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Abstract. Meshless methods have been increasingly applied to the solution of partial diferencial equations. In the 

present work, a meshless technique, based on the Radial Basis Functions (RBF), was used to the solution of a 

magnetohydrodynamic (MHD) problem. In this problem, a tilted cavity was considered. Such cavity was filled with an 

electrically conducting fluid and it was permeated by an external magnetic field. The mass and momentum equations 

were combined in a biharmonic equation, written in terms of stream functions. The results obtained with RBF solution 

were in good agreement with other results found in the literature. 
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1. NOMENCLATURE 

B Magnetic field vector 

B0 Externally applied magnetic field of reference 

c shape parameter used in the Radial Basis 

Functions 

f Exact value of the functions at the interpolation 

points 

g Acceleration of gravity vector 

Gr Grashof number 

Ha Hartmann number 

J Electric current density vector 

L Length of the cavity 

M, N Number of collocation points in the x and y 

direction, used in the RBF approximation 

P Pressure 

Pr Prandtl number 

r Euclidian norm between any two points 

RBF Radial Basis Function 

s Interpolated functions 

T Temperature 

Th Hot temperature 

Tc Cold temperature 

T0 Reference temperature 

V Velocity field vector 

x, y Coordinate axis 

 

Greek symbols 

α,  Unknown coefficients of the RBF expansion 

  Inclination of the cavity 

αT Thermal diffusivity 

T Thermal expansion coefficient 

 Electric potential 

 Unknown coefficients of the RBF representing 

the temperature and stream-function 

0 Magnetic permeability of the vacuum 

 Electrical conductivity 

  Kinematic viscosity 

  Viscosity 

 Base functions of the RBF representing the 

temperature and stream-function 

 Stream-function 

 

Superscript 

‘ Dimensionless quantities 

 

2. INTRODUCTION 

Traditional numerical approaches for the approximate solution of partial differential equations require the use of a 

mesh, as in the finite element, finite difference, and finite volume methods, among others. The main difficulty 

associated with the use of a mesh is the definition of the mesh itself (Leitão, 2004). Meshless methods have thus some 

advantages over traditional methods, due to the fact that they do not require a mesh generation. The geometry 

discretization is updated by simply adding or deleting points in the domain of interest (Demirkaya et al., 2008). The first 

use of the RBF interpolation method for solving differential equations was made by the physicist Edward Kansa in 

1990. Once the method was first used to solve PDEs, its popularity continued to grow rapidly and a large number of 

applications of the method appeared (Sarra e Kansa, 2009).  

Meshless methods have been used to solve different problems. Colaço et al. (2006) used Radial Basis Functions, 

based on the multiquadrics and Wendland expansions, to solve convective-diffusive problems. Divo and Kassab 

(2007) developed a localized meshless collocation using the Hardy’s Multiquadrics method for coupled viscous fluid 

flow and convective heat transfer problems. Leitão (2001) presented a meshless method for the analysis of bending of 

thin homogeneous plates, based on the use of radial basis functions to build an approximation of the general solution of 

the partial differential equations governing the Kirchho plate-bending problem. Chinchapatnam et al. (2006) used RBFs 

to solve a lid-driven cavity problem. Colaço et al. (2009) used the radial basis function formulation to solve a 

magnetohydrodynamic problem in two dimensions in an incompressible, steady-state and laminar flow-field with 

constant magnetic field applied. Wang et al. (2005) presented a meshless method developed by combining the virtual 

boundary collocation method with RBF approximation to solve isotropic and anisotropic heat conduction problems.  
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The effect of magnetic field on free convection in cavities has received great attention, being studied by several 

authors. These studies mainly analyze the effect of magnetic force in the flow field and the heat transfer rate. This 

increasing attention is due to the large number of applications. 

Applications range from the process of manufacturing crystals such as crystal silicon to the use of liquid metals as 

coolant medium in a variety of nuclear reactors involving the presence of strong magnetic fields (Alchaar et al.,1995). 

Al-Najem et al. (1997) examined the influence of the magnetic field on the heat transfer process inside a tilted 

enclosures for a wide range of inclination angles at moderate and high Grashof numbers. They concluded that the heat 

transfer mechanisms and the flow characteristics inside the tilted enclosures depend strongly upon both the strength of 

the magnetic field and the inclination angle. Ece et al. (2006) studied natural-convection flow in the presence of a 

magnetic field in a tilted square/rectangular enclosure. The results showed that the flow characteristics and, therefore, 

the convection heat transfer inside the tilted enclosure, depend strongly upon the strength and direction of the magnetic 

field, the aspect ratio and the inclination of the enclosure. 

In this work a magnetohydrodynamic problem in a tilted square cavity was studied using a RBF approximation. 

Different inclination angles as well as different Hartmann and Grashof numbers were analyzed. Several tests were 

conducted by changing the number of collocation points. The equations were written in the biharmonic form, thus 

eliminating the pressure gradient and also the need of a pressure-velocity coupling scheme. 

 

3. RADIAL BASIS FUNCTION 

Radial basis functions are essential ingredients of the techniques generally known as "meshless methods". In one 

way or another all meshless techniques require some sort of radial function to measure the influence of a given location 

on another part of the domain. Kansa's method (or asymmetric collocation) starts by building an approximation to the 

field of interest (normally displacement components) from the superposition of radial basis functions (globally or 

compactly supported) conveniently placed at points in the domain (and, or, at the boundary). 

Radial Basis Function (RBF) is a function that depends only on the distance between the center    and another any 

point  . The unknowns (which are the coefficients of each RBF) are obtained from the (approximate) enforcement of 

the boundary conditions as well as the governing equations by means of collocation. Usually, this approximation only 

considers regular radial basis functions, such as the globally supported multiquadrics or the compactly supported 

Wendland (Wendland,1998) functions.  

      Radial basis functions (RBFs) may be classified into two main groups: 

1. the globally supported ones namely the multiquadric (MQ,  
2

2

j jx x c  , where cj is a shape parameter), the 

inverse multiquadric, thin plate splines, Gaussians, etc; 

2. the compactly supported ones such as the Wendland (Wendland,1998) family (for example,  (1 )nr p r   

where p(r) is a polynomial and (1 )nr   is 0 for r greater than the support). 

      In a very brief manner, interpolation with RBFs may take the form: 

 

 (  )  ∑   (|     |)

 

   

                                                                                                                                                           ( ) 
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 (  )     (|     |)     (|     |)       (|     |) 
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or in a system 

 

                                                                                                                                                                                                   ( ) 
 

where   is the matrix of known RBFs and their derivatives,   is the vector of independent terms and   is the vector of 

unknown parameters. 

 

4. PHYSICAL PROBLEM 

The physical problem analyzed here involves the laminar, steady and incompressible fluid flow of an electrically 

conducting fluid within a tilted square cavity whose left and right walls are subjected to different and constant 

temperatures and the top and bottom walls are kept thermally insulated. The fluid properties are considered constants 

and the buoyancy force is approximated using the Boussinesq’s hypothesis. The fluid is permeated by a constant 

magnetic field which will create an additional buoyancy force. All boundaries are subjected to no-slip boundary. 

Figure1 shows the geometry and boundaries for this problem. 
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Figure 1 - Geometry and coordinate system 

 

4.1 Mathematical Equations 

The mathematical formulation of the problem studied in this paper is given by Eqs. (4), which represent the mass, 

momentum, and energy conservation, along with the Maxwell equations: 
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 (       ) (4.c) 

      (4.d) 

   (       )  (4.e) 

  
 

  
              (4.f) 

 

where 0 is the magnetic permeability of the vacuum.   

      Defining the stream-function  
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where L is the length of the cavity and Tc and Th are the cold the hot temperatures of the container walls, respectively, 

we can combine Eqs. (4.a), (4.b), and (5.a, b), in order to obtain a bi-harmonic equation: 
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Also, substituting (5.a, b) into (4.c) we obtain 
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Also, substituting (5.a, b) in the boundary conditions, we have 
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where Ha, Gr and Pr are the Hartmann, Grashof and Prandtl numbers, respectively. They are defined as 

 

      √
 

 
           

  
 (     )  

            
 

  
                                                                                                       (     )     

 

where B0 is the steady externally applied magnetic field of reference. 

      

5. SOLUTION TECHINIQUE 

Classical numerical methods, such as the finite volume and the finite difference methods, need to use some kind of 

pressure-velocity coupling scheme. In the present work, the use of the bi-harmonic form given by Eq. (7.a), eliminates 

the pressure gradient. In this paper, we used a RBF formulation to solve Eqs. (7.a.-b) as well as the boundary conditions 

given by Eqs. (7.c-f). There are several types of RBF functions. In this paper we used the multiquadrics, which is given 

as 

 

 (  )    (   )  √(    )
  (    )

                                                                                                                        ( ) 

 

where c is a shape parameter which directly influences the quality of the solution. In this paper, we defined c to be 

proportional to the minimum distance between two points over the entire domain, a procedure suggested by 

Chinchapatnam (2006). Therefore, c is increased until the residual of the solution of the equations. (7.a-f) is minimum.  

The variables appearing in Eqs. (7.a-f) were expanded by using  

 

  (     )  ∑    (  )

 

   

                                                                                                                                                            (    ) 

  (     )  ∑    (  )

 

   

                                                                                                                                                            (    ) 

 

where the RBFs  are the same for the two expansions, but the parameters  and  are different for each one. In Eqs. 

(10.a, b), M and N are the number of centers used in the two RBF approximations. Substituting Eqs. (10.a, b) into Eqs. 

(7.a-f) we can obtain 
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Equations (11.a-f) result in a system of nonlinear algebraic equations that was solved by the Broyden’s quasi-

Newton method (Press et al., 1992).  

 

6. RESULTS AND DISCUSSION 

The magnetohydrodynamic problem in tilted square cavity was qualitatively analyzed to the following angles of 

inclination of the cavity: -30
o
 and -60

o
. The analysis of the average Nusselt number was performed for the following 

angles of inclination of the cavity: -10
o
 to -90

o
. We used Grashof numbers equal to                  , where 

several Hartmann numbers were utilized. In all test cases, the Prandtl number was taken as 0.71. Different tests were 

analyzed, changing the number of collocation points in the RBF expansion. A uniform distribution of points was used. 

The numerical results were compared with the previous results of Al-Najem et al. (1998) where the authors used the 

control volume method on a uniform grid of 41 x 41 grid cells. 

Figures 2 and 3 show qualitatively the isotherms and stream functions for         and            , with an 

inclination of the cavity        and       , respectively. We used for this test 36 and 225 collocation points. We 

can see that even with a few collocation points, the results obtained with RBF formulation are in good agreement with 

the reference. Increasing the number of points, there is an improvement in the cases:        with     , and 

       with       

 

 Streamlines Isotherms 

       
Al-Najem et al.   

(1998) 
RBF(6X6) RBF(15X15) 

Al-Najem et al.   

(1998) 
RBF(6X6) RBF(15X15) 

Ha=0 

      

Ha=25 

      

Figure 2 - Streamlines and isotherms for Gr=10
4
 and =-30

o
 

 

 Streamlines Isotherms 

       
Al-Najem et al.   

(1998) 
RBF(6X6) RBF(15X15) 

Al-Najem et al.   

(1998) 
RBF(6X6) RBF(15X15) 

Ha=0 

      

Ha=25 

      

Figure 3 - Streamlines and isotherms for Gr=10
4
 and =-60

o
 

 

Figures 4 and 5 show qualitatively the isotherms and stream functions for              , with an inclination of 

the cavity        and       , respectively. We used for this test 225 and 625 collocation points. For        

we can see that results improved when we increase the number of collocation points. For        the results did not 

improve with the number of collocation points. 
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 Streamlines Isotherms 

       
Al-Najem et al.   

(1998) 
RBF(15X15) RBF(25X25) 

Al-Najem et al.   

(1998) 
RBF(15X15) RBF(25X25) 

Ha=25 

      

Figure 4 - Streamlines and isotherms for Gr=10
6
 and  =-30

o
 

 

 Streamlines Isotherms 

       
Al-Najem et al.   

(1998) 
RBF(15X15) RBF(25X25) 

Al-Najem et al.   

(1998) 
RBF(15X15) RBF(25X25) 

Ha=25 

      

Figure 5 - Streamlines and isotherms for Gr=10
6
 and  =-60

o
 

 

Table 1 shows the comparison of the results obtained in the present work against the ones of Al-Najem et al. (1998) 

for         with       . The results show that the relative error decreases when we increase the number of 

collocation points, except for       which presents the best result with a distribution of 15x15 points. Errors less 

than 2% were found, indicating that the results are in good agreement with those found in the literature. 

 

Table 1 - Relative errors of Nusselt numbers for Gr=10
4
 and  =-20

o
 

Average Nusselt number (      ) 

       
Al-Najem et 

al.   (1998) 
RBF(6x6) 

Relative 

error (%) 
RBF(15x15) 

Relative 

error (%) 
RBF(25x25) 

Relative 

error (%) 

     1.71 2.00 16.96 1.74 1.75 1.73 1.17 

      1.48 1.60 8.11 1.49 0.68 1.47 0.68 

      1.11 1.16 4.50 1.11 0 1.12 0.89 

      0.99 0.89 10.10 0.96 3.03 1.01 1.98 

 

Table 2 shows the comparison against the results of Al-Najem et al. (1998) for         with       . The 

results show that the relative error decreases when we increase the number of collocation points, except for      

which presents the best result with a distribution of 15x15 collocation points. In this case we found relative errors 

smaller than 1%.  

 

Table 2 - Relative errors of Nusselt numbers for Gr=10
4
 and  =-50

o
  

Average Nusselt number (      ) 

       
Al-Najem et 

al.   (1998) 
RBF(6x6) 

Relative 

error (%) 
RBF(15x15) 

Relative 

error (%) 
RBF(25x25) 

Relative 

error (%) 

     1.25 1.33 6.40 1.25 0 1.26 0.8 

      1.16 1.22 5.17 1.17 0.86 1.15 0.86 

      1.02 1.04 1.96 1.04 1.96 1.03 0.98 

      0.98 0.94 4.08 1.00 2.04 0.98 0 

 

Table 3 shows the comparison against the results of Al-Najem et al.(1998) for         with       . The 

results shows that for        the best result was found with a distribution of 15x15 collocation points. We found 

errors less than 1% for                . The results for      were not good, showing high relative errors. 
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Table 3 - Relative errors of Nusselt numbers for Gr=10
6
 and  =-20

o
  

Average Nusselt number (      ) 

       
Al-Najem et 

al.   (1998) 
RBF(15x15) 

Relative 

error (%) 
RBF(25x25) 

Relative 

error (%) 
RBF(30x30) 

Relative 

error (%) 

     6.92 8.32 20.23 7.24 4.62 6.92 0 

      6.76 8.12 20.11 7.20 6.11 6.76 0 

      6.11 7.23 18.33 6.43 4.98 6.06 0.82 

       3.01 2.92 2.99 2.72 9.63 2.65 11.96 

     0.99 0.88 11.11 0.90 9.09 0.90 9.09 

 

Table 4 shows the comparison against the results of Al-Najem et al.(1998) for         with       . The 

results show that the case with 25x25 collocation points was the best for this case. Again, for       , the best result 

was obtained with a distribution of 15x15 collocation points. This was observed at all angles of inclination and the 

results for      were not good, showing high relative errors.    

 

Table 4 - Relative errors of Nusselt numbers for Gr=10
6
 and  =-50

o
  

Average Nusselt number (      ) 

       
Al-Najem et 

al.   (1998) 
RBF(15x15) 

Relative 

error (%) 
RBF(25x25) 

Relative 

error (%) 
RBF(30x30) 

Relative 

error (%) 

     2.47 2.66 7.69 2.36 4.45 2.27 8.10 

      2.47 2.78 12.55 2.33 5.67 2.25 8.91 

      2.33 2.57 9.34 2.21 5.15 2.14 8.15 

       1.55 1.53 1.29 1.50 3.23 1.49 3.87 

     0.97 0.88 9.28 0.90 7.22 0.90 7.22 

 

Figure 6 and 7 present the variaton of the average Nusselt number with the inclination of the cavity, for    
              , respectively. These figures also present a comparison against the previous results of Al-Najem et al. 

(1998). All results were obtained with a distribution of 25x25 collocation points for         and a distribution of 

30x30 collocation points for         As we can observe, the agreement between the solutions is better when the 

Grashof number is smaller. As we saw above in Tables 3 and 4, for       , the use of 30x30 collocation points 

presented a large error. In this case it is best to use fewer collocation points. 

 

 
Figure 6 - Nu vs.  for Gr=10

4
 

 
Figure 7- Nu vs.  for Gr=10

6
 

 

 

 

 

 

 

 



Proceedings of ENCIT 2012                                                                        14
th

 Brazilian Congress of Thermal Engineering and Sciences 

Copyright © 2012 by ABCM                                                                                            November 18-22, 2012,Rio de Janeiro, RJ, Brazil 
 
7. CONCLUSIONS 

In this work we used the Radial Basis Function method to solve a magnetohydrodynamic problem in a tilted square 

cavity in an incompressible, steady-state and laminar flow-field, with a constant magnetic field applied. Different tilt 

angles as well as different Hartmann and Grashof numbers were studied. We used a uniform distribution of points and 

changed the number of collocation points in the RBF expansion. The results showed that the RBF found good estimates 

for the stream function and isotherms, as well as the Nusselt number, when compared with another work found in the 

literature. Some tests must be performed in the future, regarding the use of a non-uniform distribution. The shape 

parameter required in the multiquadrics formulation needs further investigation, since in the literature studied there is no 

rule or mathematical methodology to find an optimum value of it. 
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