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Abstract. The 1D Two-Fluid Model is based on the time and pipe cross-section area averages of the transport 
equations governing the flow, requiring the inclusion of closure parameters for the gas and liquid phases. The closure 
relations must be able to realistically represent the physical phenomenon of interest, and the resulting set of governing 
equations must also be well-posed. At the present paper, two closure relations are considered to render a well posed 
set of conservation equations to predict the upward slug flow in vertical pipes. These parameters are: pressure jump 
due to the curvature of the interface, and a momentum flux parameter. Main characteristics for statistically steady flow 
regime are compared with experimental data presenting good agreement. It is shown that the inclusion of a constant 
momentum flux parameter for the liquid phase plays a more significant role than the pressure jump to improve well-
posedness in vertical flows.  
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1. INTRODUCTION 

Slug flow is a complex flow characterized by a succession of liquid plugs and Taylor bubbles, and it can be found in 
a variety of industrial applications, such as chemical process, nuclear and petroleum industries. The prediction of this 
type of flow is very important to correctly design pipelines and separation tanks. However, especially due to its 
intermittent nature, the correct slugging behavior is very difficult to predict numerically. Slug length, frequency, and 
translational velocities are the most important parameters. Most models have a semi-empirical nature, requiring the 
incorporation of experimental correlations for slug parameters (Dukler and Hubbard, 1975, Taitel and Barnea, 1990). 
However, due to the intrinsically unsteady and irregular character of slug flow, statistical evolution of slug variables is 
many times required for its proper description (Carneiro et al., 2011). 

The Two-Fluid Model (Ishii and Hibiki, 2006) is one of the most popular approaches for the simulation of 
multiphase flows. This model is based on the solution of a set of conservation equations for each phase. Although two 
phase pipe flow has intrinsically a three-dimensional nature, due to phase distribution and especially in the presence of 
turbulence, it is common to assume that the main variations occur only in the axial direction and therefore the one – 
dimensional model is a realistic approximation. To attain the 1D flow equations, it is necessary to perform an area 
average of the conservation equations. This process results in loss of information along the cross section, which has to 
be compensated with constitutive closure relationships. Furthermore, for vertical flow situations, the traditional set of 
conservation equations is ill-posed. Holmâs et al (2008) suggested including artificial diffusion terms in the momentum 
equations, while Montini and Issa (2010) evaluated the inclusion artificial diffusion terms in both mass and momentum 
equations. Song and Ishii (2000) explored in detail the issue of accounting for effect of cross stream profiles. They 
suggested the introduction of a coefficient in the convective terms of the equations which they called “the momentum 
flux parameter” (MFP) and subsequently analysed its effect on the nature of equations. Issa and Montini (2010) showed 
that presence of momentum flux parameter renders the equation conditionally well – posed by analyzing the numerical 
solution of the Two-Fluid Model for horizontal slug flows under very fine meshes. The influence of surface tension was 
also investigated in horizontal situations (Montini and Issa, 2010). 

At the present work, two closure relations are investigated aiming at obtaining a well-posed system of equations, in 
order to predict vertical slug flows. The first one is the momentum flux parameter and the second one is the pressure 
jump due to the interface curvature. The model is applied to test cases and the predictions are compared with available 
experimental data. 

2. MATHEMATICAL MODEL 

Isothermal two-phase flow in a vertical pipe is considered. The liquid is incompressible and the gas follows the ideal 
gas law. Additionally, viscous diffusion is neglected and no mass transfer takes place between phases. The one-
dimensional continuity and momentum equations (comprising the Two-Fluid Model) can be written for each phase k as  
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where represents the volume fraction (with g+l=1)U is the average velocity weighted by the volume fraction, ρ is 
density, t is time and x the axial coordinate. Pik is the pressure at the interface at the k phase side, g  is the gravity 
acceleration, wk  is phase k shear stress at the wall, τi is the gas-liquid interfacial shear stress, Sk and Sl are the phase wet 
perimeter and the interface perimeter. It should be mentioned that annular flow is considered as the base flow 
configuration, i.e., geometrical parameter are determined based on this assumption. Therefore, Sg =0, and Sl =  D, 
where D is the pipe diameter. The shear stress can be obtained from the friction factor f as 

2/llllwl UUf          ,   2/)(|| lglggii UUUUf    , (2) 

Empirical correlations must be employed to obtain fl and fi as function of Reynolds number (Carneiro et al. 2011; 
Wallis, 1969). 

2.1 Closure parameters 

To help stabilize the conservations equations, in order to obtain a well posed set of equation, the momentum flux 
parameter Ck   can be employed.  It accounts for the variation of velocity and void fraction over cross – section, 
containing information on the flow structure in the flow area normal to the main direction. It is defined as  
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For fully developed single phase flow, it is possible to establish the values of the shape parameter Ck by integrating the 
analytical velocity profiles. For laminar flow (Poiseuille flow), Ck =1.33 is a classical result of fluid mechanics. 
Turbulent flow profiles are flatter, so there is a tendency to give lower Ck  values than for laminar flow. 

Another parameter that can render the set equations as well posed is the pressure jump at the interface. It can be 
determined by the Young – Laplace equation, as a function of interface curvature , which is based on the principal 
curvature radii at the surface. For an annular geometry, two principal curvatures are involved, one in the axial direction 
R1 and other in the radial direction R2
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To solve the governing equations, the finite-volume method (Patankar, 1980) was employed, using the totally 
implicit scheme for time integration and upwind scheme for the convective terms. The conservation equations are 
solved sequentially and the system of algebraic equations for each variable is solved with the TDMA algorithm.  

3. ANALYSIS OF WELL-POSEDNESS 

A set of equations is well posed if a solution for the initial value problem exists, is unique and depend continuously 
on the data (i.e. small variations in the initial data correspond to small variations of the solution). When these three 
conditions do not hold, the problem is ill posed although it may still give a solution. 

The governing equations of the 1D Two-Fluid Model are known to be mathematically ill-posed under certain 
conditions, depending strongly on closure models incorporated, as mentioned above.  

To investigate the well-posedness of the Two-Fluid Model, a characteristic analysis of the governing differential equation 
is performed. To this end, it is convenient to rewrite the governing differential equations in a more compact form as: 
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where A and B are the Jacobian matrices,  is the solution vector and C is the column vector with algebraic source 
terms. The initial value problem under consideration is to find a solution of system in some region 0 ≤  x ≤ L, where L is 
length of the pipe, and t ≥0; subject to initial condition(0,x)=G(x). To verify if the system is well posed, the 
characteristics n of the set of equations must be analyzed. The characteristics n are determined when det [B-  A]=0. 
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If all n roots are real, the set of differential equations is hyperbolic and the problem is well-posed (Song and Ishii 2000). 
On the other hand, in the case of complex roots, the system of equations is elliptic and the problem is ill – posed. In the 
latter case, it is not guaranteed that the system has a unique solution and the results obtained by solving numerically the 
system are unreliable. Usually, in such cases, the numerical calculations do not converge to the same values regardless 
of mesh density.  

To estimate the term related to the variation of the local curvature of the interface with the liquid level, it is useful the 
introduction of a disturbance in accordance with the following expression: hl,=hl,eq+hl,0 e

i(wt –p x)	where hl,eq is the liquid 
level of equilibrium. The second term represents the fluctuation in time of the liquid h’l, , where hl,0, w and p correspond 
to the amplitude disturbance, frequency and angular wave number. Assuming for simplicity that  p is constant along the 
axial coordinate, it follows that /g/ hl  hl /g and / hl =p. To guarantee that the characteristics are real, 
the following criteria must be respected 
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It can be easily shown that if Cg=Cl=1 and  =0 (no pressure jump), the above condition will never be attained, 
unless Ug = Ul. 

4. RESULTS    

At the present paper, one case was selected to be examined. Table 1 presents the pipe and physical properties of the 
fluids. This case was investigated experimentally by Rodrigues et al (2010), who examined the slug flow in horizontal 
and vertical pipes.  

By applying the criteria given by Eq.(7) it can be shown that the pressure jump due to the interface curvature does 
not help to transform the problem to well posed if  p< 2/D, but the inclusion of the coefficients Cl or Cg, even close to 
one, are more effective to improve well-posedness. Issa and Montini (2010) showed that for a horizontal pipe, the liquid 
momentum flux coefficient can extend the well posedness region of the system, but not the gas parameter. Therefore, 
the gas momentum flux parameter was kept constant and equal to one. The liquid momentum flux parameter was 
defined as  Cl =1.00 and 1.34, as employed by Issa and Montini (2010). 

Table 1.-Physical properties vertical pipe (Rodrigues et al., 2010) 
Fluids 

 
Density 
(kg/m3) 

Viscosity 
(Pa s) 

Superficial 
velocity (m/s) 

Superficial 
shear (N/m) 

Pipe 
length (m) 

Pipe 
Diameter (m) 

Pressure 
out (Pa) 

Air 1.243 1.81×10-5 0.828   
5.811 

 
0.026 

 
105 114 water 998.2 8.55×10-4 0.880 0.0727 

 
As mentioned above, ill-posed problems usually fail to present mesh-independent solutions. Thus, to verify the 

behavior of the system of equations, this case was simulated with fine meshes and with different combinations of the 
flux parameter and pressure jump. Figure 1 illustrates the bubble length, LB/D, slug length LS/D and slug frequency as a 
function of the mesh size x/D with and without the liquid momentum flux coefficient Cl and pressure jump ( =0 
implies in no pressure jump). Note that as the mesh is refined, the inclusion of the pressure jump does not stabilize the 
system and the slug parameters do not become mesh independent. However, the introduction of Cl=1.34 results in a 
mesh independent solution. This result is in agreement with the stability analysis performed with the aid of Eq. (7). 

   
                            (a) Bubble length                                    (b) Slug length                                              (c) frequency 

Figure 1. – Momentum flux coefficient and pressure jump influence on slug parameters with varying meshes.  

A comparison of the present numerical predictions with the experimental data of Rodrigues et al (2010) is shown in 
Fig. 2. The results were obtained with the flux distribution parameter Cl=1.34, without pressure jump, and with mesh size 
x/D=0.4. Fig. 2a shows the comparison of the pressure distribution along the pipe, where an excellent agreement was 
obtained. The statistically steady slug parameters are shown in Figs. 2b and 2c. Good agreement with experimental data 
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was obtained for the bubble length distribution along the pipe. The slug length was underpredicted, specially near the 
entrance. It is very difficult to faithfully represent the experimental inlet conditions, therefore, there seems to be a longer 
"transition-length" in the numerical predictions. Simulations with longer pipe lengths are currently being investigated. 

Figure 2c compares the bubble velocity measured by Rodrigues et al (2010), with the present results and Bendiksen 
(1985) correlation. It can be seen that excellent agreement was obtained.  

 

 
                  (a) Pressure                                                         (b) Slug and bubble length                 (c)  bubble velocity   

Figure 2.– Distribution along the pipe of  pressure, slug and bubble length and  bubble  velocity  

5. CONCLUSION 

In this work the momentum flux parameter and pressure jump were incorporated in the 1D Two-Fluid Model to 
investigate the well-posedness of the equation system, for the simulation of slug flow in a vertical pipe. By examining 
the ability to obtain mesh independent solutions, it was shown that the momentum flux parameter was more effective 
than the pressure jump term. The results were compared with available experimental data and good agreement was 
obtained. Nevertheless, investigations on a wider range of cases and the model performance for different values of the 
momentum flux parameter in slug flows are still necessary. 
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