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Abstract. A three-dimensional numerical method for solving the complete Navier-Stokes equations for incompressible
flows in a flat plate is presented. The governing equations are written in vorticity-velocity formulation. The Method
is a combination of a compact 6th order spatial approzimations in the normal direction and streamwise directions and
a Fourier spectral approzimations in the spanwise direction. A 4th order Runge-Kutta method is used for integration
in time and a Multi-grid technique is used to accelerate the convergence of the Poisson solver. The disturbances are
introduced at the wall via o suction and blowing strip. The code is first validated by comparing results with Linear
Stability Theory, in which small amplitude disturbances propagate in the flow field. In order to investigate the non
linear behavior, results for fundamental and subharmonic resonances are presented and compared with results obtained
experimentally and numerically with a Parabolized Stability Equation code. The comparisons show that the proposed
method can accurately calculate the propagation of Tollmien-Schlichting type disturbances in a flat plate. The code is
then used to investigate the instability of a boundary layer when both subharmonic and fundamental modes are present
simultaneously.
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1. Introduction

In general, turbulent flows are the most common in practical applications. Nevertheless, there are a large
number of situations in which transition to turbulence is of significant importance. For example, in the flow over
low Reynolds number turbine blades and laminar flow airfoils. The understanding of how transition takes place
can help in predicting and even controlling transition to turbulence. Over recent years the body of knowledge
on laminar flow stability and transition has increased dramatically due to the development of new experimental
and numerical techniques as well as due to advances in applied mathematical theories. Nevertheless, there are
many transition scenarios for which a physical explanation is still unknown, and predicting transition location
is still a challenge in many engineering applications

This work is part of an ongoing project that aims at developing numerical methods suitable for the inves-
tigation of laminar flow stability problems. The fast advancements in computer technology is making direct
numerical simulations a reality. In the late 70°s a few works were already targeting instability problems with
numerical simulations (Fasel, 1976), but mostly using temporal approximations. The 80 “s saw the development
of more advanced approaches on numerical techniques (Wray and Hussaini, 1994; Rai and Moin, 1989; Laurien
and Kleiser, 1989; Herbert, 1991), but only in the 90 “s these techniques did show there full potential due to the
developments in hardware (Moin and Mahesh, 1998; Meitz and Fasel, 2000). Today there is a strong push to
apply high order techniques to increasingly complex problems (Carpenter et al., 2002).

In this paper a numerical technique for the solution of incompressible instability problems is presented
(Section 2). The method is based on a compact high order finite differences scheme (Souza et al., 2001;



Lele, 1992; Kloker, 1998). The computer code is verified against linear stability theory and experimental and
numerical nonlinear results (Section 3). Having done that the code is used to investigate the behavior of
two classic instability modes, namely, fundamental and subharmonic resonances, when more than one mode is
active (Section 4). A similar study has been presented recently (Mendonga and Medeiros, 2000) and the general
conclusion was that when both fundamental and subharmonic resonances are active the subharmonic mode is
predominant. That study is extended to situations where the different stability modes do not have similar initial
strengthes.

2. Formulation and Numerical Method
2.1. Governing Equations

In this study, the governing equations are the incompressible, unsteady Navier-Stokes equations with constant
density and viscosity. They consist of momentum equations for the velocity components in the streamwise
direction (z), wall normal direction (y) and in the spanwise direction (z):
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and the continuity equation:
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The variables used in the above equations are non dimensional. They were related to the dimensional
variables by:
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where over-bar were used in dimensional terms. L is the reference length, U, is the free-stream velocity and o
is the kinematic viscosity.

The vorticity components, given by the negative curl of the velocity are:
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Taking the curl of the momentum equations (1 to 3) and using the fact that both the velocity and the
vorticity vectors are solenoidal, one can obtain the vorticity transport equation in each direction:
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where:

a4 = UyWy — UgWy, b= uzw, — uywy and €= Uy — UyWy, (11)

are the nonlinear terms resulting from convection and vortex stretching.



Taking the definition of the vorticity and again using the fact that both velocity and vorticity vectors are
solenoidal, one can obtain a Poisson equation for each velocity component:
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In the calculations presented here, the flow was assumed to be periodic and symmetric with respect to Z = 0
in the spanwise (z) direction. Taking this assumptions, the flow field was expanded in a real Fourier cosine and
sine series with K spanwise Fourier modes:
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where y, is the spanwise wavenumber given by 3y = (2wk)/)\;, and A, is the spanwise wavelength of the lowest
spanwise Fourier mode.

Substituting the sine and cosine transforms Eq. (15) and (16) in the vorticity transport equations (8) to
(10) and in the velocity Poisson equations (12) to (14), yields the governing equations in the Fourier space:
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2.2. Numerical Model

The equations (17) to (22) were solved numerically inside a rectangular integration domain. The integration
domain is shown schematically in Fig.(1). The fluid enters the computational domain in z = zo and exits at
the outflow boundary & = x,,4,. Disturbances were introduced into the flow field using a periodical suction
and blowing function at the wall in a disturbance strip. This region is located between z; and z2. Before the
introduction of disturbances in the flow field, a 2D boundary layer was simulated to avoid numerical disturbances
associated with the use of a Blasius solution. The values for the u,, u, and w, obtained from this 2D simulation
were used as the base flow. In the region located between z3 and x4 a buffer domain technique was implemented
in order to avoid wave reflections at the outflow boundary.
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Figure 1: Integration domain.

Boundary conditions:

At the inflow boundary (z = z¢), all velocity and vorticity components were specified.
At the outflow boundary (& = .4, ), the second derivative of the velocity and vorticity components were
setted to zero:
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At the upper boundary ¥y = ¥4, the flow was assumed to be irrotational. This was satisfied setting all
vorticity and their derivatives to zero. An exponential decay of the velocity was imposed using the condition:
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where o* = \/a? + 2 and « is the local expected wavenumber.

At the wall (y = 0), no-slip conditions were imposed for the streamwise (U,,) and the spanwise (U,,)
velocity components. For the wall normal velocity component (U,, ) the non-slip conditions were imposed in all
points at the wall except between 21 and x2, where the disturbances were introduced. In addition the condition
0U,, /0y = 0 was imposed to ensure conservation of mass. The following equations were used for evaluating the
vorticity components at the wall:
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The introduction of the disturbances at the wall, according to Fasel et al., 1990, has proved to be a very
efficient way of introducing Tollmien-Schlichting (TS) waves in the flow field. The method consist of introducing
a slot at the wall (iy <1 <), where 4; and iy are,respectively, the first and the last point of the disturbance
strip, in z direction. The function used for the normal velocity U,, was:

Uy, (4,0,t) = fi(e)AV Resin(wt + 6) for i1 <1 <9
and (28)
Uy (2,0,t)=0 for i<i; and i> iy

The values of A and 8 are real constants that can be chosen to adjust the amplitude and phase of the blowing
and suction disturbances. The constant w; is the dimensionless frequency. The function f;(e) adopted was a
fifth order function, proposed by Zhang and Fasel, 1999. This function is used in order to make sure that, at
y = 0, the vertical velocity component, its first and second derivatives do not have a discontinuity going in and
out of the suction and blowing region. The function is:
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The variable i indicates the grid point location z; in the streamwise direction, and points 71 and i5 correspond
to 1 and 2 respectively.

The shape of the function f;(€) and its second derivative at the blowing and suction region are plotted in
Figs.(2) and (3).
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Figure 2: Normal velocity distribution at the suction  Figure 3: Second derivative of the normal velocity dis-
and blowing region. tribution at the suction and blowing region.

A damping zone near the outflow boundary was defined in which all the disturbances were gradually damped
down to zero. This technique is well documented in Kloker et al., 1993, where the advantages and requirements
are discussed. Meitz and Fasel, 2000 adopted a fifth order polynomium in their work, and the same function
was used in the present simulations. The basic idea is to multiply the vorticity components by a ramp function
fa2(x) after each step of the integration method. This technique has proved to be very efficient in avoiding
reflections that could come from the outflow boundary conditions when simulating disturbed flows. Using this
technique, the vorticity components were taken as:

Qk(w7y) =f2(.’L')Qk(.Z',y,t), (30)

where Q(z,y,t) is the disturbance vorticity component that comes out from the Runge-Kutta method and
f2(x) is a ramp function that goes smoothly from fo(z3) =1 to fo(z4) = 0.
The implemented function was:

fo(x) = f(e) =1 — 6% + 15¢* — 10€, (31)
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and i3 < ¢ < i4. The points i3 and ¢4 correspond to z3 and x4 positions in streamwise direction respectively.
This function is illustrated in Fig.(4).

To ensure good results of a simulation, it’s recommended that the distance between x3 and x4 correspond to
two TS-wavelenghtes and that between x4 and the end of the domain (%,,,) correspond to one TS wavelenght.

Numerical Method:

The Eq. (17) to (22) were solved numerically by the schemes described bellow.
The solution was marched in time according to the following steps:
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Figure 4: Function used in the damping zone

1. Impose initial conditions using 2D solution for U, , Uy, and 2, and set other variables U, , 1, and Q,,
to zero;

2. Introduce disturbances at the wall through the disturbance strip;

3. Calculate the new vorticity distribution in the whole field, except at the wall, integrating the vorticity
transport equations (17) to (19);

4. Taper the vorticity disturbances components to zero at the relaminarization area;
5. Calculate the wall normal velocity component (Uy, ) by solving the Poisson equation (21);

6. Calculate the streamwise velocity component (U, ) by using the continuity equation (4) for the 2D mode
and the Poisson equation (20) for others modes;

7. Calculate the spanwise velocity component (U,,) by using the Poisson equation (22);
8. Calculate the streamwise vorticity component generation at the wall by solving the Poisson equation (26);
9. Calculate the spanwise vorticity component generation at the wall solving the Poisson equation (27);

10. return to the second step until the desired integration time is reached.

The time derivative in the vorticity transport equations were discretized with a classical 4" order Runge-
Kutta integration scheme (Ferziger and Peric, 1997). The steps 4 to 9 were carried out for each step of the
Runge-Kutta method.

The spatial derivatives were calculated using a compact differences schemes. This technique is well docu-
mented in (Souza et al., 2001). The Poisson equation (21) was solved using a Full Approximation Scheme (FAS)
multigrid. A v-cycle working with 4 grids was implemented. The number of cycles used varies according to the
desirable convergence criteria. The adopted criteria was that the residue should be less than 1 x 107%. The
residue R of the v-Poisson equation is:
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3. Code Validation

One way to verify and validate a computer code designed for hydrodynamic stability analysis is to use results
from linear and weakly non-linear stability theory. In this section, results from the computations are compared
against theoretical results for the linear propagation of oblique waves and experimental and numerical results
for the non-linear evolution of wave systems composed of a two-dimensional wave and a pair of oblique waves,
known as fundamental resonance and subharmonic resonance.
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Figure 5: Variation of the amplitude and growth growth rate along the streamwise direction. Comparison
between Linear Stability Theory (LST), PSE results and DNS results.

3.1. Linear results

Transition to turbulence may take place in distinct ways, one that is common in a highly disturbed environ-
ment known as by-pass transition. Another, when small amplitude disturbances grow linearly at first, reach a
non-linear state and then break-down to turbulence. The theory describing the second route is well established,
specially for linear and weakly non-linear regimes. In this section the results obtained for the propagation
of a oblique wave are compared with linear stability theory and with a weakly non-linear model known as
‘Parabolized Stability Equations-PSE’ (Mendonga, 2000). Comparisons are presented for the evolution of the
disturbance amplitude and growth rate.

A disturbance is followed downstream starting at a position close to the lower branch of the stability diagram
(/L = 1.5) until downstream of the upper branch (x/L = 5.5). The results are presented in Fig. 5 for a 2D
wave and a 3D wave with frequency w; = fv/Ux 10, where f is the dimensional frequency. spanwise wavenumber
B = BaL = 20, where (34 is the dimensional wavenumber. They show that the numerical simulation reproduces
the linear theory with a very good accuracy. The differences between the numerical results (both PSE and
DNS) and LST results are due to non-parallel effects which are not taken into account in LST.

3.2. Non-linear results

There are many different routes leading to transition due to the non-linear evolution of wave systems. In
natural transition a large number of disturbance modes are present, making it difficult to distinguish their
isolate effect and very hard to grasp the physics behind it. In order to gain a greater insight into the transition
phenomena it is common to study wave system in a more controlled environment. Two classic experiments are
well documented and thus represent good tests for numerical simulations. One is the so called fundamental
resonance, or K-type resonance, after Klebanoff (Klebanoff et al., 1962), where a two-dimensional wave interacts
non-linearly with an otherwise linearly stable pair of three-dimensional waves. The second experiment is a
subharmonic resonance problem, or H-type resonance after Herbert (Herbert, 1988; Kachanov and Levchenko,
1984) where a two-dimensional wave destabilizes a linearly stable oblique wave having half the frequency of the
2D wave.

Figures 6 and 7 present the results for fundamental and subharmonic resonance respectively. The numerical
results are compared with experimental results and numerical PSE results (Mendonca, 2000). The Fourier
modes presented in the figures are label (n,m), where n correspondes to the multiples of the base frequency
nwg, and m correspondes to the multiples of the spanwise wavenumber mf. They show that the numerical
scheme implemented is able to capture the non-linear resonant amplification of 3D waves (1,1) or (2,1) in the
presence of a 2D wave (2,0) for both resonance modes. Figures 8 and 9 show the structure of the streamwise
velocity component in a plane parallel to the surface. The characteristic aligned and staggered patterns (Herbert,
1988) for fundamental and subharmonic resonance are clearly shown.

4. A More Complex Non-linear System

When the wave system is composed of both fundamental modes and subharmonic modes, there is a com-
petition between them and the resulting flow pattern depends on the relative amplitude of the 2D wave and
the two 3D waves. Other investigations have revealed that the subharmonic resonance is more dangerous than
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fundamental resonance in the sence that much lower initial amplitudes of the 2D wave are enough to trigger
the nonlinear mechanism that leads to the excitation of the 3D wave. Also, the subharmonic mode has a larger
growth rate than the fundamental mode (Stemmer, 2001; Herbert, 1988).

Recently, Mendonca and Medeiros, 2000 studied wave systems composed of a 2D wave and both fundamen-
tal and subharmonic modes using a numerical model based on PSE. The study considered subharmonic and
fundamental modes with the same initial amplitude. The conclusions obtained in that study were:

e The subharmonic mode has a stronger growth rate than the fundamental mode and it is destabilized by
the 2D wave at lower amplitudes.

e When both modes are present, raising the initial amplitude of the 2D wave has a strong effect on the growth
of the fundamental mode, but for the numerical experiments presented in the paper the subharmonic mode
is always dominant.

e since the fundamental mode has a higher frequency than the subharmonic mode, in some cases with a low
spanwise wavenumber the fundamental mode becomes unstable according to linear stability theory. In
this case, due to the resonance, its growth rate is larger than the growth rate of the subharmonic mode.

e Based on the results presented in the paper, subharmonic resonance should be more easily observed.

In the present paper, the study presented by Mendonca and Medeiros, 2000 is extended to include cases
where the fundamental and subharmonic waves do not have identical initial amplitudes. Also, the numerical
model based on direct numerical simulations allows the study of stronger nonlinear problems, relaxing one of
the simplifying assumptions of the PSE weakly nonlinear model.

Out of the total number of numerical experiments performed only two are presented due to space limitations.
The first one, presented in Fig. 10 and 11, considers a wave system composed of a 2D wave with frequency



w; = 3.2, a fundamental 3D wave with the same frequency and with spanwise wavenumber 8 = 44, and a
subharmonic wave with half the frequency and with the same spanwise wavenumber. It corresponds to seeding
the fundamental mode of Kachanov and Levchenko, 1984 with a subharmonic mode. The initial amplitudes
of the 3D modes at the suction and blowing strip are the same, but the two modes have different receptivity
characteristics and after a transient region the amplitudes of the resulting eigenmodes may be different.

The results show that, for the relative amplitudes of the 2D wave and the two 3D waves, the fundamental
mode has a stronger growth rate and attain a much larger amplitude than the subharmonic mode. As expected
the flow field has a structure corresponding to a fundamental resonance. Further experiments indicate that
for the present test case, the subharmonic has not yet concluded the transient region at Re = 650. In other
words, the subharmonic mode is effectively established at around Re = 700 at a much lower amplitude when
compared with the fundamental mode. In this case, due to the receptivity characteristics of the subharmonic
and fundamental modes the breakdown corresponds to that of a fundamental resonance.

According to Herbert, 1988, despite the fact that the subharmonic mode is more dangerous than the fun-
damental mode, there are certain conditions for which the flow patter leading to breakdown to turbulence
corresponds to a fundamental resonance, even when there are also subharmonic modes in the wave system.
The results presented by Mendonga and Medeiros, 2000 could not detect this behavior. By simply raising the
amplitude of the 2D wave in order to get a stronger resonance with the fundamental mode, it was not possible
to detect this response with the current DNS model either. On the other hand it seems that the fundamental
resonance is predominant when the initial amplitude of the subharmonic mode is much lower than the initial
amplitude of the fundamental.
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wave and a subharmonic 3D wave.

Another experiment was then set up where the initial amplitude of the subharmonic mode is higher than
the amplitude of the fundamental mode after the selective filtering in the transient region. The initial condition
considered a wave system identical to the experiment of Klebanoff et al., 1962 seeded by a subharmonic wave.
In order to delay the resonance between the 2D wave and the fundamental mode, the initial amplitude of the
2D wave was also lower. The results, ilustrated by Figs. 12 and 13, show that the flow field close to breakdown
to turbulence corresponds to a subharmonic type resonance.

5. Conclusions

A numerical model based on high order compact differencing schemes to solve the complete Navier-Stokes
equations in a direct numerical simulation has been presented. The model has been validated against linear
stability theory, nonlinear experimental and PSE numerical results.

The model was used to investigate transition to turbulence when both subharmonic and fundamental reso-
nances are active. The results confirm that the subharmonic mode is the most dangerous since its growth rates
are higher and the initial amplitudes necessary to trigger resonance are lower. Nevertheless, it is possible to have
transition to turbulence governed by fundamental resonance when the initial amplitude of the subharmonic is
lower than the initial amplitude of the fundamental mode.
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wave and a subharmonic 3D wave.
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