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Abstract. Numerical simulations of free shear layer has a critical point in the definition of accurate initial and boundary

conditions. Different explicit and implicit marching schemes are described in this current paper. This procedure can

be applied in a existing code designed for unsteady simulations. The steady-state solution are obtained efficiently with

a parameter θ of marching methods. Linear stability analysis is the fundamental theory that guarantee the optimal

convergence in a process. This new methodology is tested on a code designed for compressible Navier-Stokes equation

with arbitrary Mach number. Different θ are investigated to demonstrate the efficiency of the methodology. The optimal

convergence was demonstrated for both methodologies.
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Initial and Boundary Conditions.

1. Introduction

Free shear flows are unbounded regions of a large body of fluid, which have either excess momentum, such as jet and
mixing layer, or momentum deficit, like wake. This kind of flow have been the subject of extensive research over the
past several decades, mostly because they have applications in many engineering fields. The development of the coherent
structure formed by the mixing layer are responsible for control of the air-fuel mixture ratio in the primary zone of gas
turbine combustors and pollution dispersion from chimneys into the atmosphere. Numerical studies of these flows help
us to understand some important characteristics of their physics.

Spatially developing incompressible planar mixing layers represents a free shear layer that is already convectively
unstable at very low Reynolds numbers. In such cases, small perturbations are amplified as they propagate downstream.
The first coherent structure formed in a transient simulation is the start-up vortex. Many authors claim that a first derivative
discontinuity between initial and inflow conditions is responsible for its formation (Buell and Huerre, 1988). Nevertheless,
another studies show that numerical reflections provide from outlet conditions create a non-physical feedback effect
(Teixeira, 2010; Teixeira and Alves, 2011). In the absence of external excitations, the flow should relax to its steady-state
solution according to both linear (Ho and Huerre, 1984; Huerre and Monkewitz, 1990) and nonlinear studies (Chomaz,
2005). However, undesirable numerical reflections corrupt the simulation preventing the steady-state solution.

The small amount of computer simulations about this problem present in the literature can be seen in the article
by McMullan et al. (2007), which simulates incompressible spatially developing planar mixing layers in two and three
dimensions. The hyperbolic tangent function and data derived from boundary layer simulations are used to generate the
inflow conditions, which are extended to the rest of the domain in order to form the respective initial conditions. They
show important differences between each one of these cases, providing strong evidence that initial conditions must be as
close as possible to the experiment they intend to reproduce for a good agreement to be possible.

The study of accurate initial conditions was developed for direct numerical simulation of temporal compressible binary
shear layers (Lardjane et al., 2004). The effects of the density ratio, convective Mach number and free streams temperature
was illustrated for the different initial condition. The amplitude of early acoustic wave is strongly reduced due the accurate
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initial condition. A novel numerical methodology to generate accurate initial conditions for unsteady simulations was
presented in Teixeira and Alves (2012). In this method the physical-time damping with first-order backward difference
formula (BDF) (Venkateswaran et al., 2003) is introduced through a dual time stepping scheme to eliminate transient
fluctuations without affecting spatial resolution. However, only simulations of low stiff test cases (velocity ratio ∼ 2 or 4)
were presented.

One of the critical points in the computer simulation of external flows is the appropriate implementation of initial
and boundary conditions. A possible solution to this problem is coordinate transformation, i.e., mapping the unbounded
domain into a bounded one before attempting a numerical solution of the respective governing equations (Grosch and
Orszag, 1977). Two types of high accuracy artificial boundary conditions can be found in the literature. The first type
includes global boundary conditions, which require a finite region that extends away from the boundary to be effective
(Blaschak and Kriegsmann, 1988; Bodony, 2006). The other type includes local boundary conditions, which only act
on the artificial boundary controlling the inflow and outflow of waves crossing it. One widely used subset is known as
non-reflective boundary conditions. They model the behavior of linear perturbations around a reference solution at the
boundary (Giles, 1990; Colonius et al., 1993) in order to minimize reflections.

The following sections present a formulation of temporal derivative discretization that eliminate the transient fluc-
tuations efficiently. This procedure is an extension of the methodology developed by Teixeira and Alves (2012). The
density-based approach developed by Merkle and co-workers (Venkateswaran and Merkle, 2000; Buelow et al., 2001) are
employed in the current paper. The spatial derivatives were aproximated with central differences on a non-uniform mesh
(Teixeira and Alves, 2010; Teixeira et al., 2008), with matrix artificial dissipation applied for the inviscid fluxes (Medeiros
and Alves, 2010; Medeiros, 2012).

2. Mathematical Model

Actually numerical methods have been the principal investigation instrument of the partial differential equation (PDE).
Derivative approximations are used to discretize the original PDE (or system of PDEs). The method to approximate
derivatives applied in this paper was the finite-difference method (Tannehill et al., 1997). The mathematical model present
here is based on treatment of the temporal derivatives of a system of PDEs like as

∂Q

∂t
= f(Q) (1)

where Q is the variable vector.
The introduction report the difficult to obtain agreement initial and boundary conditions in free shear flows. A implicit

Euler scheme generate reference solutions to mixing layer problem (Teixeira and Alves, 2012). In order to improve the
efficiency to generate reference solutions we modify the implicit and explicit Euler schemes to introduce dissipative error
and reach the convergence. A combination of two differences derivatives approximations control the spatial fluctuations
(Zhong, 1998). In the explicit Euler scheme we apply a compounding of different discretization. The temporal derivative
was discretized with a linear combination between backward and central difference approximations. It follows that the
difference approximation to the first temporal derivative of a system of equations 1 can be written as

∂Q

∂t
= θ

Qn+1 −Qn

∆t
+ (1− θ)Qn+1 −Qn−1

2∆t
= f(Qn) + E.T., (2)

where θ is the dissipative control parameter, resulting in the following equation

∂Q

∂t
=

(1 + θ)Qn+1 − 2θQn − (1− θ)Qn−1

2∆t
= f(Qn) + E.T., (3)
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where the truncation error is described as

E.T. = θ
∆t

2

∂2Q

∂t2
− ∆t2

6

∂3Q

∂t3
+ θ

∆t3

24

∂4Q

∂t4
− ∆t4

120

∂5Q

∂t5
+ . . . (4)

whose the dissipative control parameter θ is associated to even derivatives. Thus, if we increase the θ the dissipative error
must increase.

In the implicit scheme we applied the generalized Crank-Nicholson method (Anderson, 1995) with the same dissipative
control parameter θ of the equation 2 can observed equation 5

∂Q

∂t
=

Qn+1 −Qn

∆t
= θf(Qn+1) + (1− θ)f(Qn) + E.T. (5)

and the truncation error is

E.T. = (2θ − 1)
∆t

2

∂2Q

∂t2
− (6θ2 − 6θ + 1)

∆t2

6

∂3Q

∂t3
+ . . . (6)

A system of ordinary differential equations (ODE) will be employed to certificate the method behavior. This one was
implemented to improve the readers comprehension. On the other hand, the ODE 7 represent a good nonlinear problem
to test our methodology due their chaotic characteristic. This system of equations was first formulated in 1963 by E. N.
Lorenz and possesses what has come to known as a “strange attractor" (Hirsch et al., 2004). The Lorentz equation is
defined as

dx

dt
= σ (y − x)

dy

dt
= ρx− y − xz

dz

dt
= −βz + xy

(7)

where x, y and z are the independent variables, σ is the Prandtl number, ρ is the Rayleigh number and β is related to the
physical size of the system.

The modified explicit Euler and generalized Crank-Nicholson methods are implemented in the above problem. The
set of Lorentz problem constants are: σ = 10, β = 8/3 and ρ = 18. A investigation of different parameters θ is presented
in Figure 1. The Figure 1 (left) show the convergence process of the Lorentz problem with modified explicit Euler scheme
and the Figure 1 (right) show the convergence with the generalized Crank-Nicholson scheme. In both cases, the figure
shows the number of physical-time iterations as the different physical-time steps ∆t are performed. The different kind of
lines shows the convergence towards steady-state for different parameters θ. The physical-time iterations were performed
until the maximum absolute error of the residue’s L2 norm was below dx/dt ≤ 1.0 × 10−08. The Figure 1 (left) show
an optimal physical-time step ∆t less than the maximum physical-time step ∆t. However, the dissipative terms of the
truncation error in the equations 4 and 6 are associated with the parameter θ and physical-time step ∆t. Thus, it was
expected the optimal convergence in maximum parameter θ and physical-time step ∆t.

On the other hand, the implicit scheme case in Figure 1 (right) show a strange behavior. This should happen due the
numeric nature of the problem. Then, a problem with more complexity must be employed. The linear stability analysis
was employed to understand the error behavior of the proposed schemes.

Numerical Stability is a study of error behavior in a only marching numerical scheme. A stable numerical method
is one the error not grow in the numerical procedures (Tannehill et al., 1997). Particularly, in this current paper, we are
looking for which manner the error diminish efficiently. The study display the gain as the different physical-time step
∆t are performed. The Figure 2 shows the stability analysis of the modified explicit Euler scheme (left) and generalized
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Figure 1. Steady-state convergence of Lorentz problem using modified explicit Euler scheme (left) and generalized Crank-
Nicholson scheme (right) for different θ parameters.
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Figure 2. Linear stability analysis for modified explicit scheme (left) and implicit scheme (right).

Crank-Nicholson (right). In both figures each line color shows the stability analysis for different parameters θ. The
region of minimal gain is evidence in explicit scheme analysis. For each θ parameter a existence of optimal physical-time
step ∆t can be observed in Figure 2 (left). The mentioned phenomena agrees with numerical result present in Figure 1
(left). However, the stability analysis for the implicit method of Figure 2 (right) just has a optimal physical-time step ∆t

for some specific parameters θ. For the implicit scheme analysis, the numerical studies has a good agreement with the
stability analysis for small physical-time step ∆t. Thus, the methodology of this research is about the optimal step time
∆t for drive the solution towards steady-state regime. The following section present the preconditioned dual-time (DTS)
procedures.

2.1 Dual-Time Step Procedure

Let’s consider the compressible Navier-Stokes equations described in equation 1 where t is the physical time variable,
Q is the conservative variable and f(Q) is the steady-state residue of purpose problem. When solving these equations
numerically one has to use their discrete form. This one leads a significant problem when the Mach number approach
zero, i.e. M → 0. Thus, two different approaches must be used to solve one. Fist we solve the pressure field directly and
decompose the pressure into a constant reference pressure p0 and a gage pressure pg , i.e., p(x, t) = p0 + pg(x, t). Then,
the equation 1 is rewritten as

T
∂Q̂

∂t
= f(Q), (8)
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where T = ∂Q/∂Q̂ is the vector to modify the conservative to primitive variables and Q̂ is the primitive variable vector
that includes the gage pressure, all velocities components and temperature. The equation 8 can not be used if the Mach
number is less than M ∼ 0.1. However, minor values for Mach number can be achieved with the second approach,
knowledge as preconditioning for low Mach number (Turkel, 1993, 1999). This is possible with the substitution of the
Jacobian T by the preconditioned matrix Γ, where we obtain the preconditioned equations

Γ
∂Q̂

∂τ
= f(Q), (9)

where τ is the pseudo-time independent variable. Indeed, the preconditioned matrix Γ is the modified Jacobian T that
the eigenvalues of the equation 8 have the same order of magnitude (Turkel, 1987). Nevertheless, this procedure alters
the original physical-time t, therefore the pseudo time becomes the new marching variable. This process accelerate the
convergence of the original system, 1 or 8, towards steady-state. The solution f (Q) = 0 of the original system in the
limit t→∞ is the same of equation 9 in the limit τ →∞.

Introducing the original physical time derivative in equation 9, the unsteady problem can be evaluated, because of this
we have

Γ
∂Q̂

∂τ
+
∂Q

∂t
= f(Q), (10)

where this procedure is knowledge as dual-time step method (DTS) (Merkle and Choi, 1988). Once the steady-state
solution is obtained in each physical time step the original government equation 1 is recovered, since ∂Q̂/∂τ ' 0 in this
limit.

The approach traditionally used to solve the equation 10 considers the physical-time derivative as a source term, where
we obtain

Γ
∂Q̂

∂τ
= f(Q)− ∂Q

∂t
, (11)

where a multi-step scheme can be employed (Alves, 2009). Because of two different time derivative the time derivative
discretization presented in the last section can be applied in both time derivative. Initially, the explicit scheme is presented.
Thus, using the explicit scheme of equation 3 in the physical-time derivative the equation 11 becomes

Γp ∂Q̂

∂τ
= f(Qn)− (1 + θ1)Qn+1 − 2θ1Q

n − (1− θ1)Qn−1

2∆t
. (12)

When we apply the modified explicit method in the pseudo time derivative it is important to assume dependent un-
known variables in physical (n + 1) and pseudo (p + 1) time are equal. This approximation is necessary to employ the
multi-step marching scheme (Turkel and Vatsa, 2005). Thus, the equation 12 is given by

Γp (1 + θ2)Q̂p+1 − 2θ2Q̂
p − (1− θ2)Q̂p−1

2∆τ
= f(Qn)− (1 + θ1)Qp+1 − 2θ1Q

n − (1− θ1)Qn−1

2∆t
. (13)

such organizing the equation 13 in residual form, we have

(1 + θ2)
Γp

2∆τ
∆Q̂ =

(θ2 − 1)

2∆τ

(
Q̂p − Q̂p−1

)
+ f(Qn)− (1 + θ1)Qp+1 − 2θ1Q

n − (1− θ1)Qn−1

2∆t
, (14)

where ∆Q̂ = Q̂p+1 − Q̂p.
Finally, after linearizing equation 14 in pseudo-time, we obtain the equation for discretized modified explicit scheme

{
(1 + θ2)

Γ

2∆τ
+ (1 + θ1)

T

2∆t

}p

∆Q̂ =
(θ2 − 1)

2∆τ

(
Q̂p − Q̂p−1

)
+f(Qn)− (1 + θ1)Qp − 2θ1Q

n − (1− θ1)Qn−1

2∆t
.
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(15)

Now we present the equation 11 with generalized Crank-Nicholson in both temporal derivatives. Initially, the implicit
scheme is applied in physical-time derivative. The equation 11 becomes

Γp ∂Q̂

∂τ
= f̃(Q) = θ1f(Qn+1) + (1− θ1)f(Qn)− Qn+1 −Qn

∆t
. (16)

applying the generalized Crank-Nicholson scheme to march equation 16 in pseudo-time leads to

Γp Q̂p+1 − Q̂p

∆τ
= θ2f̃(Qp+1) + (1− θ2)f̃(Qp) (17)

linearizing the unknown terms in pseudo-time we have{
Γ

∆τ
− θ2

∂ f̃(Q)

∂Q̂

}p

∆Q̂ = f̃(Qp) (18)

where ∂ f̃/∂Q̂ includes the inviscid and transient Jacobians with the primitive variable vector Q̂ and Q̂p+1 = Q̂p + ∆Q̂.
Combining equations 18 and 17 yields{

Γ

∆τ
− θ2

(
T

∆t
+ θ1

∂f

∂Q̂

)}p

∆Q̂ = θ1f(Qp) + (1− θ1)f(Qn)− Qp −Qn

∆t
, (19)

where ∂f/∂Q̂ contains the inviscid Jacobians.

3. Results and Discussions

The one-dimensional compressible Navier-Stokes equation is solved by numerical method. According the perturba-
tion theory, compressible flows can keep three types of disturbance: entropic waves, vorticity and sound. This one are
independent if their fluctuations are small, otherwise the disturbance will interact. Then, small density fluctuations just
will be convected in a streamwise direction without any amplitude, frequency and phase variation. In this research, the
entropic waves was simulated constant at low Mach number flow. The one is generated by a density disturbance with
constant velocity and pressure. The temperature variations are obtained from state equation. If the initial condition is an
arbitrary dimensional functions f(x) for density its transient behavior will be defined by ρ(x, t)/ρ0 = f(x − u0t). The
initial condition is defined as

f(x) = 1 + δ0 sin(2πx/l0), with 0 ≤ x ≤ l0, (20)

where ρ0 and u0 is the mean density and velocity, where the Mach number is M = 10−3, δ0 is the amplitude, l0 is the
wavelength and t0 = l0/u0 period of perturbation. The reference pressure and temperature are P0 = 101325Pa and
T0 = 300K.

First of all, the impact of the methodology on the pseudo-time derivative was investigated. The Figure 3.show the
number of iterations for different pseudo-time step ∆τ in the case of modified explicit Euler method (left) and generalized
Crank-Nicholson method (right). In the physical-time was employed the Crank-Nicholson scheme with twenty points per
period. In both cases, each type of line show the iterations number in pseudo-time step in the first physical-time step for
different parameter θ. According to linear stability analysis, the Figure 3.(left) show a region of optimal pseudo-time step
∆τ different of maximum one. On the other hand, the Figure 3.(right) shows an optimal pseudo-time step ∆τ only for
some parameters θ. This results evidence the good agreement with stability analysis.

Now that the study of physical marching schemes have been illustrated in pseudo-time, an evaluation of the two
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Figure 3. Number of iterations for different pseudo-time step ∆τ for modified explicit scheme (left) and implicit scheme
(right)

physical damping models in physical-time is presented. The Figures 4 and 5 show the convergence to artificial steady-
state solution for different CFL number (CFL = ∆t · u0/l0). A tolerance (∆Q/∆t < 10−8) was imposed to reach
the steady-state. Different parameters θ was investigated for both methods. The iterations number for each physical-time
step for the Modified Explicit Euler scheme is presented. The total iterations number in pseudo-time is given to show the
existence of a optimal CFL for each parameter θ.
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Figure 4. Pseudo-time iterations and steady-state convergence in physical-time for Modified Explicit Euler scheme.

In the Figure 4 the convergence for the Modified Explicit Euler method is presented. The Modified Explicit Euler
scheme was employed in pseudo-time derivative with θ = 0.5. The Figure 4 (left) illustrate the case with θ = 1.0 and
Figure 4 (right) the case with θ = 0.5. In both cases, the existence of a optimal CFL is evidence and a similar behavior is
observed for a wide range of parameters (0.3 ≤ θ ≤ 2.0). The Figure 4 describes the accelerate convergence with the θ
variation, i. e., when increase the parameter the total iterations number in the pseudo-time decrease and the total steps in
physical-time also decrease.

On the other hand, in Figure 5 the convergence for the Generalized Crank-Nicholson method is presented. In the
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pseudo-time the convectional Crank-Nicholson scheme was employed. The Figure 5 (left) shows the convergence for the
case which θ = 0.7 and in the Figure 5 (right) illustrates the convergence progress for θ = 1.0. The optimal CFL is
observed for both cases of parameters θ. A wide range parameter was studied (0.3 ≤ θ ≤ 2.5). The similar behavior was
observed. A good agreement with the linear stability analysis was demonstrated for two methods. The iterations number in
pseudo-time for each physical-time step for Modified Explicit method is 0.7% of Generalized Crank-Nicholson. However,
the Modified Explicit Euler schemes required a high computational cost, i. e., the number of steps in physical-time to
reach convergence, is 25000 times greater than implicit one. According the region stability of explicit scheme the CFL
number is lower. So, optimal CFL for this one gives the total iterations number in pseudo-time 21% higher than implicit
scheme. This results suggest in unstable problems the explicit scheme is unavailable.

4. Conclusions and Future Works

The current paper showed, in the present literature, that several of the most accurate compressible flow employed
today has the difficult to describe the initial and boundary conditions. The physical-time damping was described as a
good procedure to generate a steady-state solution (Teixeira and Alves, 2011). It can be easily applied to any existing
unsteady flow code. The modifications in physical marching schemes can accelerate the convergence and give a optimal
convergence process, based on linear stability analysis. The results illustrate the existence of a CFL optimal for each
methods. The computational cost was 400 times greater in Explicit scheme.

The study in a 2D compressible unsteady flow will employ. Future work will test this procedure on more challenging
problems as well as utilize such steady-states as initial and boundary conditions which require reference solutions.
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