
Proceedings of the ENCIT 2012
Copyright c© 2012 by ABCM

14th Brazilian Congress of Thermal Sciences and Engineering
November 18-22, 2012, Rio de Janeiro, RJ, Brazil

A NON-CLASSICAL RIEMANN PROBLEM FOR PIG MOTION IN
ISOTHERMAL GAS PIPELINES

Simone Rodrigues de Melo, e-mail:simonermelo@gmail.com
Felipe Bastos de Freitas Rachid, e-mail:rachid@vm.uff.br
Laboratory of Liquid & Gas Transport - Francisco Eduardo Mourão Saboya Post-graduate Program of Mechanical Engineering (PG-

MEC) - Department of Mechanical Engineering (TEM) - Universidade Federal Fluminense, Niterói, RJ, Brazil.

Abstract. This paper presents the formulation along with its analytical solution of a non-classical Riemann problem for

pig motion in transient isothermal gas pipelines. The pig motion modeling takes into account the existence of flow rate

by-pass through its gap as well as through its body. Coulomb type as well as hydrodynamic friction forces are accounted

for at the pig-pipe lateral interface. The proposed formulation is suitable for using with numerical methods based on

the Riemann problem solution, such as Godunov, Glimm and MUSCL-Hancock schemes. Numerical solutions for the

non-classical Riemann problem are presented for start-up the pig inside the line, for pigs with and without by-pass flow

rates.
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1. INTRODUCTION

Pigs are commonly used in pipeline industry during not only commissioning but also different stages of operation to
perform functions such as dewatering, cleaning and application of protective coatings. They are also used as key elements
to separate different products (or different grades of a same product) batches through a same pipeline. Pigs are also
routinely used to inspect pipelines for corrosion, internal damage, wall thickness, metal loss, pipe roundness, internal
surface condition, cracks, etc. (Botros and Golshan , 2009).

Pigging operations are carried out not only in liquid and gas pipelines but also in two-phase gas pipelines. Due to its
rather complex nature, the theoretical modeling of pig motion, along with a complete numerical solution coupled with the
hydrodynamic equations governing the fluid flow in the pipeline, both in single-phase as well as in two-phase pipelines,
is far from being a well-resolved issue. As a result, it has been the subject of intensive research in past years (Nieckele et
al. , 2001; Esmaeilzadeh et al. , 2009; Botros and Golshan , 2009; Bueno et al. , 2012).

The existing works dealing with the modeling of pig motion in pipelines and the numerical solution of the coupled
pig motion and fluid flow are basically divided between single-phase (Azevedo et al. , 1997; Campo Barba and Freitas
Rachid , 1997; Nguyen et al. , 2001; Esmaeilzadeh et al. , 2009; Botros and Golshan , 2009) and two-phase approaches
(Kohda et al., 1988; Minami and Shoham , 1994; Xu X. and Gong , 2005; Bueno et al. , 2012). Since the pig lengths
are significantly shorter than the pipeline extensions, the pig is always treated and modeled as being a singular surface
in the cross-sectional area of the fluid flow. The difference among the models relies basically on the way the mechanical
and hydrodynamic contact forces between the pig and the pipe wall are described, as well as the possibility or not to
incorporate by-pass flow rates through the body of the pig and through the pig-pipe interface.

Two approaches have been used concerning the numerical procedures for obtaining approximating solutions to the
resulting initial-boundary-value problem coupling the pig motion and unsteady flow. In the first one, the pig is effectively
treated as a moving boundary, so that moving or adaptive grids are used at the left and at the right of the pig where
boundary conditions are imposed. In the second approach, fixed grids are used and the dynamic equations for the pig are
solved together with the fluid flow equations for a specific cell. For single-phase as well as for two-phase models, there
is a widespread tendency to numerically solve the pig motion and fluid flow coupled problems by using finite difference
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schemes. For single-phase flows, the method of characteristics is the most commonly used technique (Campo Barba and
Freitas Rachid , 1997; Nguyen et al. , 2001; Esmaeilzadeh et al. , 2009; Botros and Golshan , 2009).

On the other hand, it is well-known that finite difference schemes are not capable to deal with, and also keep track of,
strong discontinuities in the solution. The method of characteristics does not work properly whenever the wavefront speeds
vary significantly from one point to another inside the domain. These shortcomings introduce non-realistic dispersion and
attenuation in the numerical solution, what can compromise their applications to these specific problems.

As an alternative to the aforementioned numerical techniques, it is proposed in this paper a non-classical Riemann
problem for the pig motion problem in single-phase flows, along with a complete numerical strategy for obtaining an
approximating solution. The proposed formulation is suitable for using with numerical methods based on the Riemann
problem solution, such as Godunov, Glimm, MUSCL-Hancock schemes and others. These methods are recognized as one
of those that better captures and preserves the presence of discontinuities in the dependent variables and their derivatives
(Toro , 1999).

2. GOVERNING EQUATIONS

Since the pipeline diameter D is such that, D << L, in which L stands for the pipeline extension, pressure transients
in isothermal gas pipelines are commonly described by means of one-dimensional models. Moreover, since Lp << L, in
which Lp stands for the pig length, the pig is usually considered a singular surface or more precisely a singularity in the
one-dimensional context. Thus, by assuming that the pipe wall is rigid and that xp = xp(t) represents the pig position in
the current time instant t, the governing equations describing the pig movement in isothermal gas pipelines can be written
in Eulerian coordinates in the following canonical form of conservation laws:

∂tu + ∂xF(u) = S(u) in (0, xp) ∪ (xp, L)× (0,∞) (1)

in which u(x, t) = u ∈ IR2 is the conserved quantity, x is the spatial coordinate along the pipe centerline and t is the time
instant. The symbols ∂tχ and ∂xχ are used to designate partial derivative of a general dependent variable χ with respect
to t and x, respectively. The vector-valued functions F(u) = F : IR2 → IR2 and S(u) = S : IR2 → IR2 are the flux and
the source/sink terms, respectively. The particular form of these vector quantities are:

u := (u1, u2, )
T := (ρ, ρv)T (2)

F :=
(
u2, u

2
2/u1 + p

)T
(3)

S := (0,−u1gsinθ − (u1f(u2/u1)|(u2/u1)|)/(2D))T (4)

in which p := a2ρ. In the above equations, which represent the balances of mass and momemtum for the gas within
the pipeline, p and v are functions of the time t and the spatial position x along the pipe and represent, respectively, the
pressure and the axial gas velocity. The angle formed between the pipe centerline and the horizontal is designated by θ,
whereas g and f stand for the local gravitational acceleration and the Darcy-Weisbach friction factor. The term a stands
for the isothermal wave speed in the gas and is treated herein as a positive constant.

The governing equations are completed by adding the balance of momentum for the pig and the balance equation of
mass for the gas through it, along with some constitutive equations for the by-pass flow rate. By denoting p− and p+ as
being the pressures behind and ahead of the pig, the balance of linear momentum for the pig can be written as follows:

Mp
dvp

dt
=

(
p− − p+

)
A−Mpg sinβ − FH − FM , (5)

in which A = πD2/4 is the cross-sectional area of the pipe, Mp stands for the mass of the pig and vp its velocity, i.e.;
dxp/dt = vp. The first term on the right-hand side of Eq.(5) represents the driving force and the second one the component
of the pig weight in the direction of the motion. The third and fourth terms on the right-hand side represent the hydrody-
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namic and mechanical friction forces, acting on the nominal lateral contact surface, whose area is Ac (Ac = πDLp). By
admitting an idealized mean gap width between the pig and the pipe, the existence of a fluid flow through this gap will in-
duce one resistive hydrodynamic force acting on the pig lateral contact surface. Under the assumptions of fully-developed
flow of a Newtonian incompressible fluid, this force derived by (Azevedo et al. , 1997) can be expressed by:

F̄H = Ac

(
µ

νp

δ
− (p− − p+)

2Lp
δ

)
, (6)

in which µ stands for the absolute viscosity of the gas.
On the other hand, by admitting that the idealized pig is a solid cylindrical dowel of radius rp, with an oversize

∆r = rp − D/2, and is submitted to the pressure loadings p− and p+ on their opposite surfaces, a Coulomb-like
mechanical friction force will develop at the pig lateral contact surface. Under the assumptions of the infinitesimal
elasticity theory, this contact force may be approximated by (Gomes , 1994):

F̄
(l)
M = Acηl

1
1− ν

(
E∆r

rp
+ ν

(p− + p+)
2

)
, (7)

in which E and ν are the equivalent Young modulus and Poisson ratio of the idealized pig, whereas ηl , with l ∈ {s, d},
stands for the static (l = s) or dynamic (l = d) friction coefficient, with ηs > ηd. Since the hydrodynamic and mechanical
forces most likely act simultaneously in complementary areas of the total area of the lateral surface, it is convenient to
introduce the concept of dry contact area ratio define as:

ξ =
AM

Ac
, (8)

in which AM represents the dry area in which the mechanical force acts and ξ ∈ [0, 1]. The dry contact area ratio
can or cannot be assumed as being constant throughout the pig motion, according to the type of pig. For the sake of
completeness, it could be expressed as being a function of the pig velocity, i.e., ξ = ξ̂ (νp). Taking into account Eq.(8),
the hydrodynamic force can be written as

FH = (1− ξ) F̄H , (9)

and the mechanical force expressed in terms of the prevailing condition of the pig motion (Campo Barba and Freitas
Rachid , 1997) according to:

FM =


sgn (vp) ξF̄

(d)
M , if vp 6= 0;

sgn (F ∗) ξF̄
(s)
M , if vp = 0 and dvp/dt 6= 0;

F ∗, if vp = 0 and dvp/dt = 0;

(10)

in which F ∗ = (p− − p+) A− FH −Mpg sinβ.
To complete the physical description of the interaction of the pig motion along with the gas flow, it remains to ensure

that the continuity principle is satisfied through the pig. In the context of the modeling presented so far, it is done by
applying the balance of mass for the singular surface at the pig position. By denoting ρ−, u− and ρ+, u+, the mass
densities and velocities at the left and at the right of the pig, it comes out that:

ρ−A
(
v− − vp

)
= ρ+A

(
v+ − vp

)
= ṁ. (11)

Equation (11) states that the mass flow rate of gas transposing the pig must be equal when computed at the left and at
the right of it. Moreover, this mass flow rate is the total by-pass mass flow rate for which a constitutive relationship must
be provided. By assuming that the total by-pass flow rate comes from the contribution of three distinct parcels through:
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the gap ρ̄Qg , the holes in the pig body ρ̄Qh and its permeable body ρ̄Qb then:

ṁ = ρ̄ (IgQg + IhQh + IbQb) , (12)

in which ρ̄ =
√

ρ+ρ−, with Ig , Ih and Ib assuming either 0 or 1, according to the existence or not of this specific by-
pass flow rate type. Under proper simplifying assumptions, (Azevedo et al. , 1997) has demonstrated that the by-pass
volumetric flow rate can be expressed by:

Qg = πD

(
δ3

12µ

(p− − p+)
Lp

− δ

2
vp

)
. (13)

Under the assumption that the flow through a hole in the pig does not disturb the flow through the others, one possible
approximation for this volumetric by-pass flow rate is:

Qh = sgn
(
p− − p+

) nπd2

4

√
2|p− − p+|/ρ̄

kh
, (14)

in which n represents the numbers of holes, whose diameter is d and head loss coefficient is kh. Finally, if the pig body is
a permeable porous media, then the volumetric flow rate can be approximated by using the Darcy’s law:

Qb =
πD2K

4µ

(p− − p+)
Lp

, (15)

in which K stands for the permeability of the pig body with respect to the gas.
Equations (1) along with Eqs. (5), (11) and (12) form a complete set of non-linear hyperbolic differential equations

with a moving boundary xp (t) ∈ (0, L). These equations involves the unknowns p and v in (0, xp) ∪ (xp, L) and vp,
along with p−, p+, v− and v+ at the left and at the right of the pig.

3. THE ASSOCIATED NON-CLASSICAL RIEMANN PROBLEM AND ITS SOLUTION

The Riemann problem associated to the homogeneous (with S(u) = 0) system of equations (1) is an initial-value
problem with discontinuous data at the left and at the right of an arbitrary position xo, given at an arbitrary time instant to.
For isothermal gas flows, its solution has been presented in several textbooks, see for instance (Toro , 1999), and worths
for t > to and every x ∈ (−∞, xo) ∪ (xo,+∞). The main purpose of this paper is to extend the formulation of the
Riemann problem to cope with the presence of the pig in the line. To achieve this goal, instead of seeking a solution for
t > to as it is usually done in classical Riemann problems, we seek a solution within a time interval to < t ≤ tf , with
tf sufficiently close to to to ensure existence of the solution. Furthermore, we assume as a basic premise that the pig
velocity remains constant and equal to vp(tf ) during this time interval. Thus, the non-classical Riemann problem for the
pig, centered at xo = xp(to), consists in to find u(x, t), vp(tf ), p−, v−, p+ and v+ via,

∂tu + ∂xF(u) = 0 in (−∞, xp(to)) ∪ (xp(to),+∞)× (to, tf ), (16)

subjected to the following discontinuous initial data:

u(x, t) =

{
uL = (pL, vL)T , for x < xp(to);
uR = (pR, vR)T , for x > xp(to);

(17)

in which uL and uR are arbitrary and constant states, along with Eqs. (5), (11) and (12).
Within the context of the non-classical Riemann problem, the pig acceleration remains constant in the time interval

(to, tf ] what implies that the variables p−, v−, p+ and v+ also remain constant. As a consequence, the problem given by
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Eqs. (16) and (17), along with Eqs. (5), (11) and (12) is invariant under the scale transformation x′ = α(x− xp(to)) and
t′ = α(t− to), with α > 0, and its solution depends only on the ratio ξ = (x− xp(to))/(t− to). In other words, it is of
the form ũ(x, t) = û

(
ξ
)
, for to < t ≤ tf , where û : IR → IR2 is a piecewise continuous function.

It can be shown that the (generalized) solution of this particular problem is constructed by connecting the left state
uL to the right state uR through intermediate states u∗

L and u∗
R which should be determined. Since the pig is a contact

discontinuity (c.d.) which travels with a constant speed vp(tf ) and, from the eigenstructure of Eq. (16), there are two
eigenvalues λ1 = v − a and λ2 = v + a to which a 1-wave and a 2-wave are associated with, then by assuming
that λ1 < vp < λ2 and that v/a < 1 the (generalized) solution of this problem is constructed by connecting the
aforementioned states in the following manner: uL

1−wave−→ u∗
L

pig c.d.−→ u∗
R

2−wave−→ uR. The 1-wave and the 2-wave may
be either rarefactions or shocks, according to the conditions at the left and at the right (Toro , 1999). By defining ML(p∗L)
and MR(p∗R) as indicated below, it can be shown that:

ML(p∗L) :=
p∗L − pL

vL − v∗L
=

pL

a
φ

(
p∗L
pL

)
for 1− wave (18)

MR(p∗R) :=
p∗R − pR

v∗R − vR
=

pR

a
φ

(
p∗R
pR

)
for 2− wave (19)

in which,

φ(z) =


z − 1
ln z

, if z < 1 (rarefactions)
√

z, if z ≥ 1 (shocks)
(20)

By noting that p− = p∗L, p+ = p∗R, v− = v∗L and v+ = v∗R, Eqs. (11), (18) and (19) can be combined to form, along with
Eq. (5), the following system of differential and algebraic equations in terms of vp and y = (p∗L, p∗R)T :

dvp

dt
=

1
Mp

((p∗L − p∗R) A−Mpg sinβ − FH − FM ) (21)

g(vp,y) = 0, (22)

in which

g1 = p∗L − pL −ML(p∗L)
(

vL −
ṁa2

Ap∗L
− vp

)
(23)

g2 = p∗R − pR −MR(p∗R)
(

ṁa2

Ap∗R
+ vp − vR

)
(24)

with ṁ = ̂̇m(p∗L, p∗R, vp). The solution at t = tf of the system of Eqs. (21-22), which is carried out by using the
Petzold-Gear BDF method (Petzold , 1982), completes the solution of the non-classical Riemann problem for the pig.

4. NUMERICAL SIMULATIONS

In order to evaluate the capability of the proposed non-classic Riemann problem, along with its numerical solution, in
properly dealing with the pig movement problem, we present next some numerical results for typical cases involving the
pig motion in gas pipelines. Since the critical cases involving pig motion are those associated with its start-up, we take
this physical situation as the main motivation in the numerical simulations presented ahead.

The pig is assumed to be at rest (vp(t = to = 0) = 0) inside a long and horizontal (θ = 0.0) gas pipeline, whose
internal diameter is D = 0.6096 m. At room temperature, the isothermal wave speed of the gas is a = 414 m/s and its
absolute viscosity is equal to µ = 1.5 × 10−5 Pa.s. The physical properties of the pig are: rp = 0.30988 m, Mp = 200
kg, E = 36.16 MPa, ν = 0.15, Lp = 0.2 m, ηs = 0.25, ηd = 0.23.

To assess the robustness of the proposed strategy in dealing with different real-world situations, three different cases,
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hereto after labeled as Case A, B and C, were considered with regard to the by-pass flow through the pig. In Case A, an
idealized situation is considered in which there is no by-pass flow at all. This situation is mimic by assuming that there is
no gap between the pig and the pipe (δ = 0.0) and, as a consequence, the contact area ratio is equal to ξ = 1.0 and so no
hydrodynamic force acts on the lateral contact area of the pig. In Case B it is assumed that the by-pass flow takes place
solely through the gap, which is of the order of δ = 0.1 mm. Finally, in Case C, besides the by-pass flow through the
gap, there exists also a parcel of by-pass flow through four holes (nh = 4) in the pig’s body, having each one a head loss
coefficient equal to kh = 3.0. The physical features of these three cases are shown in Table 1, where it can be seen that a
same contact area ratio of ξ = 0.8 has been adopted for both Cases B and C.

Table 1. Description of the non-classical Riemann problems for the three cases.

Case Description δ (mm) ξ (-) nh (-) kh (-)
A no by-pass flow 0.0 1.0 0.0 0.0
B by-pass through the gap only 0.1 0.8 0.0 0.0
C by-pass through the gap and holes in the pig’s body 0.1 0.8 4.0 3.0

The initial data of the non-classical Riemann problem concerning the pressures and velocities of the gas ahead (pL, vL)
and behind the pig (pR, vR) (see Eq. 17) are presented in Table 2 for the three cases A, B and C. These data were chosen
by following a two-step procedure. Firstly, by fixing the pressure behind the pig pR, Eqs. (21-22) were solved with vp = 0
and dvp/dt = 0 to find the corresponding equilibrium values vL, vR and p′L. In the sequel, pL was computed by setting
pL = p′L + ∆p, in which ∆p = N

√
ρLρRavref , with vref being the velocity reference of the gas inside the pipeline.

The value of ∆p is an increase in the pressure ahead of the pig to set it in motion and represents N times the Joukowsky
pressure surge. In constructing Table 2, we have used vref = 9 m/s and N = 3, in such a way that pL − pR represents a
severe pressure gradient mimicking stringent situations of pig start-up.

Table 2. Initial data of the non-classical Riemann problems for the three cases.

Initial data Case A Case B Case C
(pL, pR) (Pa) (4884073, 4210703) (4884657, 4210703) (4884656, 4210703)
(vL, vR) (m/s) (0, 0) (0.0675, 0.07371) (0.7337, 0.8012)

The results of the numerical simulations associated with the solution of the non-classical Riemann problem, with
initial data given in Table 2, are depicted in the graphs of Figs. 1, 2 and 3 for the Cases A, B and C, respectively. To
evaluate the robustness of the numerical strategy, these solutions were obtained for the maximum value of tf , [tf ]max, for
which a numerical solution was feasible, i. e., for tf > [tf ]max convergence to a numerical solution was not achieved.
The values of [tf ]max for each of the Cases A, B and C are presented in Table 3.

Table 3. Reference values for plotting purpose for the three cases.

Reference values Case A Case B Case C
[tf ]max (s) 0.1 0.008 0.001
pmax (Pa) 4884073 4884657 4884657
vmax (m/s) 9.69 3.32 1.53

For uniformly plotting the results allowing to establish comparisons among them, the pressure, the velocity, the time
and the spatial position are scaled according to:

P :=
p

pmax
; V :=

v

vmax
; T :=

t

[tf ]max
; X :=

x

L
; (25)
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in which L = 100 m and the maximum values of velocity and pressure for each case were computed as follows:

vmax = max [|vL|, |vR|, |v∗L|, |v∗R|] (26)

pmax = max [|pL|, |pR|, |p∗L|, |p∗R|,max [ρL, ρR, ρ∗L, ρ∗R] vmaxa] . (27)

The values of vmax and pmax for the three Cases A, B and C are also presented in Table 3.

Figure 1. Solution representation of the non-classical Riemann problem for Case A in the T -X plane (left) and for the V
and P variables against X (right) at time T = 1.

Figure 2. Solution representation of the non-classical Riemann problem for Case B in the T -X plane (left) and for the V
and P variables against X (right) at time T = 1.

Figure 3. Solution representation of the non-classical Riemann problem for Case C in the T -X plane (left) and for the V
and P variables against X (right) at time T = 1.

Independently of the existence and quantity of the by-pass flow rate, it can be observed in the left graphs of Figs. 1, 2
and 3 that the solution of the pig start-up described by the non-classical Riemann problem for Cases A, B and C is always
of the same nature, i. e., 1-rarefaction/2-shock. However, it can be seen in Table 3 that as the amount of by-pass flow rate
is increased from Case A to Case C, the numerical solution of the problem is achieved for decreasing values of [tf ]max,
what explains the relative positions of these waves compared to the pig contact discontinuity in the X-T planes of the left
graphs of Figs. 1, 2 and 3.

Although small time-steps are required to ensure the existence of a numerical solution of the non-classical Riemann
problem when the by-pass flow rate through the pig increases, a numerical solution seems always to exist even in these
most critical situations associated with pig start-up.
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5. CONCLUDING REMARKS

A non-classical Riemann problem, along with its solution and a numerical strategy for computing it, has been proposed
in this paper for analyzing pig motion in gas pipelines during unsteady and steady states. Numerical solutions have then
been carried out for the practical problem associated with the pig start-up. Different situations raging from no by-pass
flow to by-pass flow through the gap and through the holes in the pig’s body are considered. The results obtained have
shown that a numerical solutions always exist, but small time-steps are required to advance the solution in time when the
by-pass flow rate through the pig increases.

6. ACKNOWLEDGEMENTS

The authors would like to thank Petrobras S.A., CNPq, CAPES and FAPERJ for the continuous support of all research
activities of this group over the years. The first author also gratefully acknowledges the scholarship granted by the CAPES
agency during the M.Sc. course in the PGMEC at Universidade Federal Fluminense.

7. REFERENCES

Azevedo L. F. A, Braga A.M.B. and Gomes M.G.F.M., 1997. “Experimental validation of analytical models for by-pass
flow and contact forces in pig cups”. In Proceedings of the Pipeline Pigging Conference. Houston, Texas, USA.

Botros K.K. and Golshan H., 2009. “Dynamics of pig motion in gas pipelines”. In Porceedings of the AGA Operations

Conference & Biennial Exhibition. Pittsburgh, USA. May, pp. 19–21.
Bueno, D. E. G. P., Figueiredo, A. B., Baptista, R. M., Freitas Rachid, F. B. and Bodstein, G. C. R., 2012. “Featuring pig

movment in two-phase gas pipelines”. In Proceedings of the 9th International Pipeline Conference, pp. 1–10, Calgary,
Alberta, Canada.

Campo Barba, E.V. and Freitas Rachid, F.B., “Modeling of pig motion under transient fluid flow”. In Proceedings of the

XIV Brazilian Congress of Mechanical Engineering COBEM. São Paulo, Brazil.
Esmaeilzadeh, F., D. Mowla D. and Asemani M., 2009. “Mathematical modeling and simulation of pigging operation in

gas and liquid pipelines”. Journal of Petroleum Science and Engineering, Vol. 69, pp. 100–106.
Gomes, M. G. F. M., 1994. The analysis cup pigs by the finite element method. M.Sc. Thesis, Federal University of Rio

de Janeiro, Rio de Janeiro, Brazil.
Kohda, K., Suzukawa, Y. and Furukawa, H., 1988. “Pigging analysis for gas-liquid two-phase flow in pipelines”. In

Proceedings of the 11th Annual Energy Resources Technology Conference & Exhibition. New Orleans, USA.
Minami, K. and Shoham, O., 1994. “Transient two-phase flow behavior in pipelines - Experiment and modeling”. Inter-

national Journal of Multiphase Flow, Vol. 20, pp. 739–752.
Nieckele, A.O., Braga, A.M.B. and Azevedo, L.F.A., 2001. “Transient pig motion through gas and liquid pipelines”.

Journal of Energy Resources Technology, Vol. 123, pp. 260–269.
Nguyen, T.T., Yoo, H.R., Rho, Y.W. and Kim S.B., 2001. “Modeling and simulation for pig with bypass flow control in

natural gas pipeline”. KSME International Journal, Vol. 15, pp. 1302–1310.
Petzold, L.R., 1982. “A description of DASSL: A differential-algebraic system solver”. In Proceedings of the IMACS

World Congress, Montreal, Canada.
Toro, E.F., 1999. Riemann solvers and numerical methods for fluid dynamics. Springer.
Xu, X. and Gong, J., 2005. “Pigging simulation for horizontal gas-condensate pipelines with low-liquid loading”. Journal

of Petroleum Science and Engineering, Vol. 48, pp. 272–280.

8. RESPONSIBILITY NOTICE

The author(s) is (are) the only responsible for the printed material included in this paper.


	INTRODUCTION
	GOVERNING EQUATIONS
	THE ASSOCIATED NON-CLASSICAL RIEMANN PROBLEM AND ITS SOLUTION
	NUMERICAL SIMULATIONS
	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES
	RESPONSIBILITY NOTICE

