Using Linear and Non Linear Stability Theory for Evaluating Code Accuracy
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Abstract. Code accuracy is a very important aspect of both DNS and LES simulation. Verification of the accuracy of
such codes is often performed by comparison with the theoretical solutions of selected linear stability problems. An example
of the procedure is given in the paper. However, in many instances the linear stability analysis becomes a very complicated
task, in particular when viscous and compressibility effects are considered. The paper shows that an alternative approach
can be provided by the nonlinear stability analysis. The nonlinear stability tests can be simpler than the linear ones
because the details of the analysis are no necessary. The nonlinear stability tests may not substitute the linear ones in
all aspects, but are equally demanding and permit an estimation of the numerical error of the code. An application of
the method is given for the a free-shear layer flow, but it can be extended for boundary layers if three-dimensionality is
included.
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1. Introduction

In direct Navier-Stokes or Large Eddy Simulations, code accuracy becomes really an issue. In the former,
one wants to simulate all the scales of turbulence, and if the numerical error is large the fine details of the small
scale turbulence are lost. In the latter, accuracy is just as important. There, the numerical error can act as
a non-physical sub-grid turbulence model and can affect the results. Code testing is therefore of paramount
importance in this field.

Almost always the accuracy that is expected from these simulations is higher than the experimental accuracy
of the most carefully done experiment. To check the accuracy one has to rely on analytical solutions of the
Navier-Stokes equations for comparison. There are very few such solutions and even less if the solution is to vary
in two or three-dimensions and in time. Often linear stability theory comes in hand. Both the eigenfunctions and
the eigenvalues of the linear stability analysis can be used for code testing, as explained in the sections bellow.
In fact, the solutions of the linear stability problems are seldom analytical. However, they can be cast into a two
point boundary condition problem in one dimension and therefore can easily be solved numerically with very
high accuracy in an extremely fine computational grid at low cost. For the purpose of testing Navier-Stokes
solvers they can be considered analytical.

However, in many circumstances the linear stability analysis becomes an issue in itself. The analysis is
sometimes quite involving and perhaps other simpler tests can be helpful. The current paper presents some
tests based on the nonlinear stability theory that might be of interest to researchers in the field. The tests are
related to the temporal instability of a parallel free-shear flow.

2. Linear stability analysis

Linear stability analysis is a well established procedure. Details of such kind of analysis can be found in
(Betchov and Criminale, 1967) and (Mendonga, 2000). The analysis for the free-shear layer is given here to
make the paper more self-contained.

In the usual notation, the equations of motion for an incompressible flow in two dimensions with both
viscosity and body forces neglected read
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For a linear stability analysis the flow is decomposed into a base flow (V), which is steady, and a perturbation
(v'), which is considered small. If the base flow is assumed parallel, one has:

V = (U(y),0,0). (4)

Therefore, the flow field can be written as:

u = Uy)+u (z,y,1)

vo= V(z,y1)

p = Pyt (5)
Substituting into the equations 1 to 3 and neglecting nonlinear terms yields
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The coefficients do not have an explicit dependency on ¢ and x. Therefore a Fourier transformation can be
applied in the x direction and a Laplace transformation in time. The variables can then be written in the form:
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where cc denotes complex conjugate. Substituting into the equations 6 to 8 yields
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where ¢ is the phase velocity which is equal to w/a. Combining equations 11 and 12 eliminates p and using
equation 10 eliminates u. The result is known as the Rayleigh Equation

U - c)(v” —a?v) — U'v=0. (13)

In order to simplify the notation the hat (") has been dropped and the primes, here, denote derivatives with
respect to y.

The equation constitutes an eigenvalue problem. It is solved for given U and «, with the boundary conditions
that v vanishes at y — +oo. The eigenvalue is ¢ while the solution v(y) is the eigenfunction. In a temporal
analysis c is allowed to be complex. If the imaginary part of c is positive for at least one «, the flow is considered
unstable.

For the free-shear layer the base flow is given by

U(y) = tanh(y). (14)
Therefore, for y — +oo, U" — 0. In these regions equation 13 can be simplified and the solutions are:

vly) = e for y — o0

v(y) = e for y — —co. (15)



One can use these solutions as boundary conditions for v in the Rayleigh Equation 13 and reduce the
computational domain. In the case of the hyperbolic tangent velocity profile, the domain [—5, 5] is enough to
produce reasonably accurate results if « is not too small. Higher accuracy can however be achieved, even for
limited computational domains, with other approaches (Michalke, 1964)

In the current paper the Rayleigh Equation was solved using a shooting method. The solution is started at
one end and the eigenvalue is adjusted iteratively until the boundary condition at the other end is satisfied. The
integration in y was carried out by a fourth order Runge-Kutta scheme and a Newton-Raphson algorithm was
used to search for the eigenvalue. Because the base flow profile is anti-symmetric with respect to the inflexion
point (y = 0), it follows that, provided the unstable eigenfunction is unique, the real part of ¢, which is the
phase velocity, is null (Tatsumi and Gotoh, 1960).

R(c) = ¢, = U(0) = 0. (17)

Figure 1 gives the imaginary part of ¢ times « as a function of . It is seen that the flow is unstable for
O<ax<l
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Figure 1: Growth rate ac; as a function of a.

It is possible to evaluate the accuracy of the computational code by comparing the eigenfunctions and the
growth rates extracted from the computational results with those given by the theory. However, it is important
that the computational results satisfy the approximations of the linear stability theory, which is achieved by
enforcing a parallel flow and by perturbing the flow with very small disturbances.

3. Nonlinear stability analysis

When the disturbances become large the linear approximations do not hold. One then needs to considered
nonlinear effects. The theory associated with these effects is a little bit more complicated than their linear
counterpart. It is not going to be presented here, but reviews of the subject can be found in (Herbert, 1988;
Medeiros, 2000). The summary of the main results, given below, is enough for carrying out the tests proposed.

Both theory and experiment show that in the free-shear layer flow the disturbances do not grow to infinity.
Instead they saturate in a limit cycle pattern of co-rotating vortices. In turn, the vortices are themselves
unstable to a subharmonic disturbance. It means that if a sub-harmonic oscillation exists in the flow this
oscillation will grow. The result is the pairing of vortices. It is important to emphasize that in the system
there is no mechanism of production of sub-harmonic, but only amplification. There must be a , so called, seed
of sub-harmonic waves for them to grow. In the numerical solutions of the equations of motion this seed may
come from the numerical error that builds up during the calculations. The growth of subharmonic or otherwise
provides a good indication of the numerical error of CFD codes, as shown in the next section.

4. Numerical methodology

The results to be presented here were obtained from Direct Numerical Simulation of the Navier-Stokes
equations (DNS) for compressible flows (Silvestrini, 2000). The formulation used the primitive variables. For
this formulations, the Navier-Stokes equations for a compressible flow are given in a cartesian coordinate system
by:
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where u; are the components of the velocity vector in the reference frame z;, p is the density, p is the pressure
and 7; ; is the viscous stress tensor. This tensor is written as

where p is the dynamic viscosity. The total energy per unit volume F is given by the relation:
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where v = ¢, /c, is the specific heat ratio. The heat flux is evaluated by the Fourier law:
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where ) is the thermal conductivity and T, the temperature. In addition, p, p and T satisfy the ideal gas law:
Y
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The equations were solved with a finite-difference scheme. The time integration was performed by a fourth
order Runge-Kutta scheme (Williamson, 1980). For the calculation of the spacial derivatives a sixth order
compact formulation was used (Lele, 1992). Details of the numerical scheme can be found in (Fortuné, 2000).

5. Computational tests
5.1. Linear stability

The evolution of a small sinusoidal disturbance in a free shear layer of the hyperbolic tangent type was
simulated. A relatively high Reynolds number was chosen to ensure that the viscous effects were small. Also,
a small Mach number was used to keep the compressibility effects negligible. In the simulation the boundary
condition in the y direction was free-slip. Ideally, one would like enforce a vanishing perturbation velocity at a
very large distance from the shear layer, but that requires very large computational domain. Another possibility
is to use an exponential decay,except that it is only rigorously correct in the linear regime. For a sufficient large
distance from the shear layer, however, the free-slip boundary condition should produce accurate results. In the
horizontal direction periodicity was enforced.

Another important aspect to the considered is the treatment of the vertical diffusion. This diffusion increases
the width of the shear layer during the simulation, which implies a variation in time of the base flow. Therefore,
there will be a corresponding variation of the amplification rate, even in the linear regime. This would blur
the picture and make it difficult to intrepret the results. The strategy adopted here was to cancel the vertical
diffusion terms. This however, may have yielded an effectively inviscid formulation, since the vertical diffusion
dominates over the horizontal one. This issue is further discussed below.

The wavenumber « of the disturbance selected for the simulation was 7/8 & 0.39. This is close to the
wavenumber of maximum amplification. The initial amplitude of the perturbation was approximately 1076. In
figure 2 the dotted line gives the time evolution of the amplitude, obtained from the simulation. The vertical
coordinate is in logarithm scale. Clearly there is a region of exponential amplification which corresponds to
the regime governed by the linear theory. The theoretical result obtained with the Rayleigh Equation 13 is
given by the dashed line. It overestimates the amplification rate. The disagreement could be attributed to
numerical error, but they might also have come from compressibility or viscous effects. Indeed, the simulation
could not be carried out at Mach number below 0.4, because of convergence problems related to the simulation
of incompressible flows with a compressible formulation. Other researchers (Sandham and Reynolds, 1991)
have show that there are important compreesible effects at this Mach number. The Reynolds number for the
simulations was 500, which again may not have been enough for the viscous effects to be negligible. It is
possible to develop a linear stability theory that includes both viscous and compressibility effects (Sandham
and Reynolds, 1991) however, this is a much more difficult analysis. For a Mach number equals to 0.4 and a
Reynolds number equals 500 reference (Sandham and Reynolds, 1991) gives an amplification rate of about 0.28.
This is represented by the dashed-dotted line in figure 2. Now the amplification is underestimated. However,
it should be recalled that, in order to reproduce a steady base flow, the vertical diffusion had to be prevented



in the simulations. Therefore, for comparison it may be more appropriate to consider an inviscid flow. Indeed,
from reference (Sandham and Reynolds, 1991) the amplification rate for an inviscid flow at Mach number 0.4
is approximately 0.3. In figure 2 this corresponds to the solid line. The agreement is remarkable, but with so
many adjustments the test may be considered not entirely conclusive.
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Figure 2: Amplitude evolution. Dotted line is the computational result. Dashed line represents the prediction
from an inviscid incompressible theory. The dashed-dotted line is the prediction from a viscous compressible
analysis. The solid line is the inviscid compressible prediction.

The eigenfunction was also extracted from the simulation results. In figure 3, it is compared with that from
an inviscid incompressible theory. In the theoretical solution presented in figure 3 the computational domain
was [—15,15]. There are differences that may again be attributed to compressibility or viscous effects. They
may also have come from the boundary condition in the y direction.
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Figure 3: The normalized real (a) and imaginary (b) parts of the eigenfunctions. The dashed line is the numerical
results, while the solid is line the prediction from an inviscid incompressible analysis.

5.2. Nonlinear stability

The use of nonlinear theory may constitute a way around the difficulties associated with the linear theory.
Some examples are here presented to illustrate the use of nonlinear theory for code testing. In these simulations
the vertical diffusion was included.

Figure 4 shows the sequence of events that usually takes place in the two-dimensional nonlinear evolution
of disturbances in a free-shear layer, as discussed in the section 3. The results were obtained from simulations,
but are consistent with experimental observations. The boundary conditions were identical to those used for
the linear tests. The excitation was a mode of wavenumber 7/8 with an additional small white noise. The
amplitude of the dominant mode was 1072, while the amplitude of the white noise was 10—4. Initially, in the
linear regime, the disturbance is very small and displays a sinusoidal pattern. Later two vortices are formed,



which corresponds to the limit cycle oscillation. The vortices dissipate due to viscous effects. Finally a pairing
occurs between the two vortices and one large vortex results. This corresponds to the growth of the subharmonic
seed.

Figure 4: The linear and nonlinear evolution of disturbance composed of a dominant mode and a white noise
in a shear layer. The frames presented correspond to the nondimensional times 4.48, 10.88, 17.28, 23.68, 55.68
and 89.6.

As a reference for the nonlinear tests, first a simulation was carried out with an excitation composed of a
disturbance with wavenumber 7/8 and a small subharmonic disturbance. The amplitude of the fundamental
mode was identical to that of the previous simulation and the amplitude of the subharmonic was identical to that
of the white noise. The subharmonic content was, therefore, higher than that in the white noise. Accordingly
the pairing should develop more quickly, which is confirmed by figure 5.

Figure 5: The linear and nonlinear evolution of disturbance composed of a dominant mode and a subharmonic
seed. The frames presented correspond to the nondimensional times 17.28, 23.68, and 36.48.

Next only one wave mode, namely, that with wavenumber 7/8, was excited. Under these circumstances
the nonlinear theory predicts no pairing. The amplitude of the mode was slightly higher than that of the
simulations above. Figure 6 shows that indeed the vortices take a rather long time to pair. It occurred only
when the vortices were almost entirely dissipated by viscous effects. Since the subharmonic excitation was not



excited, the necessary subharmonic seed for the pairing must have arisen from the numerical error. Neverthless
it is clear that the numerical error was much smaller than the amplitude of the subharmonic disturbance
introduced. An estimate of the numerical error could be obtained if a series of tests were carried out with
decreasing subharmonic disturbance amplitude until the results become similar to that of the case without the
subharmonic disturbance.

Figure 6: The linear and nonlinear evolution of disturbance composed of only one mode. The frames presented
correspond to the nondimensional times 23.68, 89.6 and 112.

Although apparently simple, these tests are quite challenging for codes of second or even fourth order
accuracy in space. However, even more difficult tests can be set. In the following example two modes were
excited, one with wavenumber 7 /8 and the other with wavenumber 7/12. The wavenumbers were not multiple
of each other, so the pairing that took place displayed a more complicated pattern. For this simulations, the
computational domain was increased in the horizontal direction by a factor three. Initially six vortices were
formed. They did not have identical amplitudes, but were modulated. This derives from the fact that two
different modes were excited. At some stage the neighboring smaller vortices came close together. Eventually a
pairing took place and four vortices resulted. This is linked to the increase of the mode with wavenumber 7 /12.

The simulation proceeded with four vortices of two different amplitudes. The larger ones arose from the
pairing. Apparently the picture is perfectly symmetrical indicating that the system was in equilibrium. There
was no tendency of pairing because the sub-harmonic wavenumber of this distribution was not excited. But at
very late times a pairing occurs. Again, this subharmonic mode must have been seeded by the numerical error,
which was very small compared to the amplitude of the perturbations introduced. Clearly, the dramatic events
associated with the first pairing were very accurately resolved, since the subharmonic content of numerical error
was kept low. Again, in this example a series of tests with a subharmonic seed could be carried out in order to
estimate the magnitude of the numerical error.

It is also interesting to check whether the error is of the truncation or the round-off type. In order to do
that, an identical simulation, but with double precision accuracy, was carried out. The results in figure 8 show
no pairing. Instead the smaller vortices are stretched by the larger ones while keeping a symmetrical pattern.
This proves that the error was of the round-off type. In other words, for this kind of problem there is little point
in refining the computational grid or in increasing the order of accuracy of the algorithm. If higher accuracy is
required one should start to think about the new generation of computers.

6. Final Remarks

From the discussion above it appears that the nonlinear stability analysis provides an interesting approach
for verifying code accuracy. However, it should be emphasized that this verification does not substitute that
related to the linear stability theory. For instance, linear stability of flat plate boundary layer flow constitute a
very demanding test for wall boundary conditions (von Terzi et al., 2001). In fact, the different analysis permit
insight into different aspects of the accuracy of a code.

One important consideration is that the nonlinear tests suggested here do not require a precise solution of
the nonlinear stability problem. That is not the case for the linear stability tests which do require the details of
the analysis of the test flow. Since the linear stability analysis is often a very complicated issue, the nonlinear
tests can be simpler to perform. The nonlinear stability theory tests are very demanding. Also, they can
provide an estimate of the numerical error by comparing the solution with and without the introduction of
disturbances that trigger the nonlinear stability. The procedure can easily be extended for boundary layer, if
three-dimensionality in taken into account.



Figure 7: Nonlinear evolution of disturbance composed of a mode with wavenumber 7/8 and another with
wavenumber 37/16. The frames presented correspond to the nondimensional times 12.8, 25.6, 44.8, 96, 115.2
and 124.8.

Figure 8: Nonlinear evolution of disturbance composed of a mode with wavenumber 7/8 and another with
wavenumber 37 /16, in double precision accuracy. The frames presented correspond to the nondimensional
times 96, 115.2 and 124.8.
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