (10)

v(x; y) =
´

¢
[v1(x; y) + ²v2(x; y)]; (11)

p(x; y) = p1(x; y) + ²p2(x; y); (12)

t(x; y) = t1(x; y) + ²t2(x; y); (13)

u0i(x; y) = ²u
0
i1(x; y) + ²

2u0i2(x; y): (14)

To ¯nd the asymptotic structure of the boundary layer we consider the following stretching transformation

x¢ =
x

¢(²)
; y´ =

y

´(²)
; ûi(x¢; y´) = ui(x; y): (15)
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with ¢(²) and ´(²) de¯ned on ¥.
Upon substitution of Eq.(15) into Eq.(5) and upon passage of the ´-limit process onto the resulting equation

we get (Cruz and Silva Freire(1998)):

x-momentum equation:

ord ´ = ord 1 : û1
@û1
@x¢

+ v̂1
@û1
@y´

+
@p̂1
@x¢

= 0; (16)

ord ²2 < ord ´ < ord 1 : û1
@û1
@x¢

+ v̂1
@û1
@y´

+
@p̂1
@x¢

= 0; (17)

ord ²2 = ord ´ : û1
@û1
@x¢

+ v̂1
@û1
@y´

+
@p̂1
@x¢

= ¡@û
0
1v̂
0
1

@y´
; (18)

ord (1=²R) < ord ´ < ord ²2 :
@û01v̂01
@y´

= 0; (19)

ord (1=²R) = ord ´ : ¡@û
0
1v̂
0
1

@y´
+
@2û2
@y2´

= 0; (20)

ord ´ < ord (1=²R) :
@2û2
@y2´

= 0; (21)

y-momentum equation:

ord ´ = ord 1 : û1
@v̂1
@x¢

+ v̂1
@v̂1
@y´

+
@p̂1
@y¢

= 0; (22)

ord ´ < ord 1 :
@p̂1
@y´

= 0: (23)

The term û1(x¢; y´) is missing from equations (20) and (21) since from the no-slip condition û1 = 0 near
the wall.

Equations (18) and (20) are distinguished in two ways: i) they are determined by speci¯c choices of ´, and
ii) they are \richer" than the others in the sense that, application of the limit process to them yields some of
the other equations, but neither of them can be obtained from passage of the limit process to any of the other
equations. Thus, in the language of Kaplun, these equations are called principal equations. Principal equations
are important since they are expected to be satis¯ed by the corresponding limits of the exact solution. We then
make the following de¯nition.

De¯nition 5 (of principal equation). An equation E of formal limit domain D, is said to be principal to
order ± if:

i) one can ¯nd another equation E0, of formal limit domain D0, such that E and E0 are equivalent in D0 to
order ±;

ii) E is not equivalent to order ± to any other equation in D.

A complete solution to the problem should then according to the Axiom of Existence and Kaplun's Ansatz,
be obtained from the principal x-momentum and y-momentum equations located at points ord ´ = 1, ord ´ =
ord ²2 and ord ´ = ord (1=²R). The formal domains of validity of these equations cover the entire domain and
overlap in a region determined according to de¯nition 4.

To ¯nd the overlap region of equations (18) and (20), we must show these equations to have a common
domain where they are equivalent; thus, we must use Kaplun's concept of equivalent in the limit, de¯nition 4.
A direct application of this de¯nition to equations (18) and (20) yields

µ =

û1
¢

@û1
@x¢

+ v̂1
´
@û1
@y´

+ 1
¢
dp̂1
dx¢

¡ 1
R´2

@2û1
@y2´

²®
: (24)
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Noting that the leading order term in region ord (1=²R) < ord ´ < ord ²2 is the turbulent term, of ord (²2=´),
we normalize the above equation to order unity to ¯nd

¹µ =
´

²2
µ: (25)

The overlap domain is the set of orders such that the ´-limit process applied to ¹µ tends to zero for a given
®. Then since ord (@=@y) = ² and ord (@=@x) = 1, the formal overlap domain is given by

D = f´= ord (²1+®R)¡1 < ord ´ < ord (²2+®¢)g: (26)

According to Kaplun's Ansatz about domains of validity, the approximate equations, Eqs. (18) and (20),
only overlap if set 26 is a non-empty set, that is, if

0 · ® · ¡1
2

µ
lnR¢

ln ²
+ 3

¶
: (27)

The implication is that the two-deck turbulent boundary layer structure given by the two principal equations,
equations (18) and (20), provides approximate solutions which are accurate to the order of ²®max , where ®max is
the least upper bound of the interval (27). This fundamental result can only be reached through the application
of Kaplun's concepts and ideas to the problem.

We conclude that the turbulent boundary layer has a two-deck structure very much like the one derived by
Sychev and Sychev. This structure, however, must change as a separation point is approached. We shall see
this next.

Equation (21) together with the boundary condition

¹
@u2
@y

= ¿w: (28)

shows that far away from the separation point uR = u¿ . Close to the separation point in the limit ¢ ¡! 0,
however, u¿ ¡! 0, so that an alternative value must be sought for uR. The characteristic velocity uR will be
determined here through some order of magnitude considerations.

At the bottom of the overlap region, a balance between the turbulent and viscous stresses occurs so that we
may write

@

@y
(¡½u01v01) + ¹

@2u2
@y2

=
@p1
@x
: (29)

In this region, the characteristic length is given by º=uR. Then, considering that the turbulent °uctuations
are of the order of the reference velocity, uR, and that the viscous term can be approximated by

ord(¹
@u2
@y
) = ord(¿w); (30)

it results from simple order of magnitude arguments that the characteristic velocity can be estimated from the
algebraic equation

u3R ¡
¿w
½
uR ¡ º

½

@p

@x
= 0: (31)

In the limit ¢ ¡! 0,

uR ¡!
µ
º

½

@p

@x

¶1=3
; (32)

recovering the characteristic velocity for the near separation point region proposed by Stratford(1959) and by
Townsend(1976).

The characteristic velocity uR is determined by the highest real root of (31).
The implication is that, close to the separation point, ord (²2) = ord (1=²R), and the two \rich" equations

merge giving origin to a new structure. This merging provokes the disappearance of the log-region, reducing
the flow structure to a wake region and a viscous region.

7



The flow structure then becomes:

x-momentum equation:

ord ¢ = ord 1 : û2
@û2
@x¢

+ v̂2
@û2
@y´

+
@p̂2
@x¢

= 0; (33)

ord ²2 < ord ¢ < ord 1 : û2
@û2
@x¢

+ v̂2
@û2
@y´

+
@p̂2
@x¢

= 0; (34)

ord ²2 = ord ¢ : û2
@û2
@x¢

+ v̂2
@û2
@y´

+
@p̂2
@x¢

= ¡@û
02
1

@x¢
¡ @û

0
1v̂
0
1

@y´
+
@2û2
@x2¢

+
@2û2
@y2´

; (35)

ord ¢ < ord ²2 :
@2û2
@x2¢

+
@2û2
@y2´

= 0; (36)

y-momentum equation:

ord ¢ = ord 1 : û2
@v̂2
@x¢

+ v̂2
@v̂2
@y´

+
@p̂2
@y´

= 0; (37)

ord ²2 < ord 1 < ord ¢ : û2
@v̂2
@x¢

+ v̂2
@v̂2
@y´

+
@p̂2
@y´

= 0; (38)

ord ²2 = ord ¢ : û2
@v̂2
@x¢

+ v̂2
@v̂2
@y´

+
@p̂2
@x¢

= ¡ @v̂
02
1

@x¢
¡ @û

0
1v̂
0
1

@y´
+
@2v̂2
@x2¢

+
@2v̂2
@y2´

; (39)

ord ¢ < ord ²2 :
@2v̂2
@x2¢

+
@2v̂2
@y2´

= 0: (40)

At this point it is of interest to note that in the region (¢; ´) = (²2; ²2) the full Navier-Stokes averaged
equation is recovered. The leading order equations for û1 together with the no-slip condition at the wall gives
û1 = 0.

According to the above results, a global solution for the problem can only be obtained through equations
(35) and (39). Unfortunately, these non-linear equations are of di±cult solution, having the turbulent term yet
to be de¯ned.

To study the temperature boundary layer asymptotic structure we will use the same procedure as before.
Application of the stretching transformation de¯ned by equations (15) to the energy equation followed by
passage of the ´-limit process, yields:

ord ´ = ord 1 : û1
@t̂1
@x¢

+ v̂1
@t̂1
@y´

= 0; (41)

ord ²2 < ord ´ < ord 1 : û1
@t̂1
@x¢

+ v̂1
@t̂1
@y´

= 0; (42)

ord ´ = ord ²2 : û1
@t̂1
@x¢

+ v̂1
@t̂1
@y´

= ¡@v̂
0
1t̂
0
1

@y´
; (43)

ord (1=²RPr) < ord ´ < ord ²
2 :

@v̂01 t̂
0
1

@y´
= 0; (44)
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ord ´ = ord (1=²RPr) : ¡@v̂
0
1 t̂
0
1

@y´
¡ @

2t̂2
@y2´

= 0; (45)

ord ´ < ord (1=²RPr) :
@2t̂2
@y2´

= 0: (46)

The above equations imply that the temperature turbulent boundary layer has a two-layered structure, the
two \rich" equations being located at points ord ´ = ord ²2 and ord ´ = ord (1=²RPr) of the ¥ space. The
consequence is that the outer \rich" equations for both the velocity and the temperature boundary layers are
always located at the same point of ¥. The location of the inner \rich" equations, however, di®ers by a scale
factor, the Prandtl number. Thus if Pr = 1, the asymptotic structures of both the velocity and the temperature
boundary layers will be identical, and logarithmic solutions will arise.

The overlap domain of equations (43) and (45) can be calculated just in the same way as the velocity ¯eld
overlap domain was calculated (set 26). For this reason, the procedure will not be repeated here. We just point
out to the reader that for the temperature case the overlap domain will depend on the Prandtl number

Near to a separation point, however, the temperature boundary layer structure must change, much in the
same way as the velocity boundary layer structure changes. To study this change we pass the ¢-limit process
onto equations (41) to (46) to obtain:

ord ²¢ = ord 1 : û2
@t̂2
@x¢

+ v̂2
@t̂2
@y´

= 0; (47)

ord ²2 < ord ¢ < ord 1 : û2
@t̂2
@x¢

+ v̂2
@t̂2
@y´

= 0 (48)

ord ²2 < ord ¢ < ord 1 : û2
@t̂2
@x¢

+ v̂2
@t̂2
@y´

= ¡@v̂
0
1 t̂
0
1

@y´
¡ @û

0
1 t̂
0
1

@x¢
; (49)

ord (1=²RPr) < ord ¢ < ord ²
2 :

@v̂01 t̂
0
1

@y´
+
@û01 t̂

0
1

@x¢
= 0; (50)

ord (1=²RPr) = ord ¢ :
@2t̂2
@y2´

+
@2t̂2
@x2¢

¡ @v̂
0
1t̂
0
1

@y´
¡ @û

0
1t̂
0
1

@x¢
= 0; (51)

ord ¢ < ord (1=²R) :
@2 t̂2
@y2´

+
@2t̂2
@x2¢

= 0: (52)

The temperature leading order equation together with the boundary condition gives the solution t1 = Tw,
where Tw stands for wall temperature. According to the above equations, the temperature boundary layer
will have three di®erent asymptotic structures depending on the order of magnitude of the Prandtl number.
If the Prandtl number is order unity, ord (²2) = ord (1=²RPr) near a separation point and the two \rich"
equations merge yielding a structure identical to the velocity boundary layer structure. If ord (Pr) > ord (1),
the two \rich" equations will remain de¯ned in di®erent points of the ¥ space and the temperature two-layered
structure will be preserved. In the third possibility, ord (Pr) < ord (1), the merging of the two temperature
\rich" equations will occur prior to the merging of the velocity \rich" equations. This \premature" merging
occurs at point (´;¢) = ((RPr)

¡2=3; (RPr)¡2=3). The flow structure for both cases Pr < 1 and Pr > 1 are
shown in Figure 1.

These ¯gures con¯rm all results that were expected to occur beforehand. For Pr < 1, the disappearance of
the temperature log-region takes place before the disappearance of the velocity log-region. The converse is true
for Pr > 1. The case Pr < 1 should then be more amenable to analytical treatment.
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Figure 1. Flow asymptotic structure

5. Velocity law of the wall

Since a second concern of this work is to provide the means for a good numerical simulation of the °ow near
a separation point, we will show next the implications of the above ¯ndings on the speci¯cation of near wall
analytical expressions for the velocity and the temperature ¯elds.

Following the procedure of Cruz and Silva Freire(2002), the law of the wall for a separating °ow can be
written as

u =
¿w
j¿wj

2

{

s
¿w
½
+
1

½

dPw
dx

y +
¿w
j¿wj

u¿
{
ln
¡ y
Lc

¢
; (53)

where

Lc =

q¡
¿w
½

¢2
+ 2º

½
dPw
dx
uR ¡ ¿w

½

1
½
dPw
dx

; (54)

and all symbols have their classical meaning; { is the von K¶arm¶an constant (=0.4), u¿ is the friction velocity,
and uR (=

p
¿=½, ¿ = total shear stress) is a reference velocity (which will be fully de¯ned in the following

through Eqs. (58) and (59)).
Equation (53) is a generalisation of the classical law of the wall and replaces the three expressions advanced

in Cruz and Silva Freire(1998), Eqs. (25, 26, 27). Equation (54) is an expression for the near wall region
characteristic length, which is assumed to be valid in the attached and in the reverse °ow regions. Far away
from the separation point, where the shear stress is positive and y(dPw=dx) << ¿w, Eq. (53) reduces to

u =
2

{
u¿ +

u¿
{
ln
¡ y
Lc

¢
; Lc = º=u¿ ; (55)

that is, to the classical law of the wall.
Close to the separation point where ¿w=0, equation (53)reduces to
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u =
2

{

s
y

½

dPw
dx

; (56)

an equation similar to Stratford's equation (see Stratford(1959)).
In the reverse °ow region where y(dPw=dx) >> ¿w, equation (53) can be written as

u = ¡ 2
{
u¿ ¡ u¿{ ln

¡ y
Lc

¢
; Lc = 2

¯̄̄ ¿w
dPw=dx

¯̄̄
: (57)

Some comments seem now in order. The form of Eq. (53) was entirely inspired by Eqs. (25), (26), (27)
and (36) of Cruz and Silva Freire(1998). In fact, the equations remain the same but for a major simpli¯cation
achieved by changing the arguments of the logarithmic terms by y=Lc. The reference length Lc de¯ned by
equation (54) is not new; in Cruz and Silva Freire(1998) it had been previously introduced through Eq.(36).
The generalization provided by Eq. (53), however, implied that the friction velocity, u¿ , used in the de¯nition
of Lc had to be replaced by the reference velocity uR. Finally, note that the characteristic length in the reverse
°ow region is di®erent from the classical characteristic length given by Eq. (55). Equation (57) is in agreement
with Simpson et al.(1981) which suggested that a characteristic length for the back°ow region should be directly
proportional to the absolute value of the wall shear stress.

We will now describe how the wall shear stress can be evaluated from the above equations and through the
use of a ·-² model.

A clear di±culty with the implementation of Eq. (53) as a boundary condition in a numerical code is that
the wall shear stress cannot be obtained in an explicit form. The numerical solution of Eq. (53) for the wall
shear stress is not a stable process which can therefore a®ect code robustness. To avoid these problems a
linearisation procedure for Eq. (53) was developed.

The total shear stress can be evaluated from

¿p = C
1=2
¹ ½·p + ¹

¯̄̄@u
@y

¯̄̄
p

(58)

where the subscript p denotes the ¯rst grid point.
The reference velocity uR can then be directly determined from

uR =

r
¿p
½
: (59)

Please note that the above procedure replaces Eq. 31. Equation (58) was obtained from a momentum
balance in the near wall region; it is similar to a relation usually employed by other authors to relate the wall
shear stress to the turbulent kinetic energy in a ·-² formulation (see, e.g., Launder and Spalding (1974)), the
only di®erence here is the inclusion of the viscous term to improve calculations when the ¯rst node near the
wall is located at a distance shorter than y=Lc · 30:

This equation can be used as a ¯rst estimate for the wall shear stress if we consider

¿wo =
upC

1=4
º ¿p

1=2½1=2{

ln
³
Ey

(¿p=½)1=2

º

´ : (60)

with E = 9.8.
In order to maintain code stability, the pressure gradient at the wall was obtained using Eqs. (58) and (60)

to furnish the following equation.

dPw
dx

=
¿p ¡ ¿wo
yp

: (61)

This equation was obtained directly from the inner layer approximated equations; it represents the balance
of forces in that layer.

Next, the characteristic length can be calculated from

Lc =

q¡
¿wo
½

¢2
+ 2º½

dPw
dx uR ¡ ¿wo

½

1
½
dPw
dx

: (62)
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Table 1: The experimental data of Vogel(1984).

Author U [m=s] R Qw[W=m
2]

Vogel(1984) 11.3 28000 270

Finally, the wall shear stress is calculated from

¿w =
up¿p

1=2½1=2{

2

r¯̄̄
¿p
¿wo

¯̄̄
+ ln

¡ yp
Lc

¢ : (63)

Using some production-dissipation equilibrium assumptions and Eq. (53) the kinetic energy dissipation and
the production terms can be cast respectively as follows:

² = C¹
1
2 ·p

³(¿p=½)1=2
{y

+

1
½
dPw
dx

{(¿p=½)1=2
´
; (64)

Production =
C¹

1
2·p½

y

³2(¿p=½) 12
{

+
j (¿wo=½) j

1
2

{
ln
¡ y
Lc

¢´
: (65)

6. Temperature law of the wall

Because the temperature pro¯les can be written in terms of reference parameters already determined for the
velocity pro¯les, the three Eqs. (28), (29) and (30) of Cruz and Silva Freire(1998) can be re-written here in a
simpli¯ed form. Thus, the temperature law of the law can be cast as

Tw ¡ T
Qw

=
Prt

{t½cpu¿
ln

q
¿w=½+

1
½
dPw
dx y ¡

p
¿w=½q

¿w=½+
1
½
dPw
dx y +

p
¿w=½

+ Cq; (66)

where

Cq =
Prt

{t½cpuR
ln
4Eu3R
º
¯̄
dPw
dx

¯̄ +AJ; (67)

AJ = 1:11Prt

r
A

{
¡ Pr
Prt

¡ 1¢¡ Pr
Prt

¢0:25
; (68)

A = 26

¯̄
¿w=½

¯̄1=2
uR

; Prt = 0:9; (69)

and all symbols have their classical meaning.
To improve the performance of Eq. (66) its linear coe±cient was replaced by a more sophisticated equation.

Cq was basically developed so that Eq. (66) reduces to the classical law of the wall far away for a separation
point. Equation (68) was ¯rst proposed by Launder and Spalding(1974). Equation (69) has been modi¯ed from
the original formulation (A = 26) in order to perform better in the separated °ow region. In Cruz and Silva
Freire(1998) the predicted values of St were well below the experimental values so that Eqs. (67) to (69) had
to be introduced to rectify that.

7. Results

The results found with the present formulation will now be compared with the standard ·-² model and the
data of Vogel(1984) for the backward facing step °ow. The °ow conditions of Vogel are shown in Table 1.

The governing equations are discretized using a ¯nite volume formulation coupled with an hybrid scheme
for the treatment of the convective and di®usive terms simultaneously. The set of ¯nite di®erence equations
is solved using a very robust and intensively validated version of TEACH-2E (Teach Elliptic Axi-symmetrical
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Characteristics Heuristically) code which incorporates the SIMPLE algorithm speci¯c for pressure velocity
handing in incompressible °ow. The grid had 146x102 points. The computational domain is shown in Figure 2.

To perform the calculations the limit of the viscous region was taken as y+ = 5. For °ows subjected to a zero
pressure gradient, one normally considers this region to be de¯ned by y+ = 11. For the present experimental
conditions, however, we found y+ = 5 to be the appropriate value. Please note that we have taken the data
from Vogel's doctoral thesis which are di®erent from the data presented in Vogel and Eaton(1985). The result
is that the curves and experimental points to be shown here do not coincide with the corresponding ones in
Cruz and Silva Freire(1998).

The next ¯gures show the results for the computed velocity and temperature pro¯les, for several stations. All
¯gures present three curves: one with the experimental data of Vogel(1984), one with the present computations,
and a ¯nal one with computations made with the standard ·- ² model. The velocity pro¯les show that the
present formulation only alters the results for the very near wall region. Indeed, for most of the velocity pro¯le,
both numerical appproaches give very close data. Through the velocity pro¯les, the position of the point of °ow
reattachment can also be estimated. Here, our solution starts to depart from the classical ·-² solution. The
results are shown in Table 2.

Figure 2. Flow domain.
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Y/H Data of Vogel

Present work

Standard kappa-epsilon model

X/H = 3.21

Figure 3: Velocity pro¯les. X/H = 3.21. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model. H =
20 cm (step height); X = distance from step.

For the temperature pro¯les, the di®erences between the present approach and the results given by the
classical ·-² model are signi¯cant at the wall. This can be clearly seen from Figures 5 to 9; note in particular
that the ¯rst grid point presents very di®erent values for both numerical predictions. Equation (66) clearly
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Figure 4: Velocity pro¯les. X/H = 4.53. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model. H =
20 cm (step height); X = distance from step.

Table 2: Prediction of °ow reattachment point.

Reattachment point X/H
Experiments 6.6
Present Work 6.0

Standard ·-² model 5.5

provides results which are much closer to the experimental data than the standard formulation and which will
result in a much better prediction of the Stanton number. This fact is, indeed, directly connected with the
estimation of Stanton number.

Results for the skin-friction coe±cient and the Stanton number are shown next. The improvement in the
predictions, thanks to the use of the new formulations for the law of the wall proposed here, is remarkable in the
°ow separation region. It is important to note that these results were obtained with no additional computational
cost or loss of code robustness, in comparison with the original code which used the standard ·¡ ² model.

8. Conclusion

The present work had a very distinct goal at its beginning, to provide an alternative method for the cal-
culation of °ows subjected to separation. Specially, we wanted to improve the calculation methods for the
skin-friction coe±cient and the Stanton number which were developed in the past to use the law of the wall.

Apparently, the goal has been achieved with the speci¯cation of expressions (53) and (66). These expressions
were shown to stand very well against the data of Vogel(1984), giving very good results for the velocity and
temperature ¯elds and the skin-friction coe±cient and the Stanton number. We have chosen the data of
Vogel(1984) as our refence data for they represent the most detailed account of the problem we have so far
encountered. Through his thesis we had access to a complete set of tabulated data which could be used in detail
for validation of the present approach.

Of course, a limitation of the present simulation is its inability no capture any unsteadiness occuring in the
°ow. As such the location of the re-attachment point is ¯xed, so is the location of the point of zero Cf and
maximum St.

Presently, the authors are subjecting those expressions to further scrutiny. This will be reported in another
occasion.

Acknowledgment. The present work was ¯nancially supported by the Brazilian National Research Council
(CNPq) thorough grant No 350183/93- 7.
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Figure 5: Velocity pro¯les. X/H = 5.84. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model. H =
20 cm (step height); X = distance from step.
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Figure 7: Temperature pro¯les. X/H = 1.68. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model.
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Figure 8: Temperature pro¯les. X/H = 3.00. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model.
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Figure 9: Temperature pro¯les. X/H = 4.32. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model.
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Figure 10: Skin-friction results. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model.
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Figure 11: Stanton number results. +, data of Vogel(1984); ¦, present work; ?, standard ·-² model.
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