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Abstract. This work proposes a mathematical model to study the filling up of an unsaturated rigid porous medium by a 
liquid identifying the transition from unsaturated to saturated flow and accounting for the physical upper bound of the 
fluid fraction that depends on the volume of the pores. The complete solution of a Riemann problem associated to the 
system of conservation laws satisfying the constraint given by the saturation upper bound is presented. 
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1. INTRODUCTION 
 

This work employs a physically realistic mathematical model to represent the filling up of an unsaturated rigid 
porous matrix by a fluid, identifying the transition from unsaturated to saturated flow, by imposing a constraint (an 
upper bound) on the saturation (Saldanha da Gama et al., 2012). According to a comprehensive review by Alazmi and 
Vafai (2000), an adequate description of this transition remains an open subject. The mechanical modeling uses a 
mixture theory approach to model a porous medium bounded by an impermeable wall. 

Constrained hyperbolic systems may be present in different applications, such as two-phase flows, compressible 
plasticity with shocks and description of traffic of vehicles or crowds, including traffic jams, presence of toll gates and 
prediction of traffic accidents on roads. Bouchut et al. (2000) discuss two-phase flows of gas and liquid models, for 
incompressible liquids, ranging from nonconservative conservation laws with relaxation to a system of pressureless 
gases with concentration constraint and undetermined pressure. Rossmanith (2004) employs a high-resolution finite 
volume method, based on a wave propagation method, using a constrained transport framework to approximate a 
system of non-linear hyperbolic magnetohydrodynamic equations, satisfying a divergence-free constraint on the 
magnetic field, subjected to shock waves and other discontinuities. Després et al. (2011) present a mathematical 
framework for constrained weak solutions of hyperbolic equations, to model compressible plasticity with shocks. The 
developed weak formalism allows accounting for both Tresca and Von Mises plasticity criteria. 

Concerning traffic flow models, Daganzo (1995) observed that models like the Euler equations for gas dynamics 
may lead to absurd behavior like vehicles going backwards. Aw and Rascle (2000) proposed a model – the Aw-Rascle 
model – correcting these problems and ensuring that both density and velocity remain nonnegative. Berthelin et al. 
(2008) propose a traffic flow model describing the formation and the dynamics of traffic jams, consisting of a 
pressureless gas dynamics system under a maximal constraint on the density; in other words, the density constraint is 
preserved at any time. Herty and Schleper (2011), aiming at predicting traffic accidents, discuss predictive 
mathematical models based on a macroscopic description of traffic flow. Essentially they consider mathematical 
properties of a coupled macroscopic second-order traffic model with different pressure laws on the connected roads. 
Aiming at modeling of a tollgate along a highway, Colombo and Goatin (2007) consider a single hyperbolic equation 
(Cauchy problem) subjected to a local variable unilateral constraint on the flux, while in the present work a system of 
two partial differential equations is considered. The total number of vehicles is conserved and the traffic speed is 
assumed to be a function of traffic density. 

Saldanha da Gama (1986) proposed a constitutive relation for the partial pressure accounting for a geometrical 
bound, which arises from the rigidity of the porous matrix and the incompressibility of the fluid, avoiding solutions 
without physical meaning. Martins-Costa and Saldanha da Gama (2011) proposed an improvement to this constitutive 
in which the unilateral geometrical constraint for the fluid fraction, instead of being assumed in the whole domain, is 
considered only in a convenient neighborhood of the porosity (provided that the fluid fraction is smaller than the 
porosity), besides assuring continuity for the pressure and for its first derivative, thus allowing the analytical 
computation of the Riemann invariants associated to the problem. In this work the porous medium can actually be 
saturated by the fluid, while the equation proposed by Saldanha da Gama (1986) imposes a physical behavior for the 
fluid preventing it to saturate the porous matrix. 
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The unsaturated porous medium is modeled as a mixture approach (Atkin and Craine, 1976; Rajagopal and Tao, 
1995) of three overlapping continuous constituents: a solid (a rigid, homogeneous and isotropic porous matrix), a liquid 
(an incompressible fluid) and an inert gas, assumed with very low mass density; which was included to account for the 
compressibility of the system as a whole. 
 
2. PROBLEM FORMULATION AND SOLUTION 
 

Figure 1 presents the scheme of a porous medium bounded by an impermeable wall. This problem is built by 
considering at t < 0  two distinct bodies: the former is a porous slab of thickness L  (represented by the region 0<x<L) 
and porosity ε containing a liquid with constant fluid fraction φ1. The latter is a semi-infinite porous medium with 
porosity ! , constant fluid fraction φ2 and velocity v2, such that at t<0 both the liquid and the porous matrix (occupying 
the second body) have velocity v2. At the time t=0 the semi-infinite porous medium reaches the porous slab, so the 
semi-infinite porous medium (the second body) stops and remains at rest for all t > 0 . So, for t ! 0  the liquid flows 
towards the porous slab. The following problem, sketched in figure 1, is to be solved: Find φ and v as functions of the 
position and time assuming that ε>φ2>φ1.  

The mathematical model for the above-described phenomenon is given by 
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in which φ is the fluid fraction, v the velocity c is a positive constant and ε is the porous matrix porosity. The first two 
equations in the left hand side of Eq. (1) represent the mechanical model obtained by considering a mixture theory 
approach for an unsaturated flow through a porous matrix (see Martins-Costa and Saldanha da Gama, 2011 and 
references therein), using the following relationship p = c 2!  (Saldanha da Gama et al., 2012) provided 0 ! ! < " . It is 
important to note that the following relations must hold for a rigid and homogeneous porous medium: p = p̂ (!)  for 
0 < ! < " , characterizing unsaturated flow and p̂ (!) ! p <"  for ! = " , characterizing saturated flow (Saldanha da 
Gama et al., 2012). 

Problem (1) may be rewritten considering x = x ! L  so that v = 0  at  x = !L   for all  t > 0 , giving rise to the 
following associated Riemann problem  
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Figure 1. Problem statement. 

 



Proceedings of ENCIT 2012         14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM              November 18-22, 2012, Rio de Janeiro, RJ, Brazil 
  

 

Since v2 < 0  (as shown in figure 1), !2 >!1 and the solution of the system (2) is either 1-shock/2-rarefaction or 1-

shock/2-shock (Saldanha da Gama et al., 2012). If v2 !2!1 > c (!1 !!2 ) , the solution is 1-shock/2-rarefaction, being 
given by 

 

!,v( ) =

!1,0( )         if       !" < x / t < s1

!A ,vA( )      if           s1 < x / t <vA +c

f 2 ,g 2( )      if     vA +c # x / t # c +v2

!2 ,v2( )       if     c +v2 < x / t <"

$

%

&
&&

'

&
&
&

 with 
g 2 =

x
t
!c

f 2 = !2 exp x
ct
!
v2

c
!1

(

)
*

+

,
-

$

%
&
&

'
&
&

  (3) 

 

while !A  and vA  are given by ln
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+v2 , with the shock speed s1  given by 

s1 = (!AvA ) / (!A !!1) .  

The solution of problem (1) is given by system (3) until the 1-shock, with speed 1s , reaches the impermeable 
surface x = !L . In other words, the solution of Eq. (1) is given by Eq. (3) while t ! "L / s1 . When t = !L / s1 , the 1-
shock reaches the surface x = !L  and the boundary condition must be imposed.  

In order to satisfy the boundary condition, a new Riemann problem is constructed, centered at the impermeable 
wall, symmetric with respect to x = 0 , starting from the time t = t + L / s1 . This Riemann problem is given by 
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The solution of the Riemann problem (4) is given by 
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in which the intermediate fluid fraction !

!
 is obtained from  
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Combining equations (3) and (5) the following solution of problem (1) is reached 
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Figure 2 illustrates the solution in the semi-plane x ! t  presented by equations (7), for the particular case in which 

! = 0.505 , !1 = 0.1 , !2 = 0.5 , v2 = !0.1 , L =1  and c =1 . In this case, !A = 0.2321 , vA = !0.867  and !* = 0.505= " . 

Without the constraint ! ! "  the fluid fraction !*  would be 0.5389 – a value greater than the porosity, thus physically 
unrealistic, emphasizing the importance of the constrained model proposed in this work. 

 

 
Figure 2. Solution of problem 1 in the semi-plane x-t. 

 
 

If v2 !2!1 < c (!1 !!2 ) , the solution is 1-shock/2-shock, being given by 
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with vA, φA, and the shock speeds s1 and s2 being given by (Saldanha da Gama et al., 2012) 

 



Proceedings of ENCIT 2012         14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM              November 18-22, 2012, Rio de Janeiro, RJ, Brazil 
  

 

vA = !c
!A
!1

!
!1

!A

"

#
$
$

%

&
'
'        !A =

!2!1

!2 + !1( )
2

!v2

2c
+

!v2

2c
"

#
$

%

&
'

2

+ 2+
!2

!1

+
!1

!2

(

)
*

+*

,

-
*

.*

2

     s1 =
!AvA
!A !!1

                            s2 =
!2v2 !!AvA
!2 !!A

 (9) 

 
The solution of Eq. (1) is given by Eq. (8) until the 1-shock, with speed s1, reaches the impermeable surface 

x = !L . In other words, the solution of Eq. (1) is given by Eq. (7) while t ! "L / s1 . When t = !L / s1  the 1-shock 
reaches the surface x = !L  and the boundary condition must be imposed.  

In order to satisfy the boundary condition, a new Riemann problem is built, centered at the impermeable wall, 
symmetric with respect to x = 0 , starting from the time t = t + L / s1 . This Riemann problem is also given by Eq. (4), 
its previously known solution being given by 
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in which the intermediate fluid fraction !

!
 is, again, obtained from Eq. (6).  

So, when v2 !2!1 < c (!1 !!2 ) , the solution of problem (1) is represented by 
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3. FINAL REMARKS 
 

In this work a mathematical model for flows through unsaturated porous media, identifying the transition from 
unsaturated to saturated flow, was proposed by including a constraint that must be satisfied to build physically realistic 
generalized solutions for any initial data. The complete solution of a constrained nonlinear hyperbolic problem with 
shock waves – an associated Riemann problem containing a restriction (an upper bound for the fluid fraction, 
represented by the porosity), was presented as well as its application to flows through porous media, emphasizing a 
problem involving boundary conditions (impermeable wall). 
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